1
|
Sandybayev N, Strochkov V, Beloussov V, Orkara S, Kydyrmanov A, Khan Y, Batanova Z, Kassenov M. Evaluation of a novel real-time polymerase chain reaction assay for identifying H3 equine influenza virus in Kazakhstan. Vet World 2023; 16:1682-1689. [PMID: 37766711 PMCID: PMC10521171 DOI: 10.14202/vetworld.2023.1682-1689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Equine influenza (EI) is a highly contagious disease that causes fever and upper respiratory tract inflammation. It is caused by influenza virus A, belonging to the Orthomyxoviridae family, with subtypes H3N8 and H7N7. This study presents data on the development of a real-time polymerase chain reaction (RT-PCR) assay using TaqMan probes to detect the H3 subtype of EI virus (EIV). Materials and Methods The evaluation of the developed RT-PCR assay involved five strains of EIV as positive controls and ten nasopharyngeal swab samples collected from horses. RNA was isolated using the GeneJet Viral DNA and RNA Purification Kit, and primers and probes were designed using the Integrated DNA Technology PrimerQuest Tool. The assay was optimized by investigating the annealing temperature, primer and probes concentrations, sensitivity, and specificity. Sequencing was performed using the Thermo Fisher 3130 Genetic Analyzer, and the evolutionary history was inferred using the Neighbor-Joining method. Results The designed primers and probes, targeting the H3 gene, were found to be specific to the EIV. The RT-PCR assay was capable of detecting as low as 50 femtogram (f) or 3 × 103 copies of genomic RNA. No cross-reactions were observed with other respiratory viral and bacterial pathogens, indicating the high specificity of the assay. To evaluate its effectiveness, ten nasopharyngeal swab samples collected from farms in North Kazakhstan regions during disease monitoring were analyzed. The accuracy of the analysis was confirmed by comparing the results with those obtained from a commercial RT-PCR assay for EI identification. The developed RT-PCR assay exhibited high sensitivity and specificity for detecting the EIV. Conclusion The results demonstrate that the developed RT-PCR assay is suitable for diagnosing EI. This simple, highly sensitive, and specific assay for detecting H3 EIV can be a reliable tool for diagnosing and surveilling EI. Implementing this RT-PCR assay in veterinary practice will enhance and expedite the timely response to potential outbreaks of EI, thus positively impacting the overall epizootic well-being of EI in Kazakhstan.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Centre, Kazakh National Agrarian Research University, 050010 Almaty, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Centre, Kazakh National Agrarian Research University, 050010 Almaty, Kazakhstan
| | | | - Shynggys Orkara
- Kazakhstan-Japan Innovation Centre, Kazakh National Agrarian Research University, 050010 Almaty, Kazakhstan
| | - Aidyn Kydyrmanov
- Research and Production Center for Microbiology and Virology, Almaty 050060, Kazakhstan
| | - Yelizaveta Khan
- Research and Production Center for Microbiology and Virology, Almaty 050060, Kazakhstan
| | - Zhanat Batanova
- Faculty of Veterinary, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| | - Markhabat Kassenov
- Laboratory of Virology, Kazakh Scientific Research Veterinary Institute, Almaty 050016, Kazakhstan
| |
Collapse
|
2
|
Alaql FA, Alhafufi AN, Kasem S, Alhammad YMO, Albaqshi H, Alyousaf A, Alsubaie FM, Alghamdi AN, Abdel-Moneim AS, Alharbi SA. Full-Length Genome of the Equine Influenza A Virus Subtype H3N8 from 2019 Outbreak in Saudi Arabia. Animals (Basel) 2022; 12:ani12192720. [PMID: 36230462 PMCID: PMC9558945 DOI: 10.3390/ani12192720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Equine influenza is a highly contagious respiratory viral disease. The current study is the first to provide a description of the full-length genome sequence and surveillance of recent exposure to the equine influenza virus (EIV) during the 2019 epidemic in Saudi Arabia. This epidemic was benign, since it resulted in low case fatality (0.45%, 1/224). The viruses detected in the current study were found to be related to subtype H73N8 clade 1 of the Florida sublineage. Full-length genome sequencing revealed no evidence of major genetic changes or of reassortment among the eight segments of the viral genome. However, the Saudi strains showed a considerable number of amino acid substitutions in the signal peptide (2 amino acid substitutions), HA1 (10 amino acid substitutions) and HA2 (4 amino acid substitutions) in the haemagglutinin glycoprotein in comparison to clade 1 Florida sublineage vaccinal strains. These findings should be considered during selection of the equine influenza vaccine strains approved for use in Saudi Arabia. Abstract Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. This study aimed to screen the incidence of equine influenza virus (EIV) and molecularly characterize the haemagglutinin and neuraminidase from positive EIV field samples collected from Saudi Arabia. Six-hundred twenty-one horses from 57 horse barns were screened for the presence of the clinical signs, suggestive for equine influenza, from different parts of Saudi Arabia. Nasopharyngeal swabs were collected from each horse showing respiratory distress. Samples from the same horse barn were pooled together and screened for the presence of the influenza A virus using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). Selective positive samples were subjected to full-length genome sequencing using MiSeq Illumina. Out of the total 57 pools, 39 were found positive to EIV using qRT-PCR. Full-length gene sequences were compared with representative EIV strains selected from the GenBank database. Phylogenetic analysis of the HA and NA genes revealed that the identified virus strains belong to H3N8 clade 1 of the Florida sublineage and were very similar to viruses identified in USA in 2019, with no current evidence for reassortment. This is one of the first reports providing detailed description and characterization of EIVs in Saudi Arabia. Detailed surveillance and genetic information sharing could allow genetic evolution of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
Collapse
Affiliation(s)
- Fanan A. Alaql
- Virology and Genome Department in Central Veterinary Laboratory (CVL), Ministry of Environment, Water and Agriculture (MEWA), P.O. Box 15831, Riyadh 11454, Saudi Arabi
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ali N. Alhafufi
- Virology and Genome Department in Central Veterinary Laboratory (CVL), Ministry of Environment, Water and Agriculture (MEWA), P.O. Box 15831, Riyadh 11454, Saudi Arabi
| | - Samy Kasem
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, El Geish Street, Kafrelsheikh 33516, Egypt
- Correspondence: (S.K.); (A.S.A.-M.)
| | - Yousef M. O. Alhammad
- Virology and Genome Department in Central Veterinary Laboratory (CVL), Ministry of Environment, Water and Agriculture (MEWA), P.O. Box 15831, Riyadh 11454, Saudi Arabi
| | - Hassan Albaqshi
- Virology and Genome Department in Central Veterinary Laboratory (CVL), Ministry of Environment, Water and Agriculture (MEWA), P.O. Box 15831, Riyadh 11454, Saudi Arabi
| | - Ameen Alyousaf
- Virology and Genome Department in Central Veterinary Laboratory (CVL), Ministry of Environment, Water and Agriculture (MEWA), P.O. Box 15831, Riyadh 11454, Saudi Arabi
| | - Faisal M. Alsubaie
- Virology and Genome Department in Central Veterinary Laboratory (CVL), Ministry of Environment, Water and Agriculture (MEWA), P.O. Box 15831, Riyadh 11454, Saudi Arabi
| | - Ahmed N. Alghamdi
- Department of Microbiology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed S. Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
- Correspondence: (S.K.); (A.S.A.-M.)
| | - Sulaiman A. Alharbi
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
3
|
Complete Coding Genome Sequence of an Influenza A/H3N8 Equine Virus Isolated in Kazakhstan in 2007. Microbiol Resour Announc 2022; 11:e0114721. [PMID: 36094178 PMCID: PMC9584301 DOI: 10.1128/mra.01147-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we reported the complete coding sequence of the influenza A/equine/Otar/3/2007 (H3N8) equine virus, first isolated in Kazakhstan in 2007. The hemagglutinin (HA) sequences of the Kazakhstan isolates appeared to be closely related to viruses isolated in early 2000 in Asia. Phylogenetic analysis characterized the Kazakhstan isolates as a member of the Florida sublineage clade 2 by the HA protein sequence.
Collapse
|
4
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
5
|
Yongfeng Y, Xiaobo S, Nan X, Jingwen Z, Wenqiang L. Detection of the epidemic of the H3N8 subtype of the equine influenza virus in large-scale donkey farms. Int J Vet Sci Med 2020; 8:26-30. [PMID: 32341914 PMCID: PMC7170389 DOI: 10.1080/23144599.2020.1739844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
To monitor the occurrence of equine influenza in large-scale donkey farms in Liaocheng City, Shandong Province, serological investigation and sequence analysis of HA/M protein gene of equine influenza virus (EIV) were carried out. Samples (n = 65) of the lung and nasal swab were collected in six different large-scale donkey farms and detected with RT-PCR for HA and M protein gene. The homology and evolution of HA and M genes were analysed with known sequences. Antibody titres of serum samples (n = 120, unvaccinated) level was determined by the HI test. The average seropositive rate was 32.5% (39/120) with great diversity among different populations. The positive rate of EIV HA/M protein gene was 21.5% (14/65) by RT-PCR. The equine influenza H3N8 virus was confirmed by gene sequencing, and the homology of the sequence was 99.77% with isolates from Northeast China (equine/heilongjiang/1/2010), consistent with the input of donkeys. This suggested that EIV has become an important threat to large-scale donkey farms in Liaocheng and threats from the input area must be vigilant.
Collapse
Affiliation(s)
- Yu Yongfeng
- College of Agriculture, Liaocheng University, Liaocheng, Shandong, China
| | - Sun Xiaobo
- College of Agriculture, Liaocheng University, Liaocheng, Shandong, China
| | - Xia Nan
- College of Agriculture, Liaocheng University, Liaocheng, Shandong, China
| | - Zhang Jingwen
- College of Agriculture, Liaocheng University, Liaocheng, Shandong, China
| | - Liu Wenqiang
- College of Agriculture, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
6
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|