1
|
Śmiga M, Ślęzak P, Olczak T. Comparative analysis of Porphyromonas gingivalis A7436 and ATCC 33277 strains reveals differences in the expression of heme acquisition systems. Microbiol Spectr 2024; 12:e0286523. [PMID: 38289063 PMCID: PMC10913741 DOI: 10.1128/spectrum.02865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
Porphyromonas gingivalis strains exhibit different phenotypes in vitro, different virulence potential in animal models, and different associations with human diseases, with strains classified as virulent/more virulent (e.g., A7436 and W83) or as less virulent/avirulent (e.g., ATCC 33277). In this study, we comparatively analyzed the A7436 and ATCC 33277 strains to better understand their variability. Global gene expression analysis in response to heme and iron limitation revealed more pronounced differences in the A7436 than in the ATCC 33277 strain; however, in both strains, the largest changes were observed in genes encoding hypothetical proteins, genes whose products participate in energy metabolism, and in genes encoding proteins engaged in transport and binding proteins. Our results confirmed that variability between P. gingivalis strains is due to differences in the arrangement of their genomes. Analysis of gene expression of heme acquisition systems demonstrated that not only the availability of iron and heme in the external environment but also the ability to store iron intracellularly can influence the P. gingivalis phenotype. Therefore, we assume that differences in virulence potential may also be due to differences in the production of systems involved in iron and heme acquisition, mainly the Hmu system. In addition, our study showed that hemoglobin, in a concentration-dependent manner, differentially influences the virulence potential of P. gingivalis strains. We conclude that iron and heme homeostasis may add to the variability observed between P. gingivalis strains. IMPORTANCE Periodontitis belongs to a group of multifactorial diseases, characterized by inflammation and destruction of tooth-supporting tissues. P. gingivalis is one of the most important microbial factors involved in the initiation and progression of periodontitis. To survive in the host, the bacterium must acquire heme as a source of iron and protoporphyrin IX. P. gingivalis strains respond differently to changing iron and heme concentrations, which may be due to differences in the expression of systems involved in iron and heme acquisition. The ability to accumulate iron intracellularly, being different in more and less virulent P. gingivalis strains, may influence their phenotypes, production of virulence factors (including proteins engaged in heme acquisition), and virulence potential of this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
2
|
Butrungrod W, Chaiyasut C, Makhamrueang N, Peerajan S, Chaiyana W, Sirilun S. Postbiotic Metabolite of Lactiplantibacillus plantarum PD18 against Periodontal Pathogens and Their Virulence Markers in Biofilm Formation. Pharmaceutics 2023; 15:pharmaceutics15051419. [PMID: 37242661 DOI: 10.3390/pharmaceutics15051419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Alternative methods to reduce infectious diseases caused by bacterial pathogens and their virulence factors, biofilm formations, have arisen to reduce the pressure on existing or currently developed disinfectants and antimicrobial agents. The current strategies for reducing the severity of periodontal pathogen-caused disease by using beneficial bacteria and their metabolites are highly desirable. Probiotic strains of lactobacilli related to foods from Thai-fermented foods were selected and their postbiotic metabolites (PM) were isolated with inhibitory activity on periodontal pathogens and their biofilm formation. The PM from Lactiplantibacillus plantarum PD18 (PD18 PM) with the highest antagonistic effect against Streptococcus mutans, Porphyromonas gingivalis, Tannerella forsythia and Prevotella loescheii was selected from 139 Lactobacillus isolates. The minimal inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) values of PD18 PM against the pathogens ranged from 1:2 to 1:4. The PD18 PM demonstrated the ability to prevent the biofilm formation of S. mutans and P. gingivalis by showing a significant reduction in viable cells, high percentages of biofilm inhibition at 92.95 and 89.68%, and the highest effective contact times at 5 and 0.5 min, respectively. L. plantarum PD18 PM showed potential as a promising natural adjunctive agent to inhibit periodontal pathogens and their biofilms.
Collapse
Affiliation(s)
- Widawal Butrungrod
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Netnapa Makhamrueang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Yuan L, Wang Y, Zong Y, Dong F, Zhang L, Wang G, Dong H, Wang Y. Response of genes related to iron and porphyrin transport in Porphyromonas gingivalis to blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112670. [PMID: 36841175 DOI: 10.1016/j.jphotobiol.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.
Collapse
Affiliation(s)
- Lintian Yuan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Zong
- Harvard medical school, Boston, MA02115, USA
| | - Fan Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Ludan Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Guiyan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Huihua Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yuguang Wang
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| |
Collapse
|
4
|
Modulatory Mechanisms of Pathogenicity in Porphyromonas gingivalis and Other Periodontal Pathobionts. Microorganisms 2022; 11:microorganisms11010015. [PMID: 36677306 PMCID: PMC9862357 DOI: 10.3390/microorganisms11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The pathogenesis of periodontitis depends on a sustained feedback loop where bacterial virulence factors and immune responses both contribute to inflammation and tissue degradation. Periodontitis is a multifactorial disease that is associated with a pathogenic shift in the oral microbiome. Within this shift, low-abundance Gram-negative anaerobic pathobionts transition from harmless colonisers of the subgingival environment to a virulent state that drives evasion and subversion of innate and adaptive immune responses. This, in turn, drives the progression of inflammatory disease and the destruction of tooth-supporting structures. From an evolutionary perspective, bacteria have developed this phenotypic plasticity in order to respond and adapt to environmental stimuli or external stressors. This review summarises the available knowledge of genetic, transcriptional, and post-translational mechanisms which mediate the commensal-pathogen transition of periodontal bacteria. The review will focus primarily on Porphyromonas gingivalis.
Collapse
|
5
|
Abstract
Iron acquisition is essential for almost all living organisms. In certain environments, ferrous iron is the most prevalent form of this element. Feo is the most widespread system for ferrous iron uptake in bacteria and is critical for virulence in some species. The canonical architecture of Feo consists of a large transmembrane nucleoside triphosphatase (NTPase) protein, FeoB, and two accessory cytoplasmic proteins, FeoA and FeoC. The role of the latter components and the mechanism by which Feo orchestrates iron transport are unclear. In this study, we conducted a comparative analysis of Feo protein sequences to gain insight into the evolutionary history of this transporter. We identified instances of how horizontal gene transfer contributed to the evolution of Feo. Also, we found that FeoC, while absent in most lineages, is largely present in the Gammaproteobacteria group, although its sequence is poorly conserved. We propose that FeoC, which may couple FeoB NTPase activity with pore opening, was an ancestral element that has been dispensed with through mutations in FeoA and FeoB in some lineages. We provide experimental evidence supporting this hypothesis by isolating and characterizing FeoC-independent mutants of the Vibrio cholerae Feo system. Also, we confirmed that the closely related species Shewanella oneidensis does not require FeoC; thus, Vibrio FeoC sequences may resemble transitional forms on an evolutionary pathway toward FeoC-independent transporters. Finally, by combining data from our bioinformatic analyses with this experimental evidence, we propose an evolutionary model for the Feo system in bacteria. IMPORTANCE Feo, a ferrous iron transport system composed of three proteins (FeoA, -B, and -C), is the most prevalent bacterial iron transporter. It plays an important role in iron acquisition in low-oxygen environments and some host-pathogen interactions. The large transmembrane protein FeoB provides the channel for the transport of iron into the bacterial cell, but the functions of the two small, required accessory proteins FeoA and FeoC are not well understood. Analysis of the evolution of this transporter shows that FeoC is poorly conserved and has been lost from many bacterial lineages. Experimental evidence indicates that FeoC may have different functions in different species that retain this protein, and the loss of FeoC is promoted by mutations in FeoA or by the fusion of FeoA and FeoB.
Collapse
|
6
|
Zou P, Cao P, Liu J, Li P, Luan Q. Comparisons of the killing effect of direct current partially mediated by reactive oxygen species on Porphyromonas gingivalis and Prevotella intermedia in planktonic state and biofilm state - an in vitro study. J Dent Sci 2022; 17:459-467. [PMID: 35028071 PMCID: PMC8739843 DOI: 10.1016/j.jds.2021.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background/purpose Bacterial biofilms formed on the surface of tissues and biomaterials are major causes of chronic infections in humans. Among them, Porphyromonas gingivalis (P. gingivalis) and Prevotella intermedia (P. intermedia) are anaerobic pathogens causing dental infections associated with periodontitis. In this study, we evaluated the killing effect and underlying mechanisms of direct current (DC) as an antimicrobial method in vitro. Materials and methods We chose P. gingivalis and P. intermedia in different states to make comparisons of the killing effect of DC. By viable bacteria counting, fluorescent live/dead staining, reactive oxygen species (ROS) assay, addition of ROS scavenger DMTU and mRNA expression assay of ROS scavenging genes, the role of ROS in the killing effect was explored. Results The planktonic and biofilm states of two bacteria could be effectively killed by low-intensity DC. For the killing effect of 1000 μA DC, there were significant differences whether on planktonic P. gingivalis and P. intermedia (mean killing values: 2.40 vs 2.62 log10 CFU/mL) or on biofilm state of those (mean killing values: 0.63 vs 0.98 log10 CFU/mL). 1000 μA DC greatly induced ROS production and the mRNA expression of ROS scavenging genes. DMTU could partially decrease the killing values of DC and downregulate corresponding gene’s expression. Conclusion 1000 μA DC can kill P. gingivalis and P. intermedia in two states by promoting overproduction of ROS, and P. intermedia is more sensitive to DC than P. gingivalis. These findings indicate low-intensity DC may be a promising approach in treating periodontal infections.
Collapse
Affiliation(s)
- Peihui Zou
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Pei Cao
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Jia Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Peng Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
- Corresponding author. Department of Periodontology, School and Hospital of Stomatology, Peking University, NO.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR, China.
| |
Collapse
|
7
|
Insertional Inactivation of Prevotella intermedia OxyR Results in Reduced Survival with Oxidative Stress and in the Presence of Host Cells. Microorganisms 2021; 9:microorganisms9030551. [PMID: 33800047 PMCID: PMC7999485 DOI: 10.3390/microorganisms9030551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022] Open
Abstract
One of the most abundant bacteria in the subgingival pockets of patients with bleeding following mechanical periodontal therapy is Prevotella intermedia. However, despite its abundance, the molecular mechanisms of its contribution to periodontal disease are not well known. This is mainly due to the lack of genetic tools that would allow examination of the role of predicted virulence factors in the pathogenesis of this bacterium. Here, we report on the first mutant in the P. intermedia OMA14 strain. The mutation is an allelic exchange replacement of the sequences coding for a putative OxyR regulator with ermF sequences coding for the macrolide-lincosamide resistance in anaerobic bacteria. The mutant is severely impaired in its ability to grow with eukaryotic cells, indicating that it is an important target for interventional strategies. Further analyses reveal that its ability to grow with oxidative stress species, in the form of hydrogen peroxide and oxygen, is severely affected. Transcriptome analysis reveals that the major deregulated genes code for the alkylhydroperoxide reductase system, AhpCF, mediating protection from peroxide stress. Moreover, genes coding for Dps, CydA and Ftn are downregulated in the mutant strain, as further verified using qRT-PCR analysis. In conclusion, we succeeded in generating the first P. intermedia mutant and show that the OxyR-deficient strain is unable to survive with a variety of host cells as well as with oxidative stress.
Collapse
|
8
|
Zeng J, Wu L, Chen Q, Wang L, Qiu W, Zheng X, Yin X, Liu J, Ren Y, Li Y. Comprehensive profiling of protein lysine acetylation and its overlap with lysine succinylation in the Porphyromonas gingivalis fimbriated strain ATCC 33277. Mol Oral Microbiol 2020; 35:240-250. [PMID: 32939976 DOI: 10.1111/omi.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Porphyromonas gingivalis is a pathogen closely associated with periodontal and systemic infections. Recently, lysine acetylation (Kac) and lysine succinylation (Ksuc) have been identified in bacterial proteins with diverse biological and pathological functions. The Ksuc of P. gingivalis ATCC 33277 has been characterized in our previous work, and here, we report the systematic analysis of Kac and its crosstalk with Ksuc in this bacterium. A combination of the affinity enrichment by the acetyl-lysine antibody with highly sensitive LC-MS/MS was used to identify the lysine-acetylated proteins and sites in P. gingivalis ATCC 33277. A total of 1,112 lysine-acetylated sites matching 438 proteins were identified. These proteins involved in several cellular processes, especially those proteins related to protein biosynthesis and central metabolism had a high tendency to be lysine acetylated. Moreover, lysine sites flanked by tyrosine, phenylalanine, and histidine in the +1 position, as well as residue lysine in position +4 to +5, were the targets of Kac. Additionally, proteins involved in adhesins, gingipains, black pigmentation, and oxidative stress resistance were identified as substrates of Kac. Collectively, these results suggest Kac may play a critical role in the regulation of physiology and virulence of P. gingivalis. Furthermore, we discovered that, Ksuc and Kac were extensively overlapped in P. gingivalis ATCC 33277, especially in proteins related to ribosomes and metabolism. This study provides a significant beginning for further investigating the role of Kac and Ksuc in the pathogenicity of P. gingivalis.
Collapse
Affiliation(s)
- Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Leng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Lingyun Wang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Yin
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Jie Liu
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Interspecies Inhibition of Porphyromonas gingivalis by Yogurt-Derived Lactobacillus delbrueckii Requires Active Pyruvate Oxidase. Appl Environ Microbiol 2019; 85:AEM.01271-19. [PMID: 31285191 DOI: 10.1128/aem.01271-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Despite a growing interest in using probiotic microorganisms to prevent disease, the mechanisms by which probiotics exert their action require further investigation. Porphyromonas gingivalis is an important pathogen implicated in the development of periodontitis. We isolated several strains of Lactobacillus delbrueckii from dairy products and examined their ability to inhibit P. gingivalis growth in vitro We observed strain-specific inhibition of P. gingivalis growth in vitro Whole-genome sequencing of inhibitory and noninhibitory strains of L. delbrueckii revealed significant genetic differences supporting the strain specificity of the interaction. Extracts of the L. delbrueckii STYM1 inhibitory strain contain inhibitory activity that is abolished by treatment with heat, proteinase K, catalase, and sodium sulfite. We purified the inhibitory protein(s) from L. delbrueckii STYM1 extracts using ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration chromatography. Pyruvate oxidase was highly enriched in the purified samples. Lastly, we showed that purified, catalytically active, recombinant pyruvate oxidase is sufficient to inhibit P. gingivalis growth in vitro without the addition of cofactors. Further, using a saturated transposon library, we isolated transposon mutants of P. gingivalis in the feoB2 (PG_1294) gene that are resistant to killing by inhibitory L. delbrueckii, consistent with a mechanism of hydrogen peroxide production by pyruvate oxidase. Our results support the current understanding of the importance of strain selection, not simply species selection, in microbial interactions. Specific L. delbrueckii strains or their products may be effective in the treatment and prevention of P. gingivalis-associated periodontal disease.IMPORTANCE P. gingivalis is implicated in the onset and progression of periodontal disease and associated with some systemic diseases. Probiotic bacteria represent an attractive preventative therapy for periodontal disease. However, the efficacy of probiotic bacteria can be variable between studies. Our data support the known importance of selecting particular strains of bacteria for probiotic use, not simply a single species. Specifically, in the context of probiotic intervention of periodontitis, our data suggest that high-level expression of pyruvate oxidase with hydrogen peroxide production in L. delbrueckii could be an important characteristic for the design of a probiotic supplement or a microbial therapeutic.
Collapse
|
10
|
The Porphyromonas gingivalis Hybrid Cluster Protein Hcp Is Required for Growth with Nitrite and Survival with Host Cells. Infect Immun 2019; 87:IAI.00572-18. [PMID: 30670550 DOI: 10.1128/iai.00572-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Although the periodontal pathogen Porphyromonas gingivalis must withstand high levels of nitrosative stress while in the oral cavity, the mechanisms of nitrosative stress defense are not well understood in this organism. Previously we showed that the transcriptional regulator HcpR plays a significant role in defense, and here we further defined its regulon. Our study shows that hcp (PG0893), a putative nitric oxide (NO) reductase, is the only gene significantly upregulated in response to nitrite (NO2) and that this regulation is dependent on HcpR. An isogenic mutant deficient in hcp is not able to grow with 200 μM nitrite, demonstrating that the sensitivity of the HcpR mutant is mediated through Hcp. We further define the molecular mechanisms of HcpR interaction with the hcp promoter through mutational analysis of the inverted repeat present within the promoter. Although other putative nitrosative stress protection mechanisms present on the nrfAH operon are also found in the P. gingivalis genome, we show that their gene products play no role in growth of the bacterium with nitrite. As growth of the hcp-deficient strain was also significantly diminished in the presence of a nitric oxide-producing compound, S-nitrosoglutathione (GSNO), Hcp appears to be the primary means by which P. gingivalis responds to NO2 --based stress. Finally, we show that Hcp is required for survival with host cells but that loss of Hcp has no effect on association and entry of P. gingivalis into human oral keratinocytes.
Collapse
|
11
|
SigCH, an extracytoplasmic function sigma factor of Porphyromonas gingivalis regulates the expression of cdhR and hmuYR. Anaerobe 2016; 43:82-90. [PMID: 27940243 DOI: 10.1016/j.anaerobe.2016.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
Extracytoplasmic function (ECF) sigma factors play an important role in the bacterial response to various environmental stresses. Porphyromonas gingivalis, a prominent etiological agent in human periodontitis, possesses six putative ECF sigma factors. So far, information is limited on the ECF sigma factor, PGN_0319. The aim of this study was to investigate the role of PGN_0319 (SigCH) of P. gingivalis, focusing on the regulation of hmuY and hmuR, which encode outer-membrane proteins involved in hemin utilization, and cdhR, a transcriptional regulator of hmuYR. First, we evaluated the gene expression profile of the sigCH mutant by DNA microarray. Among the genes with altered expression levels, those involved in hemin utilization were downregulated in the sigCH mutant. To verify the microarray data, quantitative reverse transcription PCR analysis was performed. The RNA samples used were obtained from bacterial cells grown to early-log phase, in which sigCH expression in the wild type was significantly higher than that in mid-log and late-log phases. The expression levels of hmuY, hmuR, and cdhR were significantly decreased in the sigCH mutant compared to wild type. Transcription of these genes was restored in a sigCH complemented strain. Compared to the wild type, the sigCH mutant showed reduced growth in log phase under hemin-limiting conditions. Electrophoretic mobility shift assays showed that recombinant SigCH protein bound to the promoter region of hmuY and cdhR. These results suggest that SigCH plays an important role in the early growth of P. gingivalis, and directly regulates cdhR and hmuYR, thereby playing a potential role in the mechanisms of hemin utilization by P. gingivalis.
Collapse
|
12
|
Awad MM, Cheung JK, Tan JE, McEwan AG, Lyras D, Rood JI. Functional analysis of an feoB mutant in Clostridium perfringens strain 13. Anaerobe 2016; 41:10-17. [DOI: 10.1016/j.anaerobe.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022]
|
13
|
Zhang L, Butler CA, Khan HSG, Dashper SG, Seers CA, Veith PD, Zhang JG, Reynolds EC. Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue. PLoS One 2016; 11:e0151407. [PMID: 27007570 PMCID: PMC4805248 DOI: 10.1371/journal.pone.0151407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10(-11) M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10(-10) M and Kd2 ≤ 6.0 x 10(-8) M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.
Collapse
Affiliation(s)
- Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine A. Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hasnah S. G. Khan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
14
|
Wunsch CM, Lewis JP. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells. J Vis Exp 2015:e53408. [PMID: 26709454 DOI: 10.3791/53408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.
Collapse
Affiliation(s)
| | - Janina P Lewis
- Philips Institute for Oral Health Research, Virginia Commonwealth University; Department of Microbiology and Immunology, Virginia Commonwealth University; Department of Biochemistry, Virginia Commonwealth University;
| |
Collapse
|
15
|
Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in Clostridium difficile. J Bacteriol 2015; 197:2930-40. [PMID: 26148711 DOI: 10.1128/jb.00098-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Clostridium difficile is an anaerobic, Gram-positive, spore-forming opportunistic pathogen and is the most common cause of hospital-acquired infectious diarrhea. Although iron acquisition in the host is a key to survival of bacterial pathogens, high levels of intracellular iron can increase oxidative damage. Therefore, expression of iron acquisition mechanisms is tightly controlled by transcriptional regulators. We identified a C. difficile homologue of the master bacterial iron regulator Fur. Using targetron mutagenesis, we generated a fur insertion mutant of C. difficile. To identify the genes regulated by Fur in C. difficile, we used microarray analysis to compare transcriptional differences between the fur mutant and the wild type when grown in high-iron medium. The fur mutant had increased expression of greater than 70 transcriptional units. Using quantitative reverse transcriptase PCR (qRT-PCR), we analyzed several of the Fur-regulated genes identified by the microarray and verified that they are both iron and Fur regulated in C. difficile. Among those Fur- and iron-repressed genes were C. difficile genes encoding 7 putative cation transport systems of different classes. We found that Fur was able to bind the DNA upstream of three Fur-repressed genes in electrophoretic mobility shift assays. We also demonstrate that expression of Fur-regulated putative iron acquisition systems was increased during C. difficile infection using the hamster model. Our data suggest that C. difficile expresses multiple iron transport mechanisms in response iron depletion in vitro and in vivo. IMPORTANCE Clostridium difficile is the most common cause of hospital-acquired infectious diarrhea and has been recently classified as an "urgent" antibiotic resistance threat by the CDC. To survive and cause disease, most bacterial pathogens must acquire the essential enzymatic cofactor iron. While import of adequate iron is essential for most bacterial growth, excess intracellular iron can lead to extensive oxidative damage. Thus, bacteria must regulate iron import to maintain iron homeostasis. We demonstrate here that C. difficile regulates expression of several putative iron acquisition systems using the transcriptional regulator Fur. These import mechanisms are induced under iron-limiting conditions in vitro and during C. difficile infection of the host. This suggests that during a C. difficile infection, iron availability is limited in vivo.
Collapse
|
16
|
Sahingur SE, Yeudall WA. Chemokine function in periodontal disease and oral cavity cancer. Front Immunol 2015; 6:214. [PMID: 25999952 PMCID: PMC4419853 DOI: 10.3389/fimmu.2015.00214] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/18/2015] [Indexed: 12/12/2022] Open
Abstract
The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis.
Collapse
Affiliation(s)
- Sinem Esra Sahingur
- Department of Periodontics, Virginia Commonwealth University , Richmond, VA , USA ; Department of Microbiology and Immunology, Virginia Commonwealth University , Richmond, VA , USA
| | - W Andrew Yeudall
- Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; Massey Cancer Center, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
17
|
Butler CA, Dashper SG, Khan HS, Zhang L, Reynolds EC. The interplay between iron, haem and manganese in Porphyromonas gingivalis. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Butler CA, Dashper SG, Zhang L, Seers CA, Mitchell HL, Catmull DV, Glew MD, Heath JE, Tan Y, Khan HSG, Reynolds EC. The Porphyromonas gingivalis ferric uptake regulator orthologue binds hemin and regulates hemin-responsive biofilm development. PLoS One 2014; 9:e111168. [PMID: 25375181 PMCID: PMC4222909 DOI: 10.1371/journal.pone.0111168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur) superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator). Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM). The binding of hemin resulted in conformational changes of Zn(II)Har and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455) relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(II)Har bound the promoter region of dnaA (PGN_0001), one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.
Collapse
Affiliation(s)
- Catherine A. Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Helen L. Mitchell
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Deanne V. Catmull
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Michelle D. Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Jacqueline E. Heath
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Yan Tan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Hasnah S. G. Khan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
19
|
McKenzie RME, Aruni W, Johnson NA, Robles A, Dou Y, Henry L, Boskovic DS, Fletcher HM. Metabolome variations in the Porphyromonas gingivalis vimA mutant during hydrogen peroxide-induced oxidative stress. Mol Oral Microbiol 2014; 30:111-27. [PMID: 25055986 DOI: 10.1111/omi.12075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 01/01/2023]
Abstract
The adaptability and survival of Porphyromonas gingivalis in the oxidative microenvironment of the periodontal pocket are indispensable for survival and virulence, and are modulated by multiple systems. Among the various genes involved in P. gingivalis oxidative stress resistance, vimA gene is a part of the 6.15-kb locus. To elucidate the role of a P. gingivalis vimA-defective mutant in oxidative stress resistance, we used a global approach to assess the transcriptional profile, to study the unique metabolome variations affecting survival and virulence in an environment typical of the periodontal pocket. A multilayered protection strategy against oxidative stress was noted in P. gingivalis FLL92 with upregulation of detoxifying genes. The duration of oxidative stress was shown to differentially modulate transcription with 94 (87%) genes upregulated twofold during 10 min and 55 (83.3%) in 15 min. Most of the upregulated genes (55%), fell in the hypothetical/unknown/unassigned functional class. Metabolome variation showed reduction in fumarate and formaldehyde, hence resorting to alternative energy generation and maintenance of a reduced metabolic state. There was upregulation of transposases, genes encoding for the metal ion binding protein transport and secretion system.
Collapse
Affiliation(s)
- R M E McKenzie
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Anaya-Bergman C, Rosato A, Lewis JP. Iron- and hemin-dependent gene expression of Porphyromonas gingivalis. Mol Oral Microbiol 2014; 30:39-61. [PMID: 25043610 DOI: 10.1111/omi.12066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Although iron under anaerobic conditions is more accessible and highly reactive because of its reduced form, iron-dependent regulation is not well known in anaerobic bacteria. Here, we investigated iron- and hemin-dependent gene regulation in Porphyromonas gingivalis, an established periodontopathogen that primarily inhabits anaerobic pockets. Whole-genome microarrays of P. gingivalis genes were used to compare the levels of gene expression under iron-replete and iron-depleted conditions as well as under hemin-replete and hemin-depleted conditions. Under iron-depleted conditions, the expression of genes encoding proteins that participate in iron uptake and adhesion/invasion of host cells was increased, while that of genes encoding proteins involved in iron storage, energy metabolism, and electron transport was decreased. Interestingly, many of the genes with altered expression had no known function. Limiting the amount of hemin also resulted in a reduced expression of the genes encoding proteins involved in energy metabolism and electron transport. However, hemin also had a significant effect on many other biological processes such as oxidative stress protection and lipopolysaccharide synthesis. Overall, comparison of the data from iron-depleted conditions to those from hemin-depleted ones showed that although some regulation is through the iron derived from hemin, there also is significant distinct regulation through hemin only. Furthermore, our data showed that the molecular mechanisms of iron-dependent regulation are novel as the deletion of the putative Fur protein had no effect on the expression of iron-regulated genes. Finally, our functional studies demonstrated greater survivability of host cells in the presence of the iron-stressed bacterium than the iron-replete P. gingivalis cells. The major iron-regulated proteins encoded by PG1019-20 may play a role in this process as deletion of these sequences also resulted in reduced survival of the bacterium when grown with eukaryotic cells. Taken together, the results of this study demonstrated the utility of whole-genome microarray analysis for the identification of genes with altered expression profiles during varying growth conditions and provided a framework for the detailed analysis of the molecular mechanisms of iron and hemin acquisition, metabolism and virulence of P. gingivalis.
Collapse
Affiliation(s)
- C Anaya-Bergman
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | |
Collapse
|
21
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
22
|
Zhang L, Wang E, Chen F, Yan H, Yuan Y. Potential protective effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food Funct 2013; 4:1229-36. [DOI: 10.1039/c3fo60057b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Henry LG, McKenzie RME, Robles A, Fletcher HM. Oxidative stress resistance in Porphyromonas gingivalis. Future Microbiol 2012; 7:497-512. [PMID: 22439726 DOI: 10.2217/fmb.12.17] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Leroy G Henry
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
24
|
HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells. Infect Immun 2012; 80:3319-31. [PMID: 22778102 DOI: 10.1128/iai.00561-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the Gram-negative, anaerobic periodontopathogen Porphyromonas gingivalis must withstand nitrosative stress, which is particularly high in the oral cavity, the mechanisms allowing for protection against such stress are not known in this organism. In this study, microarray analysis of P. gingivalis transcriptional response to nitrite and nitric oxide showed drastic upregulation of the PG0893 gene coding for hybrid cluster protein (Hcp), which is a putative hydroxylamine reductase. Although regulation of hcp has been shown to be OxyR dependent in Escherichia coli, here we show that in P. gingivalis its expression is dependent on the Fnr-like regulator designated HcpR. Growth of the isogenic mutant V2807, containing an ermF-ermAM insertion within the hcpR (PG1053) gene, was significantly reduced in the presence of nitrite (P < 0.002) and nitric oxide-generating nitrosoglutathione (GSNO) (P < 0.001), compared to that of the wild-type W83 strain. Furthermore, the upregulation of PG0893 (hcp) was abrogated in V2807 exposed to nitrosative stress. In addition, recombinant HcpR bound DNA containing the hcp promoter sequence, and the binding was hemin dependent. Finally, V2807 was not able to survive with host cells, demonstrating that HcpR plays an important role in P. gingivalis virulence. This work gives insight into the molecular mechanisms of protection against nitrosative stress in P. gingivalis and shows that the regulatory mechanisms differ from those in E. coli.
Collapse
|
25
|
McKenzie RME, Johnson NA, Aruni W, Dou Y, Masinde G, Fletcher HM. Differential response of Porphyromonas gingivalis to varying levels and duration of hydrogen peroxide-induced oxidative stress. MICROBIOLOGY-SGM 2012; 158:2465-2479. [PMID: 22745271 DOI: 10.1099/mic.0.056416-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Porphyromonas gingivalis, an anaerobic oral pathogen implicated in adult periodontitis, can exist in an environment of oxidative stress. To evaluate its adaptation to this environment, we have assessed the response of P. gingivalis W83 to varying levels and durations of hydrogen peroxide (H(2)O(2))-induced stress. When P. gingivalis was initially exposed to a subinhibitory concentration of H(2)O(2) (0.1 mM), an adaptive response to higher concentrations could be induced. Transcriptome analysis demonstrated that oxidative stress can modulate several functional classes of genes depending on the severity and duration of the exposure. A 10 min exposure to H(2)O(2) revealed increased expression of genes involved in DNA damage and repair, while after 15 min, genes involved in protein fate, protein folding and stabilization were upregulated. Approximately 9 and 2.8% of the P. gingivalis genome displayed altered expression in response to H(2)O(2) exposure at 10 and 15 min, respectively. Substantially more genes were upregulated (109 at 10 min; 47 at 15 min) than downregulated (76 at 10 min; 11 at 15 min) by twofold or higher in response to H(2)O(2) exposure. The majority of these modulated genes were hypothetical or of unknown function. One of those genes (pg1372) with DNA-binding properties that was upregulated during prolonged oxidative stress was inactivated by allelic exchange mutagenesis. The isogenic mutant P. gingivalis FLL363 (pg1372 : : ermF) showed increased sensitivity to H(2)O(2) compared with the parent strain. Collectively, our data indicate the adaptive ability of P. gingivalis to oxidative stress and further underscore the complex nature of its resistance strategy under those conditions.
Collapse
Affiliation(s)
- Rachelle M E McKenzie
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA.,Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Neal A Johnson
- Department of Oral Diagnosis, Radiology, and Pathology, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA.,Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Godfred Masinde
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
26
|
FeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J Bacteriol 2012; 194:3972-6. [PMID: 22636767 DOI: 10.1128/jb.00382-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize unique organelles, the magnetosomes, which are intracellular nanometer-sized, membrane-enveloped magnetite. The biomineralization of magnetosomes involves the uptake of large amounts of iron. However, the iron metabolism of MTB is not well understood. The genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense strain MSR-1 contains two ferrous iron transport genes, feoB1 and feoB2. The FeoB1 protein was reported to be responsible mainly for the transport of ferrous iron and to play an accessory role in magnetosome formation. To determine the role of feoB2, we constructed an feoB2 deletion mutant (MSR-1 ΔfeoB2) and an feoB1 feoB2 double deletion mutant (MSR-1 NfeoB). The single feoB2 mutation did not affect magnetite crystal biomineralization. MSR-1 NfeoB had a significantly lower average magnetosome number per cell (∼65%) than MSR-1 ΔfeoB1, indicating that FeoB2 plays a role in magnetosome formation when the feoB1 gene is deleted. Our findings showed that FeoB1 has a greater ferrous iron transport ability than FeoB2 and revealed the differential roles of FeoB1 and FeoB2 in MSR-1 iron metabolism. Interestingly, compared to the wild type, the feoB mutants showed increased sensitivity to oxidative stress and lower activities of the enzymes superoxide dismutase and catalase, indicating that the FeoB proteins help protect bacterial cells from oxidative stress.
Collapse
|
27
|
Yanamandra SS, Sarrafee SS, Anaya-Bergman C, Jones K, Lewis JP. Role of the Porphyromonas gingivalis extracytoplasmic function sigma factor, SigH. Mol Oral Microbiol 2012; 27:202-19. [PMID: 22520389 DOI: 10.1111/j.2041-1014.2012.00643.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the regulatory mechanisms that allow Porphyromonas gingivalis to survive in the oral cavity. Here we characterize the sigma (σ) factor SigH, one of six extracytoplasmic function (ECF) σ factors encoded in the P. gingivalis genome. Our results indicate that sigH expression is upregulated by exposure to molecular oxygen, suggesting that sigH plays a role in adaptation of P. gingivalis to oxygen. Furthermore, several genes involved in oxidative stress protection, such as sod, trx, tpx, ftn, feoB2 and the hemin uptake hmu locus, are downregulated in a mutant deficient in SigH designated as V2948. ECF σ consensus sequences were identified upstream of the transcriptional start sites of these genes, consistent with the SigH-dependent regulation of these genes. Growth of V2948 was inhibited in the presence of 6% oxygen when compared with the wild-type W83 strain, whereas in anaerobic conditions both strains were able to grow. In addition, reduced growth of V2948 was observed in the presence of peroxide and the thiol-oxidizing reagent diamide when compared with the W83 strain. The SigH-deficient strain V2948 also exhibited reduced hemin uptake, consistent with the observed reduced expression of genes involved in hemin uptake. Finally, survival of V2948 was reduced in the presence of host cells compared with the wild-type W83 strain. Collectively, our studies demonstrate that SigH is a positive regulator of gene expression required for survival of the bacterium in the presence of oxygen and oxidative stress, hemin uptake and virulence.
Collapse
Affiliation(s)
- S S Yanamandra
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | | | | | | | | |
Collapse
|
28
|
Perry RD, Craig SK, Abney J, Bobrov AG, Kirillina O, Mier I, Truszczynska H, Fetherston JD. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. MICROBIOLOGY-SGM 2012; 158:804-815. [PMID: 22222497 DOI: 10.1099/mic.0.053710-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Yersinia pestis has a flea-mammal-flea transmission cycle, and is a zoonotic pathogen that causes the systemic diseases bubonic and septicaemic plague in rodents and humans, as well as pneumonic plague in humans and non-human primates. Bubonic and pneumonic plague are quite different diseases that result from different routes of infection. Manganese (Mn) acquisition is critical for the growth and pathogenesis of a number of bacteria. The Yfe/Sit and/or MntH systems are the two prominent Mn transporters in Gram-negative bacteria. Previously we showed that the Y. pestis Yfe system transports Fe and Mn. Here we demonstrate that a mutation in yfe or mntH did not significantly affect in vitro aerobic growth under Mn-deficient conditions. A yfe mntH double mutant did exhibit a moderate growth defect which was alleviated by supplementation with Mn. No short-term energy-dependent uptake of (54)Mn was observed in this double mutant. Like the yfeA promoter, the mntH promoter was repressed by both Mn and Fe via Fur. Sequences upstream of the Fur binding sequence in the yfeA promoter converted an iron-repressible promoter to one that is also repressed by Mn and Fe. To our knowledge, this is the first report identifying cis promoter elements needed to alter cation specificities involved in transcriptional repression. Finally, the Y. pestis yfe mntH double mutant had an ~133-fold loss of virulence in a mouse model of bubonic plague but no virulence loss in the pneumonic plague model. This suggests that Mn availability, bacterial Mn requirements or Mn transporters used by Y. pestis are different in the lungs (pneumonic plague) compared with systemic disease.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Susannah K Craig
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Ildefonso Mier
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Helena Truszczynska
- Department of Institutional Research Planning and Effectiveness, University of Kentucky, Lexington, KY 40536, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
29
|
Yersinia pestis transition metal divalent cation transporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:267-79. [PMID: 22782773 DOI: 10.1007/978-1-4614-3561-7_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Ash MR, Maher MJ, Guss JM, Jormakka M. A suite of Switch I and Switch II mutant structures from the G-protein domain of FeoB. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:973-80. [PMID: 22101824 DOI: 10.1107/s0907444911039461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/26/2011] [Indexed: 12/19/2022]
Abstract
The acquisition of ferrous iron in prokaryotes is achieved by the G-protein-coupled membrane protein FeoB. This protein possesses a large C-terminal membrane-spanning domain preceded by two soluble cytoplasmic domains that are together termed 'NFeoB'. The first of these soluble domains is a GTPase domain (G-domain), which is then followed by an entirely α-helical domain. GTP hydrolysis by the G-domain is essential for iron uptake by FeoB, and various NFeoB mutant proteins from Streptococcus thermophilus have been constructed. These mutations investigate the role of conserved amino acids from the protein's critical Switch regions. Five crystal structures of these mutant proteins have been determined. The structures of E66A and E67A mutant proteins were solved in complex with nonhydrolyzable GTP analogues, the structures of T35A and E67A mutant proteins were solved in complex with GDP and finally the structure of the T35S mutant was crystallized without bound nucleotide. As an ensemble, the structures illustrate how small nucleotide-dependent rearrangements at the active site are converted into large rigid-body reorientations of the helical domain in response to GTP binding and hydrolysis. This provides the first evidence of nucleotide-dependent helical domain movement in NFeoB proteins, suggesting a mechanism by which the G-protein domain could structurally communicate with the membrane domain and mediate iron uptake.
Collapse
Affiliation(s)
- Miriam Rose Ash
- School of Molecular Bioscience, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
31
|
Zhang Y, An Y, Jiang L, Geng C, Cao J, Jiang L, Zhong L. The role of oxidative stress in Sudan IV-induced DNA damage in human liver-derived HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2011; 26:292-299. [PMID: 20014410 DOI: 10.1002/tox.20558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVES We evaluated the role of oxidative stress in Sudan IV-induced DNA damage, using human liver-derived HepG2 cells. METHODS The DNA damaging effects of Sudan IV in HepG2 cells were evaluated by alkaline single cell gel electrophoresis assay and micronucleus test (MNT). To clarify the underlying mechanisms, we monitored the intracellular generation of reactive oxygen species (ROS) by 2, 7-dichlorofluorescein diacetate assay and the level of oxidative DNA damage by immunoperoxidase staining for 8-hydroxydeoxyguanosine (8-OHdG). Furthermore, the intracellular glutathione (GSH) level was moderated by pretreatment with buthionine-(S,R)-sulfoximine (BSO), a specific GSH synthesis inhibitor. RESULTS A significant dose-dependent increment in DNA migration was detected at all tested concentrations (25-100 μM) of Sudan IV. And in the MNT, a significant increase of the frequency of micronuclei was found at higher tested concentrations (50-100 μM). The data suggested that Sudan IV caused DNA strand breaks and chromosome breaks. In addition, significantly increased levels of ROS, 8-OHdG formation were observed in HepG2 cells. It was also found that depletion of GSH in HepG2 cells with BSO dramatically increased the susceptibility of HepG2 cells to Sudan IV-induced DNA damage. CONCLUSIONS Based on these data we believe that Sudan IV exerts toxic effects in HepG2 cells, probably through oxidative DNA damage induced by intracellular ROS and depletion of GSH.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Toxicology, Dalian Medical University, No. 9, West Segment of South Lvshun Road, Dalian 116044, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Lipoxin A₄ inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression. Infect Immun 2011; 79:1489-97. [PMID: 21263017 DOI: 10.1128/iai.00777-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Porphyromonas gingivalis is an etiological agent that is strongly associated with periodontal disease, and it correlates with numerous inflammatory disorders, such as cardiovascular disease. Circulating bacteria may contribute to atherogenesis by promoting CD11b/CD18-mediated interactions between neutrophils and platelets, causing reactive oxygen species (ROS) production and aggregation. Lipoxin A₄ (LXA₄) is an endogenous anti-inflammatory and proresolving mediator that is protective of inflammatory disorders. The aim of this study was to investigate the effect of LXA₄ on the P. gingivalis-induced activation of neutrophils and platelets and the possible involvement of Rho GTPases and CD11b/CD18 integrins. Platelet/leukocyte aggregation and ROS production was examined by lumiaggregometry and fluorescence microscopy. Integrin activity was studied by flow cytometry, detecting the surface expression of CD11b/CD18 as well as the exposure of the high-affinity integrin epitope, whereas the activation of Rac2/Cdc42 was examined using a glutathione S-transferase pulldown assay. The study shows that P. gingivalis activates Rac2 and Cdc42 and upregulates CD11b/CD18 and its high-affinity epitope on neutrophils, and that these effects are diminished by LXA₄. Furthermore, we found that LXA₄ significantly inhibits P. gingivalis-induced aggregation and ROS generation in whole blood. However, in platelet-depleted blood and in isolated neutrophils and platelets, LXA₄ was unable to inhibit either aggregation or ROS production, respectively. In conclusion, this study suggests that LXA₄ antagonizes P. gingivalis-induced cell activation in a manner that is dependent on leukocyte-platelet interaction, likely via the inhibition of Rho GTPase signaling and the downregulation of CD11b/CD18. These findings may contribute to new strategies in the prevention and treatment of periodontitis-induced inflammatory disorders, such as atherosclerosis.
Collapse
|
33
|
Possible involvement of oxidative stress in potassium bromate-induced genotoxicity in human HepG2 cells. Chem Biol Interact 2010; 189:186-91. [PMID: 21182833 DOI: 10.1016/j.cbi.2010.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 11/22/2022]
Abstract
Potassium bromate (KBrO(3), PB) is a by-product of ozone used as disinfectant in drinking water. And PB is also a widely used food additive. However, there is little known about its adverse effects, in particular those related to its genotoxicity in humans. The aim of this study was to investigate the genotoxic effects of PB and the underlying mechanisms, using human hepatoma cell line, HepG2. Exposure of the cells to PB caused a significant increase of DNA migration in single cell gel electrophoresis (SCGE) assay and micronuclei (MN) frequencies in micronucleus test (MNT) at all tested concentrations (1.56-12.5 mM and 0.12-1 mM), which suggested that PB-mediated DNA strand breaks and chromosome damage. To indicate the role of antioxidant in those effects, DNA migration was monitored by pre-treatment with hydroxytyrosol (HT) as an antioxidant in SCGE assay. It was found that DNA migration with pre-treatment of HT was dramatically decreased. To elucidate the genotoxicity mechanisms, the study monitored the levels of reactive oxygen species (ROS), glutathione (GSH) and 8-hydroxydeoxyguanosine (8-OHdG). PB was shown to induce ROS production (12.5 mM), GSH depletion (1.56-12.5 mM) and 8-OHdG formation (6.25-12.5 mM) in HepG2 cells. Moreover, lysosomal membrane stability and mitochondrial membrane potential were further studied for the mechanisms of PB-induced genotoxicity. A significant increase was found in the range of 6.25-12.5 mM in lysosomal membrane stability assay. However, under these PB concentrations, we were not able to detect the changes of mitochondrial membrane potential. These results suggest that PB exerts oxidative stress and genotoxic effects in HepG2 cells, possibly through the mechanisms of lysosomal damage, an earlier event preceding the oxidative DNA damage.
Collapse
|
34
|
Johnson NA, McKenzie RME, Fletcher HM. The bcp gene in the bcp-recA-vimA-vimE-vimF operon is important in oxidative stress resistance in Porphyromonas gingivalis W83. Mol Oral Microbiol 2010; 26:62-77. [PMID: 21214873 DOI: 10.1111/j.2041-1014.2010.00596.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of Porphyromonas gingivalis to overcome oxidative stress in the inflammatory environment of the periodontal pocket is critical for its survival. We have previously demonstrated that the recA locus, which carries the bacterioferritin co-migratory protein (bcp) gene and has a unique genetic architecture, plays a role in virulence regulation and oxidative stress resistance in P. gingivalis. To further characterize the bcp gene, which was confirmed to be part of the bcp-recA-vimA-vimE-vimF operon, we created a P. gingivalis bcp-defective isogenic mutant (FLL302) by allelic exchange. Compared with the wild-type, FLL302 had a similar growth rate, black pigmentation, β-hemolysis and UV sensitivity. Although there was no change in the distribution of gingipain activity, there was a 30% reduction in both Arg-X and Lys-X activities in the mutant strain compared with the wild-type. When exposed to 0.25 mm hydrogen peroxide, P. gingivalis FLL302 was more sensitive than the wild-type. In addition, the cloned P. gingivalis bcp gene increased resistance to 0.25 mm hydrogen peroxide in a bcp-defective Escherichia coli mutant. The mutant also demonstrated decreased aerotolerance when compared with the wild-type. Porphyromonas gingivalis FLL302 and the wild-type strain had similar virulence profiles in a mouse model of virulence. These observations suggest that the bcp gene may play a role in oxidative stress resistance but has a decreased functional significance in the pathogenic potential of P. gingivalis.
Collapse
Affiliation(s)
- N A Johnson
- Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | | | | |
Collapse
|
35
|
Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun 2010; 78:5163-77. [PMID: 20855510 DOI: 10.1128/iai.00732-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Little is known about Zn homeostasis in Yersinia pestis, the plague bacillus. The Znu ABC transporter is essential for zinc (Zn) uptake and virulence in a number of bacterial pathogens. Bioinformatics analysis identified ZnuABC as the only apparent high-affinity Zn uptake system in Y. pestis. Mutation of znuACB caused a growth defect in Chelex-100-treated PMH2 growth medium, which was alleviated by supplementation with submicromolar concentrations of Zn. Use of transcriptional reporters confirmed that Zur mediated Zn-dependent repression and that it can repress gene expression in response to Zn even in the absence of Znu. Virulence testing in mouse models of bubonic and pneumonic plague found only a modest increase in survival in low-dose infections by the znuACB mutant. Previous studies of cluster 9 (C9) transporters suggested that Yfe, a well-characterized C9 importer for manganese (Mn) and iron in Y. pestis, might function as a second, high-affinity Zn uptake system. Isothermal titration calorimetry revealed that YfeA, the solute-binding protein component of Yfe, binds Mn and Zn with comparably high affinities (dissociation constants of 17.8 ± 4.4 nM and 6.6 ± 1.2 nM, respectively), although the complete Yfe transporter could not compensate for the loss of Znu in in vitro growth studies. Unexpectedly, overexpression of Yfe interfered with the znu mutant's ability to grow in low concentrations of Zn, while excess Zn interfered with the ability of Yfe to import iron at low concentrations; these results suggest that YfeA can bind Zn in the bacterial cell but that Yfe is incompetent for transport of the metal. In addition to Yfe, we have now eliminated MntH, FetMP, Efe, Feo, a substrate-binding protein, and a putative nickel transporter as the unidentified, secondary Zn transporter in Y. pestis. Unlike other bacterial pathogens, Y. pestis does not require Znu for high-level infectivity and virulence; instead, it appears to possess a novel class of transporter, which can satisfy the bacterium's Zn requirements under in vivo metal-limiting conditions. Our studies also underscore the need for bacterial cells to balance binding and transporter specificities within the periplasm in order to maintain transition metal homeostasis.
Collapse
|
36
|
Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000 2010; 52:94-116. [PMID: 20017798 DOI: 10.1111/j.1600-0757.2009.00329.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
AdpC is a Prevotella intermedia 17 leucine-rich repeat internalin-like protein. Infect Immun 2010; 78:2385-96. [PMID: 20308299 DOI: 10.1128/iai.00510-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The oral bacterium Prevotella intermedia attaches to and invades gingival epithelial cells, fibroblasts, and endothelial cells. Several genes encoding proteins that mediate both the adhesion and invasion processes are carried on the genome of this bacterium. Here, we characterized one such protein, AdpC, belonging to the leucine-rich repeat (LRR) protein family. Bioinformatics analysis revealed that this protein shares similarity with the Treponema pallidum LRR (LRR(TP)) family of proteins and contains six LRRs. Despite the absence of a signal peptide, this protein is localized on the bacterial outer membrane, indicating that it is transported through an atypical secretion mechanism. The recombinant form of this protein (rAdpC) was shown to bind fibrinogen. In addition, the heterologous host strain Escherichia coli BL21 expressing rAdpC (V2846) invaded fibroblast NIH 3T3 cells at a 40-fold-higher frequency than control E. coli BL21 cells expressing a sham P. intermedia 17 protein. Although similar results were obtained by using human umbilical vein endothelial cells (HUVECs), only a 3-fold-increased invasion of V2846 into oral epithelial HN4 cells was observed. Thus, AdpC-mediated invasion is cell specific. This work demonstrated that AdpC is an important invasin protein of P. intermedia 17.
Collapse
|
38
|
Porphyromonas gingivalis ferrous iron transporter FeoB1 influences sensitivity to oxidative stress. Infect Immun 2009; 78:688-96. [PMID: 19917713 DOI: 10.1128/iai.00108-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis FeoB1 is a ferrous iron transporter. Analysis of parental and feoB1-deficient strains of the periodontal pathogen revealed that the feoB1-deficient mutant strain had an increased ability to survive oxidative stress. Specifically, survival of the mutant strain was increased 33% with exposure to peroxide and 5% with exposure to atmospheric oxygen compared to the parental strain. Interestingly, the ability to survive intracellularly also increased fivefold in the case of the feoB1-deficient mutant. Our data suggest that although the FeoB1 protein is required for ferrous iron acquisition in P. gingivalis, it also has an adverse effect on survival of the bacterium under oxidative stress conditions. Finally, we show that feoB1 expression is not iron dependent and is dramatically reduced in the presence of host cells, consistent with the observed deleterious role it plays in bacterial survival.
Collapse
|
39
|
Lewis JP, Iyer D, Anaya-Bergman C. Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced utilization of lactate. MICROBIOLOGY-SGM 2009; 155:3758-3774. [PMID: 19684063 DOI: 10.1099/mic.0.027953-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis, previously classified as a strict anaerobe, can grow in the presence of low concentrations of oxygen. Microarray analysis revealed alteration in gene expression in the presence of 6 % oxygen. During the exponential growth phase, 96 genes were upregulated and 79 genes were downregulated 1.4-fold. Genes encoding proteins that play a role in oxidative stress protection were upregulated, including alkyl hydroperoxide reductase (ahpCF), superoxide dismutase (sod) and thiol peroxidase (tpx). Significant changes in gene expression of proteins that mediate oxidative metabolism, such as cytochrome d ubiquinol oxidase-encoding genes, cydA and cydB, were detected. The expression of genes encoding formate uptake transporter (PG0209) and formate tetrahydrofolate ligase (fhs) was drastically elevated, which indicates that formate metabolism plays a major role under aerobic conditions. The concomitant reduction of expression of a gene encoding the lactate transporter PG1340 suggests decreased utilization of this nutrient. The concentrations of both formate and lactate were assessed in culture supernatants and cells, and they were in agreement with the results obtained at the transcriptional level. Also, genes encoding gingipain protease secretion/maturation regulator (porR) and protease transporter (porT) had reduced expression in the presence of oxygen, which also correlated with reduced protease activities under aerobic conditions. In addition, metal transport was affected, and while iron-uptake genes such as the genes encoding the haemin uptake locus (hmu) were downregulated, expression of manganese transporter genes, such as feoB2, was elevated in the presence of oxygen. Finally, genes encoding putative regulatory proteins such as extracellular function (ECF) sigma factors as well as small proteins had elevated expression levels in the presence of oxygen. As P. gingivalis is distantly related to the well-studied model organism Escherichia coli, results from our work may provide further understanding of oxygen metabolism and protection in other related bacteria belonging to the phylum Bacteroidetes.
Collapse
Affiliation(s)
- Janina P Lewis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Iyer
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Cecilia Anaya-Bergman
- University of San Luis, San Luis, Argentina.,The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Abstract
The persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike the case for other organisms, our previous report suggests a role for a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxo-G) in P. gingivalis. Because the uvrB gene is known to be important in nucleotide excision repair, the role of this gene in the repair of oxidative stress-induced DNA damage was investigated. A 3.1-kb fragment containing the uvrB gene was PCR amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a uvrB-deficient mutant by allelic exchange. When plated on brucella blood agar, the mutant strain, designated P. gingivalis FLL144, was similar in black pigmentation and beta-hemolysis to the parent strain. In addition, P. gingivalis FLL144 demonstrated no significant difference in growth rate, proteolytic activity, or sensitivity to hydrogen peroxide from that of the parent strain. However, in contrast to the wild type, P. gingivalis FLL144 was significantly sensitive to UV irradiation. The enzymatic removal of 8-oxo-G from duplex DNA was unaffected by the inactivation of the uvrB gene. DNA affinity fractionation identified unique proteins that preferentially bound to the oligonucleotide fragment carrying the 8-oxo-G lesion. Collectively, these results suggest that the repair of oxidative stress-induced DNA damage involving 8-oxo-G may occur by a still undescribed mechanism in P. gingivalis.
Collapse
|
41
|
Sheets SM, Robles-Price AG, McKenzie RME, Casiano CA, Fletcher HM. Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3215-38. [PMID: 18508429 PMCID: PMC3403687 DOI: 10.2741/2922] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porphyromonas gingivalis, a major periodontal pathogen, must acquire nutrients from host derived substrates, overcome oxidative stress and subvert the immune system. These activities can be coordinated via the gingipains which represent the most significant virulence factor produced by this organism. In the context of our contribution to this field, we will review the current understanding of gingipain biogenesis, glycosylation, and regulation, as well as discuss their role in oxidative stress resistance and apoptosis. We can postulate a model, in which gingipains may be part of the mechanism for P. gingivalis virulence.
Collapse
Affiliation(s)
- Shaun M. Sheets
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Antonette G. Robles-Price
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Rachelle M. E. McKenzie
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - Carlos A. Casiano
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
- The Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California
| | - Hansel M. Fletcher
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
42
|
Luo L, Jiang L, Geng C, Cao J, Zhong L. Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells. Chem Biol Interact 2008; 173:1-8. [PMID: 18358459 DOI: 10.1016/j.cbi.2008.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/03/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage.
Collapse
Affiliation(s)
- Lihan Luo
- Department of Toxicology, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, China
| | | | | | | | | |
Collapse
|
43
|
Jiang L, Cao J, An Y, Geng C, Qu S, Jiang L, Zhong L. Genotoxicity of acrylamide in human hepatoma G2 (HepG2) cells. Toxicol In Vitro 2007; 21:1486-92. [PMID: 17692500 DOI: 10.1016/j.tiv.2007.06.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 06/15/2007] [Accepted: 06/22/2007] [Indexed: 11/28/2022]
Abstract
The recent finding that acrylamide (AA), a carcinogen in animal experiments and a probable human carcinogen, is formed in foods during cooking raises human health concerns. The relevance of dietary exposure for humans is still under debate. The purpose of the study was to evaluate the possible genotoxicity of acrylamide in human hepatoma G2 (HepG2) cells, a cell line of great relevance to detect genotoxic/antigenotoxic substances, using single cell gel electrophoresis (SCGE) assay and micronucleus test (MNT). In order to clarify the underlying mechanism(s) we evaluated the intracellular generation of reactive oxygen species (ROS) and the level of oxidative DNA damage by immunocytochemical analysis of 8-hydroxydeoxyguanosine (8-OHdG). The involvement of glutathione (GSH) in the AA-induced oxidative stress was examined through treatment with buthionine sulfoximine (BSO) to deplete GSH. The results indicate that AA caused DNA strand breaks and increase in frequency of MN in HepG2 cells in a dose-dependent manner. The possible mechanism underlies the increased levels of ROS, depletion of GSH and increase of 8-OHdG formation in HepG2 cells treated with AA. We conclude that AA exerts genotoxic effects in HepG2 cells, probably through oxidative DNA damage induced by intracellular ROS and depletion of GSH.
Collapse
Affiliation(s)
- Liping Jiang
- China-Japanese Joint Institute for Medical and Pharmaceutical Science, Dalian Medical University, 465 Zhongshan Road, Dalian 116027, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|