1
|
Gonçalves SM, Pereira I, Feys S, Cunha C, Chamilos G, Hoenigl M, Wauters J, van de Veerdonk FL, Carvalho A. Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 2024; 15:e0198223. [PMID: 38651925 PMCID: PMC11237550 DOI: 10.1128/mbio.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Inês Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
2
|
Zhang T, Li M, Tan L, Li X. Pulmonary alveolar proteinosis induced by X-linked agammaglobulinemia: A case report. World J Clin Cases 2024; 12:1644-1648. [PMID: 38576739 PMCID: PMC10989430 DOI: 10.12998/wjcc.v12.i9.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/20/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) and X-linked agammaglobulinemia (XLA) are rare diseases in children. Many theories infer that immunodeficiency can induce PAP, but these reports are almost all review articles, and there is little clinical evidence. We report the case of a child with both PAP and XLA. CASE SUMMARY A 4-month-old boy sought medical treatment due to coughing and difficulty in breathing for > 2 wk. He had been hospitalized multiple times due to respiratory infections and diarrhea. Chest computed tomography and alveolar lavage fluid showed typical PAP-related manifestations. Genetic testing confirmed that the boy also had XLA. Following total lung alveolar lavage and intravenous immunoglobulin replacement therapy, the boy recovered and was discharged. During the follow-up period, the number of respiratory infections was significantly reduced, and PAP did not recur. CONCLUSION XLA can induce PAP and improving immune function contributes to the prognosis of children with this type of PAP.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Respiratory Medicine, Kunming Children´s Hospital, Kunming 650228, Yunnan Province, China
| | - Ming Li
- Department of Respiratory Medicine, Kunming Children´s Hospital, Kunming 650228, Yunnan Province, China
| | - Li Tan
- Department of Respiratory Medicine, Kunming Children´s Hospital, Kunming 650228, Yunnan Province, China
| | - Xin Li
- Department of Emergency, Kunming Children's Hospital, Kunming 650228, Yunnan Province, China
| |
Collapse
|
3
|
Yu R, Yang Z, Liu J, Bai H, Ding H, Xu H, Yu H, Cao J, Lai X. Absence of toll-like receptor 7 ameliorates survival and reduces intestinal injury in mice after Clostridium difficile infection. Microbes Infect 2023; 25:105210. [PMID: 37634661 DOI: 10.1016/j.micinf.2023.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Clostridioides difficile (CD) is a major cause of antibiotic-associated diarrhea and pseudomembranous enteritis. C. difficile infection (CDI) is increasingly present in the community and represents a significant burden on the healthcare system. Identification of novel immune-based therapeutic targets from a better understanding of their molecular pathogenesis is urgently required. Toll-like receptor 7 (TLR7) is an important pattern recognition receptor and function as an immune sensor that can trigger host defenses against pathogens, but the relationship between TLR7 and CDI remains unknown. Here, we reported that the expression levels of TLR7 increased significantly in patients and mice with CDI. Absence of TLR7 in mice with CDI demonstrated enhanced bacterial clearance of intestinal contents and reduced intestinal inflammation, edema, injury and prolonged the survival. TLR7 loss decreased the concentrations of tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IFN-α1 in the intestine and improved tissue damage and inflammation. Flow cytometry and immunofluorescence results indicated that TLR7 enhanced leukocyte recruitment in the infected intestine. In-vitro results have shown that TLR7 impairs the phagocytosis and killing ability of macrophages to CD, prompts reactive oxygen species (ROS) production and accelerates apoptosis. To our knowledge, our study first identified TLR7 as a critical factor that contributes to the immunopathology of CDI, suggesting that targeting TLR7 might serve as a potential treatment for CDI.
Collapse
Affiliation(s)
- Renlin Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhubin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Haobo Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Ding
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haofeng Xu
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shanxi, China
| | - Hanbin Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Abstract
Coronavirus disease 2019 (COVID-19)-associated invasive fungal infections are an important complication in a substantial number of critically ill, hospitalized patients with COVID-19. Three groups of fungal pathogens cause co-infections in COVID-19: Aspergillus, Mucorales and Candida species, including Candida auris. Here we review the incidence of COVID-19-associated invasive fungal infections caused by these fungi in low-, middle- and high-income countries. By evaluating the epidemiology, clinical risk factors, predisposing features of the host environment and immunological mechanisms that underlie the pathogenesis of these co-infections, we set the scene for future research and development of clinical guidance. Hoenigl and colleagues review the epidemiology, immunology and clinical risk factors contributing to COVID-19-associated fungal infections.
Collapse
|
5
|
Egger M, Hoenigl M, Thompson GR, Carvalho A, Jenks JD. Let's talk about Sex Characteristics - as a Risk Factor for Invasive Fungal Diseases. Mycoses 2022; 65:599-612. [PMID: 35484713 DOI: 10.1111/myc.13449] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
Abstract
Biological sex, which comprises differences in host sex hormone homeostasis and immune responses, can have a substantial impact on the epidemiology of infectious diseases. Comprehensive data on sex distributions in invasive fungal diseases (IFDs) is lacking. In this review we performed a literature search of in vitro/animal studies, clinical studies, systematic reviews, and meta-analyses of invasive fungal infections. Females represented 51.2% of invasive candidiasis cases, mostly matching the proportions of females among the general population in the United States and Europe (>51%). In contrast, other IFDs were overrepresented in males, including invasive aspergillosis (51% males), mucormycosis (60%), cryptococcosis (74%), coccidioidomycosis (70%), histoplasmosis (61%), and blastomycosis (66%). Behavioral variations, as well as differences related to biological sex, may only in part explain these findings. Further investigations concerning the association between biological sex/gender and the pathogenesis of IFDs is warranted.
Collapse
Affiliation(s)
- Matthias Egger
- Division of Infectious Diseases, Medical University of Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Austria.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego, La Jolla, CA, USA
| | - George R Thompson
- University of California Davis Center for Valley Fever, California, USA.,Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, California, USA.,Department of Medical Microbiology and Immunology, University of California Davis, California, USA
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
6
|
Xu H, Huang L, Luo Q, Tu Q, Liu J, Yu R, Huang J, Chen T, Yin Y, Cao J. Absence of Toll-like receptor 7 protects mice against Pseudomonas aeruginosa pneumonia. Int Immunopharmacol 2021; 96:107739. [PMID: 33984723 DOI: 10.1016/j.intimp.2021.107739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 7 (TLR7) is a sensor of microbial ssRNA that participates in the immune response process in many diseases. We herein sought to establish the role of TLR7 in Pseudomonas aeruginosa pneumonia. Pneumonia model was created by intratracheally injecting Pseudomonas aeruginosa and the effects of TLR7 on survival, bacterial burden, lung pathology, cytokine and chemokine production, and pulmonary leukocyte recruitment were measured after Pseudomonas aeruginosa challenge. TLR7 expression was significantly elevated in WT mice after Pseudomonas aeruginosa infection. TLR7-/- mice demonstrated enhanced survival, bacterial clearance, leukocyte infiltration, and macrophages phagocytic activity, and decreased pathology and capillary leakage. Besides, improved survival and bacterial clearance were observed in WT mice treated with TLR7 antagonist IRS661. More importantly, lack of TLR7 suppressed pro-inflammatory cytokine production and induced anti-inflammatory cytokine production in mice lungs. Finally, neutralized IL-10 damaged the bacterial clearance ability of TLR7 deficient mice, leading to decreased survival. Collectively, absence of TLR7 provided protective effects during Pseudomonas aeruginosa pneumonia and suggested that TLR7 could act as a novel immune target to treat clinical cases with Pseudomonas aeruginosa pneumonia.
Collapse
Affiliation(s)
- Haofeng Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Lili Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qin Luo
- Department of Clinical Molecular Medical Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qianqian Tu
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Liu
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Renlin Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jun Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Te Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|