1
|
Zhang Y, Liang S, Zhang S, Bai Q, Dai L, Wang J, Yao H, Zhang W, Liu G. Streptococcal arginine deiminase system defences macrophage bactericidal effect mediated by XRE family protein XtrSs. Virulence 2024; 15:2306719. [PMID: 38251714 PMCID: PMC10841013 DOI: 10.1080/21505594.2024.2306719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
The arginine deiminase system (ADS) has been identified in various bacteria and functions to supplement energy production and enhance biological adaptability. The current understanding of the regulatory mechanism of ADS and its effect on bacterial pathogenesis is still limited. Here, we found that the XRE family transcriptional regulator XtrSs negatively affected Streptococcus suis virulence and significantly repressed ADS transcription when the bacteria were incubated in blood. Electrophoretic mobility shift (EMSA) and lacZ fusion assays further showed that XtrSs directly bind to the promoter of ArgR, an acknowledged positive regulator of bacterial ADS, to repress ArgR transcription. Moreover, we provided compelling evidence that S. suis could utilize arginine via ADS to adapt to acid stress, while ΔxtrSs enhanced this acid resistance by upregulating the ADS operon. Moreover, whole ADS-knockout S. suis increased arginine and antimicrobial NO in the infected macrophage cells, decreased intracellular survival, and even caused significant attenuation of bacterial virulence in a mouse infection model, while ΔxtrSs consistently presented the opposite results. Our experiments identified a novel ADS regulatory mechanism in S. suis, whereby XtrSs regulated ADS to modulate NO content in macrophages, promoting S. suis intracellular survival. Meanwhile, our findings provide a new perspective on how Streptococci evade the host's innate immune system.
Collapse
Affiliation(s)
- Yumin Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Song Liang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shidan Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Jinxiu Wang
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Huochun Yao
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangjin Liu
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Zhu X, Liang Z, Ma J, Huang J, Wang L, Yao H, Wu Z. The cadDX operon contributes to cadmium resistance, oxidative stress resistance, and virulence in zoonotic streptococci. Vet Res 2024; 55:119. [PMID: 39334407 PMCID: PMC11430099 DOI: 10.1186/s13567-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Mobile genetic elements (MGEs) enable bacteria to acquire novel genes and traits. However, the functions of cargo genes within MGEs remain poorly understood. The cadmium resistance operon cadDX is present in many gram-positive bacteria. Although cadDX has been reported to be involved in metal detoxification, its regulatory mechanisms and functions in bacterial pathogenesis are poorly understood. This study revealed that cadDX contributes to cadmium resistance, oxidative stress resistance, and virulence in Streptococcus suis, an important zoonotic pathogen in pigs and humans. CadX represses cadD expression by binding to the cadDX promoter. Notably, cadX responds to H2O2 stress through an additional promoter within the cadDX operon, mitigating the harmful effect of excessive cadD expression during oxidative stress. cadDX resides within an 11 K integrative and mobilizable element that can autonomously form circular structures. Moreover, cadDX is found in diverse MGEs, accounting for its widespread distribution across various bacteria, especially among pathogenic streptococci. Transferring cadDX into another zoonotic pathogen, Streptococcus agalactiae, results in similar phenotypes, including resistance to cadmium and oxidative stresses and increased virulence of S. agalactiae in mice. The new functions and regulatory mechanisms of cadDX shed light on the importance of the cadDX system in driving evolutionary adaptations and survival strategies across diverse gram-positive bacteria.
Collapse
Affiliation(s)
- Xinchi Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China.
- Guangdong Provincial Key Laboratory of Research On the Technology of Pig Breeding and Pig Disease Prevention, Guangzhou, 511400, China.
| |
Collapse
|
3
|
McAnulty MJ, Guron GK, Oest AM, Miller AL, Renye JA. The quorum sensing peptide BlpC regulates the transcription of genes outside its associated gene cluster and impacts the growth of Streptococcus thermophilus. Front Microbiol 2024; 14:1304136. [PMID: 38293552 PMCID: PMC10826417 DOI: 10.3389/fmicb.2023.1304136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Bacteriocin production in Streptococcus thermophilus is regulated by cell density-dependent signaling molecules, including BlpC, which regulates transcription from within the bacteriocin-like peptide (blp) gene cluster. In some strains, such as S. thermophilus ST106, this signaling system does not function properly, and BlpC must be supplied exogenously to induce bacteriocin production. In other strains, such as S. thermophilus B59671, bacteriocin (thermophilin 110 in strain B59671) production occurs naturally. Here, transcriptomic analyses were used to compare global gene expression within ST106 in the presence or absence of synthetic BlpC and within B59671 to determine if BlpC regulates the expression of genes outside the blp cluster. Real-time semi-quantitative PCR was used to find genes differentially expressed in the absence of chromosomal blpC in the B59671 background. Growth curve experiments and bacteriocin activity assays were performed with knockout mutants and BlpC supplementation to identify effects on growth and bacteriocin production. In addition to the genes involved in bacteriocin production, BlpC affected the expression of several transcription regulators outside the blp gene cluster, including a putative YtrA-subfamily transcriptional repressor. In strain B59671, BlpC not only regulated the expression of thermophilin 110 but also suppressed the production of another bacteriocin, thermophilin 13, and induced the same YtrA-subfamily transcriptional repressor identified in ST106. Additionally, it was shown that the broad-spectrum antimicrobial activity associated with strain B59671 was due to the production of thermophilin 110, while thermophilin 13 appears to be a redundant system for suppressing intraspecies growth. BlpC production or induction negatively affected the growth of strains B59671 and ST106, revealing selective pressure to not produce bacteriocins that may explain bacteriocin production phenotype differences between S. thermophilus strains. This study identifies additional genes regulated by BlpC and assists in defining conditions to optimize the production of bacteriocins for applications in agriculture or human and animal health.
Collapse
Affiliation(s)
- Michael J. McAnulty
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States
| | | | | | | | | |
Collapse
|
4
|
Holley CL, Dhulipala V, Maurakis SA, Greenawalt AN, Read TD, Cornelissen CN, Shafer WM. Transcriptional activation of ompA in Neisseria gonorrhoeae mediated by the XRE family member protein NceR. mBio 2023; 14:e0124423. [PMID: 37387605 PMCID: PMC10470515 DOI: 10.1128/mbio.01244-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
Increasing antibiotic resistance of Neisseria gonorrhoeae, the causative agent of gonorrhea, is a growing global concern that has renewed vaccine development efforts. The gonococcal OmpA protein was previously identified as a vaccine candidate due to its surface exposure, conservation, stable expression, and involvement in host-cell interactions. We previously demonstrated that the transcription of ompA can be activated by the MisR/MisS two-component system. Interestingly, earlier work suggested that the availability of free iron also influences ompA expression, which we confirmed in this study. In the present study, we found that iron regulation of ompA was independent of MisR and searched for additional regulators. A DNA pull-down assay with the ompA promoter from gonococcal lysates obtained from bacteria grown in the presence or absence of iron identified an XRE (Xenobiotic Response Element) family member protein encoded by NGO1982. We found that an NGO1982 null mutant of N. gonorrhoeae strain FA19 displayed a reduced level of ompA expression compared to the wild-type (WT) parent strain. Given this regulation, and the capacity of this XRE-like protein to regulate a gene involved in peptidoglycan biosynthesis (ltgA), along with its presence in other Neisseria sp., we termed the NGO1982-encoded protein as NceR (Neisseria cell envelope regulator). Critically, results from DNA-binding studies indicated that NceR regulates ompA through a direct mechanism. Thus, ompA expression is subject to both iron-dependent (NceR) and -independent (MisR/MisS) pathways. Hence, levels of the vaccine antigen candidate OmpA in circulating gonococcal strains could be influenced by transcriptional regulatory systems and the availability of iron. IMPORTANCE Herein, we report that the gene encoding a conserved gonococcal surface-exposed vaccine candidate (OmpA) is activated by a heretofore undescribed XRE family transcription factor, which we term NceR. We report that NceR regulation of ompA expression in N. gonorrhoeae is mediated by an iron-dependent mechanism, while the previously described MisR regulatory system is iron-independent. Our study highlights the importance of defining the complexity of coordinated genetic and physiologic systems that regulate genes encoding vaccine candidates to better understand their availability during infection.
Collapse
Affiliation(s)
- Concerta L. Holley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vijaya Dhulipala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stavaros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Department of Medicine (Division of Infectious Diseases), Emory University School of Medicine, Atlanta, Georgia, USA
- The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Medicine (Division of Infectious Diseases), Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
5
|
Zhang Y, Liang S, Zhang S, Zhang S, Yu Y, Huochun Y, Liu Y, Zhang W, Liu G. Development and evaluation of a multi-epitope subunit vaccine against group B Streptococcus infection. Emerg Microbes Infect 2022; 11:2371-2382. [PMID: 36069613 PMCID: PMC9543083 DOI: 10.1080/22221751.2022.2122585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a multi-host pathogen, even causing life-threatening infections in newborns. Vaccination with GBS crossed serotypes vaccine is one of the best options for long-term infection control. Here we built a comprehensive in silico epitope-prediction workflow pipeline to design a multivalent multiepitope-based subunit vaccine containing 11 epitopes against Streptococcus agalactiae (MVSA). All epitopes in MVSA came from the proteins which were antigenic-confirmed, virulent-associated, surface-exposed and conserved in ten GBS serotypes. The in-silico analysis showed MVSA had potential to evoke strong immune responses and enable worldwide population coverage. To validate MVSA protection efficacy against GBS infection, immune protection experiments were performed in a mouse model. Importantly, MVSA induced a high titre of antibodies, significant proliferation of mice splenocytes and elicited strong protection against lethal-dose challenge with a survival rate of 100% in mice after three vaccinations. Meanwhile, the polyclonal antibody against MVSA did not only inhibit for growth of GBS from six crucial serotypes in vitro, but also protect 100% naive mice from GBS lethal challenge. These active and passive immunity assay results suggested that MVSA could therefore be an efficacious multi-epitope vaccine against GBS infection.
Collapse
Affiliation(s)
- Yumin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Song Liang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Shiyu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Shidan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yao Huochun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,Sanya Institute of Nanjing Agricultural University, Sanya, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,Sanya Institute of Nanjing Agricultural University, Sanya, China
| |
Collapse
|
6
|
Kurushima J, Tomita H. Advances of genetic engineering in Streptococci and Enterococci. Microbiol Immunol 2022; 66:411-417. [PMID: 35703039 DOI: 10.1111/1348-0421.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
In the post-genome era, reverse genetic engineering is an indispensable methodology for experimental molecular biology to provide a deeper understanding of the principal relationship between genomic features and biological phenotypes. Technically, genetic engineering is carried out through allele replacement of a target genomic locus with a designed nucleotide sequence, so called site-directed mutagenesis. To artificially manipulate allele replacement through homologous recombination, researchers have improved various methodologies that are optimized to the bacterial species of interest. Here, we review widely used genetic engineering technologies, particularly for streptococci and enterococci, and recent advances that enable more effective and flexible manipulation. The development of genetic engineering has been promoted by synthetic biology approaches based on basic biology knowledge of horizontal gene transfer systems, such as natural conjugative transfer, natural transformation, and the CRISPR/Cas system. Therefore, this review also describes basic insights into molecular biology that underlie improvements in genetic engineering technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jun Kurushima
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan.,Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-shi, Gunma, 371-8511, Japan
| |
Collapse
|
7
|
Fan J, Zhao L, Hu Q, Li S, Li H, Zhang Q, Zou G, Zhang L, Li L, Huang Q, Zhou R. Screening for Virulence-Related Genes via a Transposon Mutant Library of Streptococcus suis Serotype 2 Using a Galleria mellonella Larvae Infection Model. Microorganisms 2022; 10:microorganisms10050868. [PMID: 35630313 PMCID: PMC9143085 DOI: 10.3390/microorganisms10050868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic bacterial pathogen causing lethal infections in pigs and humans. Identification of virulence-related genes (VRGs) is of great importance in understanding the pathobiology of a bacterial pathogen. To identify novel VRGs, a transposon (Tn) mutant library of S. suis strain SC19 was constructed in this study. The insertion sites of approximately 1700 mutants were identified by Tn-seq, which involved 417 different genes. A total of 32 attenuated strains were identified from the library by using a Galleria mellonella larvae infection model, and 30 novel VRGs were discovered, including transcription regulators, transporters, hypothetical proteins, etc. An isogenic deletion mutant of hxtR gene (ΔhxtR) and its complementary strain (CΔhxtR) were constructed, and their virulence was compared with the wild-type strain in G. mellonella larvae and mice, which showed that disruption of hxtR significantly attenuated the virulence. Moreover, the ΔhxtR strain displayed a reduced survival ability in whole blood, increased sensitivity to phagocytosis, increased chain length, and growth defect. Taken together, this study performed a high throughput screening for VRGs of S. suis using a G. mellonella larvae model and further characterized a novel critical virulence factor.
Collapse
Affiliation(s)
- Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Lelin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Siqi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Qianqian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.F.); (L.Z.); (Q.H.); (S.L.); (H.L.); (Q.Z.); (G.Z.); (L.Z.); (L.L.)
- International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
8
|
Zhang Y, Liang S, Pan Z, Yu Y, Yao H, Liu Y, Liu G. XRE family transcriptional regulator XtrSs modulates Streptococcus suis fitness under hydrogen peroxide stress. Arch Microbiol 2022; 204:244. [PMID: 35386008 DOI: 10.1007/s00203-022-02854-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022]
Abstract
Streptococcus suis is an important emerging zoonosis that causes economic losses in the pig industry and severe threats to public health. Transcriptional regulators play essential roles in bacterial adaptation to host environments. In this study, we identified a novel XRE family transcriptional regulator in S. suis CZ130302, XtrSs, involved in the bacterial fitness to hydrogen peroxide stress. Based on electrophoretic mobility shift and β-galactosidase activity assays, we found that XtrSs auto-regulated its own transcription and repressed the expression of its downstream gene psePs, a surface protein with unknown function in S. suis, by binding to a palindromic sequence from the promoter region. Furthermore, we proved that the deletion of the psePs gene attenuated bacterial antioxidant response. Phylogenetic analysis revealed that XtrSs and PsePs naturally co-existed as a combination in most S. suis genomes. Collectively, we demonstrated the binding characteristics of XtrSs in S. suis and provided a new insight that XtrSs played a critical role in modulating psePs to the hydrogen peroxide resistance of S. suis.
Collapse
Affiliation(s)
- Yumin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Song Liang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
9
|
De Lay BD, Cameron TA, De Lay NR, Norris SJ, Edmondson DG. Comparison of transcriptional profiles of Treponema pallidum during experimental infection of rabbits and in vitro culture: Highly similar, yet different. PLoS Pathog 2021; 17:e1009949. [PMID: 34570834 PMCID: PMC8525777 DOI: 10.1371/journal.ppat.1009949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Treponema pallidum ssp. pallidum, the causative agent of syphilis, can now be cultured continuously in vitro utilizing a tissue culture system, and the multiplication rates are similar to those obtained in experimental infection of rabbits. In this study, the RNA transcript profiles of the T. pallidum Nichols during in vitro culture and rabbit infection were compared to examine whether gene expression patterns differed in these two environments. To this end, RNA preparations were converted to cDNA and subjected to RNA-seq using high throughput Illumina sequencing; reverse transcriptase quantitative PCR was also performed on selected genes for validation of results. The transcript profiles in the in vivo and in vitro environments were remarkably similar, exhibiting a high degree of concordance overall. However, transcript levels of 94 genes (9%) out of the 1,063 predicted genes in the T. pallidum genome were significantly different during rabbit infection versus in vitro culture, varying by up to 8-fold in the two environments. Genes that exhibited significantly higher transcript levels during rabbit infection included those encoding multiple ribosomal proteins, several prominent membrane proteins, glycolysis-associated enzymes, replication initiator DnaA, rubredoxin, thioredoxin, two putative regulatory proteins, and proteins associated with solute transport. In vitro cultured T. pallidum had higher transcript levels of DNA repair proteins, cofactor synthesis enzymes, and several hypothetical proteins. The overall concordance of the transcript profiles may indicate that these environments are highly similar in terms of their effects on T. pallidum physiology and growth, and may also reflect a relatively low level of transcriptional regulation in this reduced genome organism.
Collapse
Affiliation(s)
- Bridget D. De Lay
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
10
|
Liu G, Gao T, Yao H, Liu Y, Lu C. Transcriptional regulator XtgS is involved in iron transition and attenuates the virulence of Streptococcus agalactiae. Res Vet Sci 2021; 138:109-115. [PMID: 34126449 DOI: 10.1016/j.rvsc.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus agalactiae (GBS) is an important pathogen that has increasingly received attention for its role in invasive infections and its broad host range. Research on the regulation of gene expression could illuminate GBS pathogenesis. We previously identified a novel transcriptional regulator XtgS, which is a negative regulator of GBS pathogenicity. Here, we demonstrate that XtgS overexpression significantly attenuated GBS virulence in zebrafish infection tests, and XtgS indirectly downregulated the transcription of two iron transport systems based on the results of transcriptomic analysis, electrophoretic mobility shift assays (EMSAs) and lacZ fusion assays. Subsequent studies verified that the inactivation of iron transport system 1 resulted in GBS excessive iron accumulation and attenuated virulence. Thus, we infer that the downregulation of iron transport system 1 caused by XtgS overexpression probably attenuates bacterial virulence, which partially clarifies the mechanism by which XtgS alleviates the pathogenesis. These findings provide new insights into the relationship between exogenous transcriptional regulation and bacterial virulence.
Collapse
Affiliation(s)
- Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.
| | - Tingting Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; OIE Reference Laboratory for Swine Streptococcosis, Nanjing, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China; Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|