1
|
Sobstyl A, Chałupnik A, Mertowska P, Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:10920. [PMID: 37446108 DOI: 10.3390/ijms241310920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Bayar E, MacIntyre DA, Sykes L, Mountain K, Parks TP, Lee PP, Bennett PR. Safety, tolerability, and acceptability of Lactobacillus crispatus CTV-05 (LACTIN-V) in pregnant women at high-risk of preterm birth. Benef Microbes 2023; 14:45-56. [PMID: 36815494 DOI: 10.3920/bm2022.0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The vaginal microbiota is a determinant for the risk of preterm birth (PTB). Dominance of the vaginal niche by Lactobacillus crispatus associates with term delivery. This is the first observational clinical study of live vaginal biotherapeutics (Lactobacillus crispatus CTV-05 (LACTIN-V)) in pregnant women at high-risk of PTB. The primary aim was to explore safety, tolerability and acceptability of LACTIN-V in pregnancy. Women were offered a course of LACTIN-V at 14 weeks gestation for five consecutive days followed by weekly administration for six weeks. Participants were followed up at 15, 18-, 20-, 28- and 36-weeks' gestation and at delivery for assessment of adverse events, compliance and tolerability. Participants completed a questionnaire to gauge experience and acceptability. In total, 73 women were recruited, of whom eight withdrew, leaving a final cohort size of 61. Self-reported compliance to the course was high (56/60, 93%). Solicited adverse events were reported in 13 women (19%) including changes in vaginal discharge, odour, colour or consistency of urine, itching and vaginal bleeding. One unsolicited adverse event was reported as haematuria at 38 weeks gestation, but was judged to be unrelated to LACTIN-V. No serious adverse events occurred. One mild adverse event led to study withdrawal. Thirty-one women completed an experience and acceptability questionnaire. Women found LACTIN-V easy and comfortable to use and the majority (30/31, 97%) would use LACTIN-V in future pregnancies. Eight women (8/31, 26%) found the schedule of use difficult to remember. The rate of PTB <34 weeks in this cohort was 3.3% compared to 7% in a historical cohort of 2,190 women at similar background PTB risk. With satisfactory uptake and good compliance, we demonstrate that LACTIN-V is safe and accepted in pregnancy, with high tolerability. Further studies are needed to assess colonisation of Lactobacillus crispatus CTV-05 and clinical efficacy.
Collapse
Affiliation(s)
- E Bayar
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
| | - D A MacIntyre
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
- Tommy's National Centre for Miscarriage Research. Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
| | - L Sykes
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY
| | - K Mountain
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
| | - T P Parks
- Osel Inc., 320 Logue Ave # 114, Mountain View, CA 94043, USA
| | - P P Lee
- Osel Inc., 320 Logue Ave # 114, Mountain View, CA 94043, USA
| | - P R Bennett
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
- Tommy's National Centre for Miscarriage Research. Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
| |
Collapse
|
3
|
Saha UB, Saroj SD. Lactic acid bacteria: prominent player in the fight against human pathogens. Expert Rev Anti Infect Ther 2022; 20:1435-1453. [PMID: 36154442 DOI: 10.1080/14787210.2022.2128765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications. AREAS COVERED This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed. EXPERT OPINION Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.
Collapse
Affiliation(s)
- Ujjayni B Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| |
Collapse
|
4
|
Hu B, He X, Tan J, Ma Y, Wang G, Liu S, Li M, Guo Y, Sun R, Sun M, Deng X, Zhou W, Lv X. Gender-related differences in the effects of Inonotus obliquus polysaccharide on intestinal microorganisms in SD rats model. Front Vet Sci 2022; 9:957053. [PMID: 36204299 PMCID: PMC9531693 DOI: 10.3389/fvets.2022.957053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Natural edible fungal polysaccharides are of research and application value for the prevention of diseases by improving the microenvironment within the intestine. Inonotus obliquus polysaccharide (IOP) extracts have strong antioxidant, anti-inflammatory, and other biological activities, and as such, it could be used as prebiotics to improve the viability of intestinal microbes, maintain intestinal homeostasis and improve intestinal immunity. The effects of sex on intestinal microbiota after IOP absorption was determined. In this study, IOP had different effects on the intestinal flora of male and female rats, with the diversity and richness showing opposite changes. At the same time, after IOP intervention, changes in the dominant intestinal flora of female rats was less compared with that of males. In addition, while Clostridia, Lactobacillus and Roseburia were the dominant intestinal microbes in female rats, males had mainly Bacteroidota from different families and genera, along with an increasing proportion of Muribaculaceae from different families and genera. IOP could further regulate the intestinal microenvironment of male and female SD rats by enhancing the vitality of their dominant microorganisms, and for both sexes, this enabled the screening of dominant microflora that were conducive to the balance of the intestinal flora. These results help to understand the effects of sex-related differences on the composition of the intestinal microbiota as well as on diseases.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
- *Correspondence: Binhong Hu
| | - Xinyue He
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jin Tan
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yichuan Ma
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Gang Wang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
- Songqing Liu
| | - Mingyue Li
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yanping Guo
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Sun
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Mengxue Sun
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - WenJing Zhou
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xue Lv
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| |
Collapse
|
5
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Edwards VL, McComb E, Gleghorn JP, Forney L, Bavoil PM, Ravel J. Three-dimensional models of the cervicovaginal epithelia to study host-microbiome interactions and sexually transmitted infections. Pathog Dis 2022; 80:6655985. [PMID: 35927516 PMCID: PMC9419571 DOI: 10.1093/femspd/ftac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
2D cell culture systems have historically provided controlled, reproducible means to analyze host-pathogen interactions observed in the human reproductive tract. Although inexpensive, straightforward, and requiring a very short time commitment, these models recapitulate neither the functionality of multilayered cell types nor the associated microbiome that occurs in a human. Animal models have commonly been used to recreate the complexity of human infections. However, extensive modifications of animal models are required to recreate interactions that resemble those in the human reproductive tract. 3D cell culture models have emerged as alternative means of reproducing vital elements of human infections at a fraction of the cost of animal models and on a scale that allows for replicative experiments. Here, we describe a new 3D model that utilizes transwells with epithelial cells seeded apically and a basolateral extracellular matrix (ECM)-like layer. The model produced tissues with morphologic and physiological resemblance to human cervical and vaginal epithelia, including mucus levels produced by cervical cells. Infection by Chlamydia trachomatis and Neisseria gonorrhoeae was demonstrated, as well as the growth of bacterial species observed in the human vaginal microbiota. This enabled controlled mechanistic analyses of the interactions between host cells, the vaginal microbiota, and STI pathogens. Affordable and semi high-throughput 3D models of the cervicovaginal epithelia that are physiologically relevant by sustaining vaginal bacterial colonization, and facilitate studies of chlamydial and gonococcal infections.
Collapse
Affiliation(s)
- Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Patrik M Bavoil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Jacques Ravel
- Corresponding author: Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Health Science Research Facility (HSRDF), 670 W. Baltimore Street, Baltimore, MD 21201, United States. Tel: +1 410-706-5674; E-mail:
| |
Collapse
|
7
|
Onorini D, Borel N, Schoborg RV, Leonard CA. Neisseria gonorrhoeae Limits Chlamydia trachomatis Inclusion Development and Infectivity in a Novel In Vitro Co-Infection Model. Front Cell Infect Microbiol 2022; 12:911818. [PMID: 35873141 PMCID: PMC9300984 DOI: 10.3389/fcimb.2022.911818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) and Neisseria gonorrhoeae (Ng) are the most common bacterial sexually transmitted infections (STIs) worldwide. The primary site of infection for both bacteria is the epithelium of the endocervix in women and the urethra in men; both can also infect the rectum, pharynx and conjunctiva. Ct/Ng co-infections are more common than expected by chance, suggesting Ct/Ng interactions increase susceptibility and/or transmissibility. To date, studies have largely focused on each pathogen individually and models exploring co-infection are limited. We aimed to determine if Ng co-infection influences chlamydial infection and development and we hypothesized that Ng-infected cells are more susceptible to chlamydial infection than uninfected cells. To address this hypothesis, we established an in vitro model of Ct/Ng co-infection in cultured human cervical epithelial cells. Our data show that Ng co-infection elicits an anti-chlamydial effect by reducing chlamydial infection, inclusion size, and subsequent infectivity. Notably, the anti-chlamydial effect is dependent on Ng viability but not extracellular nutrient depletion or pH modulation. Though this finding is not consistent with our hypothesis, it provides evidence that interaction of these bacteria in vitro influences chlamydial infection and development. This Ct/Ng co-infection model, established in an epithelial cell line, will facilitate further exploration into the pathogenic interplay between Ct and Ng.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Cory Ann Leonard,
| |
Collapse
|
8
|
Sunkavalli A, McClure R, Genco C. Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms 2022; 10:922. [PMID: 35630366 PMCID: PMC9147433 DOI: 10.3390/microorganisms10050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection (STI) gonorrhea, with an estimated 87 million annual cases worldwide. N. gonorrhoeae predominantly colonizes the male and female genital tract (FGT). In the FGT, N. gonorrhoeae confronts fluctuating levels of nutrients and oxidative and non-oxidative antimicrobial defenses of the immune system, as well as the resident microbiome. One mechanism utilized by N. gonorrhoeae to adapt to this dynamic FGT niche is to modulate gene expression primarily through DNA-binding transcriptional regulators. Here, we describe the major N. gonorrhoeae transcriptional regulators, genes under their control, and how these regulatory processes lead to pathogenic properties of N. gonorrhoeae during natural infection. We also discuss the current knowledge of the structure, function, and diversity of the FGT microbiome and its influence on gonococcal survival and transcriptional responses orchestrated by its DNA-binding regulators. We conclude with recent multi-omics data and modeling tools and their application to FGT microbiome dynamics. Understanding the strategies utilized by N. gonorrhoeae to regulate gene expression and their impact on the emergent characteristics of this pathogen during infection has the potential to identify new effective strategies to both treat and prevent gonorrhea.
Collapse
Affiliation(s)
- Ashwini Sunkavalli
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Ryan McClure
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Caroline Genco
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| |
Collapse
|
9
|
Asadi A, Lohrasbi V, Abdi M, Mirkalantari S, Esghaei M, Kashanian M, Oshaghi M, Talebi M. The probiotic properties and potential of vaginal Lactobacilli spp. isolated from healthy women against some vaginal pathogens. Lett Appl Microbiol 2022; 74:752-764. [DOI: 10.1111/lam.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Vahid Lohrasbi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Milad Abdi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Maryam Esghaei
- Department of Virology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Maryam Kashanian
- Department of Obstetrics & Gynecology Akbarabadi Teaching Hospital, Iran University of Medical Sciences Tehran Iran
| | - Mozhgan Oshaghi
- Department of Lab Sciences Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Malihe Talebi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
- Microbial Biotechnology Research Centre Iran University of Medical Sciences Shahid Hemmat Highway Tehran Iran
| |
Collapse
|
10
|
Dijokaite A, Humbert MV, Borkowski E, La Ragione RM, Christodoulides M. Establishing an invertebrate Galleria mellonella greater wax moth larval model of Neisseria gonorrhoeae infection. Virulence 2021; 12:1900-1920. [PMID: 34304706 PMCID: PMC8312596 DOI: 10.1080/21505594.2021.1950269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Neisseria gonorrhoeae (gonococcus) causes the human sexually transmitted disease gonorrhea. Studying gonococcal pathogenesis and developing new vaccines and therapies to combat the increasing prevalence of multi-antibiotic resistant bacteria has made use of many ex vivo models based on human cells and tissues, and in vivo vertebrate models, for example, rodent, pig and human. The focus of the current study was to examine the utility of the invertebrate greater wax moth Galleria mellonella as an in vivo model of gonococcal infection. We observed that a threshold of ~106 - 107 gonococci/larva was required to kill >50% of larvae (P < 0.05), and increased toxicity correlated with reduced health index scores and pronounced histopathological changes such as increases in the total lesion grade, melanized nodules, hemocyte reaction, and multifocal adipose body degeneration. Larval death was independent of the expression of pilus or Opa protein or LOS sialylation within a single gonococcal species studied, but the model could demonstrate relative toxicity of different isolates. N. meningitidis, N. lacatamica and gonococci all killed larvae equally, but were significantly less toxic (P > 0.05) than Pseudomonas aeruginosa. Larvae primed with nontoxic doses of gonococci were more susceptible to subsequent challenge with homologous and heterologous bacteria, and larval survival was significantly reduced (P < 0.05) in infected larvae after depletion of their hemocytes with clodronate-liposomes. The model was used to test the anti-gonococcal properties of antibiotics and novel antimicrobials. Ceftriaxone (P < 0.05) protected larvae from infection with different gonococcal isolates, but not azithromycin or monocaprin or ligand-coated silver nanoclusters (P > 0.05).
Collapse
Affiliation(s)
- Aiste Dijokaite
- Neisseria Research Group, Molecular Microbiology, Academic School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, Academic School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Emma Borkowski
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Academic School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
11
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
12
|
Wolf EA, Rettig HC, Lupatsii M, Schlüter B, Schäfer K, Friedrich D, Graspeuntner S, Rupp J. Culturomics Approaches Expand the Diagnostic Accuracy for Sexually Transmitted Infections. Int J Mol Sci 2021; 22:ijms221910815. [PMID: 34639153 PMCID: PMC8509341 DOI: 10.3390/ijms221910815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sexually transmitted infections (STIs) are a major health concern with clinical manifestations being acknowledged to cause severe reproductive impairment. Research in infectious diseases has been centered around the known major pathogens for decades. However, we have just begun to understand that the microbiota of the female genital tract is of particular importance for disease initiation, infection progression, and pathological outcome. Thus, we are now aware that many poorly described, partially not yet known, or cultured bacteria may pave the way for an infection and/or contribute to disease severity. While sequencing-based methods are an important step in diagnosing STIs, culture-based methods are still the gold-standard method in diagnostic routine, providing the opportunity to distinguish phenotypic traits of bacteria. However, current diagnostic culture routines suffer from several limitations reducing the content of information about vaginal microbiota. A detailed characterization of microbiota-associated factors is needed to assess the impact of single-bacterial isolates from the vaginal community on vaginal health and the containment of STIs. Here we provide current concepts to enable modern culture routines and create new ideas to improve diagnostic approaches with a conjunct usage of bioinformatics. We aim to enable scientists and physicians alike to overcome long-accepted limitations in culturing bacteria of interest to the human health. Eventually, this may improve the quality of culture-based diagnostics, facilitate a research interface, and lead to a broader understanding of the role of vaginal microbiota in reproductive health and STIs.
Collapse
Affiliation(s)
- Ellinor Anna Wolf
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Mariia Lupatsii
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Britta Schlüter
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany;
| | - Kathrin Schäfer
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany; (E.A.W.); (H.C.R.); (M.L.); (K.S.); (D.F.); (S.G.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
- Correspondence:
| |
Collapse
|
13
|
Jiang I, Yong PJ, Allaire C, Bedaiwy MA. Intricate Connections between the Microbiota and Endometriosis. Int J Mol Sci 2021; 22:5644. [PMID: 34073257 PMCID: PMC8198999 DOI: 10.3390/ijms22115644] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Imbalances in gut and reproductive tract microbiota composition, known as dysbiosis, disrupt normal immune function, leading to the elevation of proinflammatory cytokines, compromised immunosurveillance and altered immune cell profiles, all of which may contribute to the pathogenesis of endometriosis. Over time, this immune dysregulation can progress into a chronic state of inflammation, creating an environment conducive to increased adhesion and angiogenesis, which may drive the vicious cycle of endometriosis onset and progression. Recent studies have demonstrated both the ability of endometriosis to induce microbiota changes, and the ability of antibiotics to treat endometriosis. Endometriotic microbiotas have been consistently associated with diminished Lactobacillus dominance, as well as the elevated abundance of bacterial vaginosis-related bacteria and other opportunistic pathogens. Possible explanations for the implications of dysbiosis in endometriosis include the Bacterial Contamination Theory and immune activation, cytokine-impaired gut function, altered estrogen metabolism and signaling, and aberrant progenitor and stem-cell homeostasis. Although preliminary, antibiotic and probiotic treatments have demonstrated efficacy in treating endometriosis, and female reproductive tract (FRT) microbiota sampling has successfully predicted disease risk and stage. Future research should aim to characterize the "core" upper FRT microbiota and elucidate mechanisms behind the relationship between the microbiota and endometriosis.
Collapse
Affiliation(s)
| | | | | | - Mohamed A. Bedaiwy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of British Columbia, D415A-4500 Oak Street, Vancouver, BC V6H 3N1, Canada; (I.J.); (P.J.Y.); (C.A.)
| |
Collapse
|
14
|
Repurposing Fenamic Acid Drugs To Combat Multidrug-Resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2020; 64:AAC.02206-19. [PMID: 32393483 DOI: 10.1128/aac.02206-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
The rise of extensively drug-resistant and multidrug-resistant strains of Neisseria gonorrhoeae has occurred in parallel with the increasing demand for new drugs. However, the current methods of drug discovery are burdened with rigorous assessments and require more time than can be spared until gonococcal infections become difficult to control. To address this urgency, we utilized a drug-repurposing strategy and identified three clinically approved anthranilic acid drugs (tolfenamic acid, flufenamic acid, and meclofenamic acid) with potent antigonococcal activity, inhibiting 50% of the strains (MIC50) from 4 to 16 μg/ml. Furthermore, tolfenamic acid showed indifferent activity with antibiotics of choice for gonococcal infections, azithromycin and ceftriaxone, in checkerboard assays with a fractional inhibitory concentration index ranging from 0.75 to 1.5. Fenamic acids reduced a high inoculum of N. gonorrhoeae below the limit of detection within 12 h and exhibited a low frequency of resistance. Interestingly, the fenamic acids did not inhibit the growth of commensal Lactobacillus spp. that comprise the healthy female genital microbiota. Fenamic acids were also superior to ceftriaxone in reducing the burden of intracellular N. gonorrhoeae within infected endocervical cells by 99%. Furthermore, all three fenamic acids significantly reduced the expression of proinflammatory cytokines by infected endocervical cells. Finally, fenamic acids and other structurally related anthranilic acid derivatives were evaluated to ascertain a more in-depth structure-activity relationship (SAR) that revealed N-phenylanthranilic acid as a novel antigonorrheal scaffold. This SAR study will pave the road to repositioning more potent fenamic acids analogues against N. gonorrhoeae.
Collapse
|
15
|
Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells. J Microbiol 2020; 58:405-414. [PMID: 32279277 DOI: 10.1007/s12275-020-9505-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Neisseria gonorrhoeae, an obligatory human pathogen causes the sexually transmitted disease gonorrhea, which remains a global health problem. N. gonorrhoeae primarily infects the mucosa of the genitourinary tract, which in women, is colonized by natural microbiota, dominated by Lactobacillus spp., that protect human cells against pathogens. In this study, we demonstrated that precolonization of human epithelial cells with Lactobacillus crispatus, one of the most prevalent bacteria in the female urogenital tract, or preincubation with the L. crispatus enolase or glutamine synthetase impairs the adhesion and invasiveness of N. gonorrhoeae toward epithelial cells, two crucial steps in gonococcal pathogenesis. Furthermore, decreased expression of genes encoding the proinflam-matory cytokines, TNFα and CCL20, which are secreted as a consequence of N. gonorrhoeae infection, was observed in N. gonorrhoeae-infected epithelial cells that had been preco-lonized with L. crispatus or preincubated with enolase and glutamine synthetase. Thus, our results indicate that the protection of human cells against N. gonorrhoeae infection is a complex process and that L. crispatus and its proteins enolase and glutamine synthetase can have a potential role in protecting epithelial cells against gonococcal infection. Therefore, these results are important since disturbances of the micro-biota or of its proteins can result in dysbiosis, which is associated with increased susceptibility of epithelium to pathogens.
Collapse
|
16
|
Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob 2020; 19:5. [PMID: 31992328 PMCID: PMC6986042 DOI: 10.1186/s12941-020-0347-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI) has not only become an epidemiological and clinical problem but also include large social and psychological consequences. Understanding the mechanisms of both commensalism and pathogenesis are necessary for the development of efficient diagnosis and treatment strategies for these enigmatic vaginal infections. Through this review, an attempt has been made to analyze vaginal microbiota (VMB) from scratch and to provide an update on its current understanding in relation to health and common RVVI i.e. bacterial vaginosis, vulvovaginal candidiaisis and Trichomoniasis, making the present review first of its kind. For this, potentially relevant studies were retrieved from data sources and critical analysis of the literature was made. Though, culture-independent methods have greatly unfolded the mystery regarding vaginal bacterial microbiome, there are only a few studies regarding the composition and diversity of vaginal mycobiome and different Trichomonas vaginalis strains. This scenario suggests a need of further studies based on comparative genomics of RVVI pathogens to improve our perceptive of RVVI pathogenesis that is still not clear (Fig. 5). Besides this, the review details the rationale for Lactobacilli dominance and changes that occur in healthy VMB throughout a women's life. Moreover, the list of possible agents continues to expand and new species recognised in both health and VVI are updated in this review. The review concludes with the controversies challenging the widely accepted dogma i.e. "VMB dominated with Lactobacilli is healthier than a diverse VMB". These controversies, over the past decade, have complicated the definition of vaginal health and vaginal infections with no definite conclusion. Thus, further studies on newly recognised microbial agents may reveal answers to these controversies. Conversely, VMB of women could be an answer but it is not enough to just look at the microbiology. We have to look at the woman itself, as VMB which is fine for one woman may be troublesome for others. These differences in women's response to the same VMB may be determined by a permutation of behavioural, cultural, genetic and various other anonymous factors, exploration of which may lead to proper definition of vaginal health and disease.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, 143005 India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, 143005 India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005 India
| |
Collapse
|
17
|
Bardos J, Fiorentino D, Longman RE, Paidas M. Immunological Role of the Maternal Uterine Microbiome in Pregnancy: Pregnancies Pathologies and Alterated Microbiota. Front Immunol 2020; 10:2823. [PMID: 31969875 PMCID: PMC6960114 DOI: 10.3389/fimmu.2019.02823] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Understanding what happens at the time of embryo implantation has been the subject of significant research. Investigators from many differing fields including maternal fetal medicine, microbiology, genetics, reproductive endocrinology and immunology have all been studying the moment the embryo interacts with the maternal endometrium. A perfect relationship between the uterus and the embryo, mediated by a tightly controlled interaction between the embryo and the endometrium, is required for successful implantation. Any factors affecting this communication, such as altered microbiome may lead to poor reproductive outcomes. Current theories suggest that altered microbiota may trigger an inflammatory response in the endometrium that affects the success of embryo implantation, as inflammatory mediators are tightly regulated during the adhesion of the blastocyst to the epithelial endometrial wall. In this review, we will highlight the various microbiome found during the periconceptual period, the microbiomes interaction with immunological responses surrounding the time of implantation, its effect on implantation, placentation and ultimately maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Jonah Bardos
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Division of Clinical and Translational Genetics, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Desiree Fiorentino
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Division of Clinical and Translational Genetics, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ryan E Longman
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Division of Clinical and Translational Genetics, Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Paidas
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
18
|
Atassi F, Pho Viet Ahn DL, Lievin-Le Moal V. Diverse Expression of Antimicrobial Activities Against Bacterial Vaginosis and Urinary Tract Infection Pathogens by Cervicovaginal Microbiota Strains of Lactobacillus gasseri and Lactobacillus crispatus. Front Microbiol 2019; 10:2900. [PMID: 31921075 PMCID: PMC6933176 DOI: 10.3389/fmicb.2019.02900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
We aimed to analyze the strain-by-strain expression of a large panel of antimicrobial activities counteracting the virulence mechanisms of bacterial vaginosis-associated Prevotella bivia CI-1 and Gardnerella vaginalis 594, pyelonephritis-associated Escherichia coli CFT073, and recurrent cystitis- and preterm labor-associated IH11128 E. coli by Lactobacillus gasseri and Lactobacillus crispatus clinical strains, and L. gasseri ATCC 9857 and KS 120.1, and L. crispatus CTV-05 strains isolated from the cervicovaginal microbiota of healthy women. All L. gasseri and L. crispatus strains exerted antimicrobial activity by secreted lactic acid, which killed the microbial pathogens by direct contact. Potent bactericidal activity was exerted by a very limited number of resident L. gasseri and L. crispatus strains showing the specific ability to a strain to produce and release antibiotic-like compounds. These compounds eradicated the microbial pathogens pre-associated with the surface of cervix epithelial cells, providing efficient protection of the cells against the deleterious effects triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Furthermore, these compounds crossed the cell membrane to kill the pre-internalized microbial pathogens. In addition, all L. gasseri and L. crispatus cells exhibited another non-strain specific activity which inhibited the association of microbial pathogens with cervix epithelial cells with varying efficiency, partially protecting the cells against lysis and detachment triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Our results provide evidence of strain-level specificity for certain antimicrobial properties among cervicovaginal L. gasseri and L. crispatus strains, indicating that the presence of a particular species in the vaginal microbiota is not sufficient to determine its benefit to the host. A full repertory of antimicrobial properties should be evaluated in choosing vaginal microbiota-associated Lactobacillus isolates for the development of live biotherapeutic strategies.
Collapse
Affiliation(s)
- Fabrice Atassi
- ISNERM UMR-S 1166, Sorbonne University, Paris, France.,INSERM, UMR-S 1166, CHU Pitié-Salpêtrière, Faculty of Medicine, Paris, France
| | - Diane L Pho Viet Ahn
- INSERM UMR-S 996, University of Paris-Sud, Orsay, France.,INSERM UMR-S 996, Paris-Saclay University, Saint-Aubin, France.,INSERM, UMR-S 996, Clamart, France
| | - Vanessa Lievin-Le Moal
- INSERM UMR-S 996, University of Paris-Sud, Orsay, France.,INSERM UMR-S 996, Paris-Saclay University, Saint-Aubin, France.,INSERM, UMR-S 996, Clamart, France
| |
Collapse
|
19
|
Kroon SJ, Ravel J, Huston WM. Cervicovaginal microbiota, women's health, and reproductive outcomes. Fertil Steril 2019; 110:327-336. [PMID: 30098679 DOI: 10.1016/j.fertnstert.2018.06.036] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
The human microbiome project has shown a remarkable diversity of microbial ecology within the human body. The vaginal microbiota is unique in that in many women it is most often dominated by Lactobacillus species. However, in some women it lacks Lactobacillus spp. and is comprised of a wide array of strict and facultative anaerobes, a state that broadly correlates with increased risk for infection, disease, and poor reproductive and obstetric outcomes. Interestingly, the level of protection against infection can also vary by species and strains of Lactobacillus, and some species although dominant are not always optimal. This factors into the risk of contracting sexually transmitted infections and possibly influences the occurrence of resultant adverse reproductive outcomes such as tubal factor infertility. The composition and function of the vaginal microbiota appear to play an important role in pregnancy and fertility treatment outcomes and future research in this field will shed further translational mechanistic understanding onto the interplay of the vaginal microbiota with women's health and reproduction.
Collapse
Affiliation(s)
- Samuel J Kroon
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
20
|
Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2019; 24:393-415. [PMID: 29668899 DOI: 10.1093/humupd/dmy012] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fertility depends on a receptive state of the endometrium, influenced by hormonal and anatomical adaptations, as well as the immune system. Local and systemic immunity is greatly influenced by microbiota. Recent discoveries of 16S rRNA in the endometrium and the ability to detect low-biomass microbiota fueled the notion that the uterus may be indeed a non-sterile compartment. To date, the concept of the 'sterile womb' focuses on in utero effects of microbiota on offspring and neonatal immunity. However, little awareness has been raised regarding the importance of uterine microbiota for endometrial physiology in reproductive health; manifested in fertility and placentation. OBJECTIVE AND RATIONALE Commensal colonization of the uterus has been widely discussed in the literature. The objective of this review is to outline the possible importance of this uterine colonization for a healthy, fertile uterus. We present the available evidence regarding uterine microbiota, focusing on recent findings based on 16S rRNA, and depict the possible importance of uterine colonization for a receptive endometrium. We highlight a possible role of uterine microbiota for host immunity and tissue adaptation, as well as conferring protection against pathogens. Based on knowledge of the interaction of the mucosal immune cells of the gut with the local microbiome, we want to investigate the potential implications of commensal colonization for uterine health. SEARCH METHODS PubMed and Google Scholar were searched for articles in English indexed from 1 January 2008 to 1 March 2018 for '16S rRNA', 'uterus' and related search terms to assess available evidence on uterine microbiome analysis. A manual search of the references within the resulting articles was performed. To investigate possible functional contributions of uterine microbiota to health, studies on microbiota of other body sites were additionally assessed. OUTCOMES Challenging the view of a sterile uterus is in its infancy and, to date, no conclusions on a 'core uterine microbiome' can be drawn. Nevertheless, evidence for certain microbiota and/or associated compounds in the uterus accumulates. The presence of microbiota or their constituent molecules, such as polysaccharide A of the Bacteroides fragilis capsule, go together with healthy physiological function. Lessons learned from the gut microbiome suggest that the microbiota of the uterus may potentially modulate immune cell subsets needed for implantation and have implications for tissue morphology. Microbiota can also be crucial in protection against uterine infections by defending their niche and competing with pathogens. Our review highlights the need for well-designed studies on a 'baseline' microbial state of the uterus representing the optimal starting point for implantation and subsequent placenta formation. WIDER IMPLICATIONS The complex interplay of processes and cells involved in healthy pregnancy is still poorly understood. The correct receptive endometrial state, including the local immune environment, is crucial not only for fertility but also placenta formation since initiation of placentation highly depends on interaction with immune cells. Implantation failure, recurrent pregnancy loss, and other pathologies of endometrium and placenta, such as pre-eclampsia, represent an increasing societal burden. More robust studies are needed to investigate uterine colonization. Based on current data, future research needs to include the uterine microbiome as a relevant factor in order to understand the players needed for healthy pregnancy.
Collapse
Affiliation(s)
- Marilen Benner
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
21
|
O'Hanlon DE, Come RA, Moench TR. Vaginal pH measured in vivo: lactobacilli determine pH and lactic acid concentration. BMC Microbiol 2019; 19:13. [PMID: 30642259 PMCID: PMC6332693 DOI: 10.1186/s12866-019-1388-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/04/2019] [Indexed: 12/04/2022] Open
Abstract
Background Lactic acid (protonated lactate) has broad antimicrobial activity. Vaginal lactobacilli produce lactic acid, and are known to confer protection against reproductive tract infections when they are predominant in the vaginal microbiota. Using novel ex vivo methods, we showed that cervicovaginal fluid (CVF) from women with a predominantly lactobacilli-morphotype microbiota contains significantly more lactic acid than previously thought, sufficient to inactivate reproductive tract pathogens. Here, we measured vaginal pH in vivo in 20 women with a predominantly lactobacilli-morphotype (low Nugent score) microbiota. We also investigated the in vitro production of protons (as hydrogen ions) and lactate by vaginal lactobacilli. Results The average vaginal pH in these women was 3.80 ± 0.20, and the average lactate concentration was 0.79% ± 0.22% w/v, with pH and lactate concentration tightly correlated for each sample. In vitro, lactobacilli cultured from these CVF samples reached an average pH of 3.92 ± 0.22, but the average lactate concentration was only 0.14% ± 0.06% w/v, approximately five-fold less than in the corresponding CVF samples. When the pH of the cultures was raised, lactate and hydrogen ion production resumed, indicating that production of lactate and hydrogen ions by vaginal lactobacilli is limited primarily by their sensitivity to hydrogen ion concentration (low pH) not lactate concentration. Conclusions Some vaginal lactobacilli cultures have a lower limiting pH than others, and limiting pHs in vitro showed good correlation with pHs measured in vivo. The limiting pH of the lactobacilli predominant in a woman’s vaginal microbiota seems critical in determining the concentration of antimicrobial lactic acid protecting her.
Collapse
Affiliation(s)
- Deirdre Elizabeth O'Hanlon
- Institute for Genomic Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD, USA.
| | - Richard A Come
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
22
|
Lenz JD, Shirk KA, Jolicoeur A, Dillard JP. Selective Inhibition of Neisseria gonorrhoeae by a Dithiazoline in Mixed Infections with Lactobacillus gasseri. Antimicrob Agents Chemother 2018; 62:e00826-18. [PMID: 30275084 PMCID: PMC6256793 DOI: 10.1128/aac.00826-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/22/2018] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative human pathogen Neisseria gonorrhoeae has progressively developed resistance to antibiotic monotherapies, and recent failures of dual-drug therapy have heightened concerns that strains resistant to all available antibiotics will begin circulating globally. Targeting bacterial cell wall assembly has historically been effective at treating infections with N. gonorrhoeae, but as the effectiveness of β-lactams (including cephalosporins) is challenged by increasing resistance, research has expanded into compounds that target the numerous other enzymes with roles in peptidoglycan metabolism. One example is the dithiazoline compound JNJ-853346 (DTZ), which inhibits the activity of an Escherichia coli serine protease l,d-carboxypeptidase (LdcA). Recently, the characterization of an LdcA homolog in N. gonorrhoeae revealed localization and activity differences from the characterized E. coli LdcA, prompting us to explore the effectiveness of DTZ against N. gonorrhoeae We found that DTZ is effective at inhibiting N. gonorrhoeae in all growth phases, unlike the specific stationary-phase inhibition seen in E. coli Surprisingly, DTZ does not inhibit gonococcal LdcA enzyme activity, and DTZ sensitivity is not significantly decreased in ldcA mutants. While effective against numerous N. gonorrhoeae strains, including recent multidrug-resistant isolates, DTZ is much less effective at inhibiting growth of the commensal species Lactobacillus gasseri DTZ treatment during coinfections of epithelial cells resulted in significant lowering of gonococcal burden and interleukin-8 secretion without significantly impacting recovery of viable L. gasseri This selective toxicity presents a possible pathway for the use of DTZ as an effective antigonococcal agent at concentrations that do not impact vaginal commensals.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristina A Shirk
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrienne Jolicoeur
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Lenz JD, Dillard JP. Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube. Front Immunol 2018; 9:2710. [PMID: 30524442 PMCID: PMC6258741 DOI: 10.3389/fimmu.2018.02710] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that causes mucosal surface infections of male and female reproductive tracts, pharynx, rectum, and conjunctiva. Asymptomatic or unnoticed infections in the lower reproductive tract of women can lead to serious, long-term consequences if these infections ascend into the fallopian tube. The damage caused by gonococcal infection and the subsequent inflammatory response produce the condition known as pelvic inflammatory disease (PID). Infection can lead to tubal scarring, occlusion of the oviduct, and loss of critical ciliated cells. Consequences of the damage sustained on the fallopian tube epithelium include increased risk of ectopic pregnancy and tubal-factor infertility. Additionally, the resolution of infection can produce new adhesions between internal tissues, which can tear and reform, producing chronic pelvic pain. As a bacterium adapted to life in a human host, the gonococcus presents a challenge to the development of model systems for probing host-microbe interactions. Advances in small-animal models have yielded previously unattainable data on systemic immune responses, but the specificity of N. gonorrhoeae for many known (and unknown) host targets remains a constant hurdle. Infections of human volunteers are possible, though they present ethical and logistical challenges, and are necessarily limited to males due to the risk of severe complications in women. It is routine, however, that normal, healthy fallopian tubes are removed in the course of different gynecological surgeries (namely hysterectomy), making the very tissue most consequentially damaged during ascending gonococcal infection available for laboratory research. The study of fallopian tube organ cultures has allowed the opportunity to observe gonococcal biology and immune responses in a complex, multi-layered tissue from a natural host. Forty-five years since the first published example of human fallopian tube being infected ex vivo with N. gonorrhoeae, we review what modeling infections in human tissue explants has taught us about the gonococcus, what we have learned about the defenses mounted by the human host in the upper female reproductive tract, what other fields have taught us about ciliated and non-ciliated cell development, and ultimately offer suggestions regarding the next generation of model systems to help expand our ability to study gonococcal pathogenesis.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Parolin C, Frisco G, Foschi C, Giordani B, Salvo M, Vitali B, Marangoni A, Calonghi N. Lactobacillus crispatus BC5 Interferes With Chlamydia trachomatis Infectivity Through Integrin Modulation in Cervical Cells. Front Microbiol 2018; 9:2630. [PMID: 30459737 PMCID: PMC6232233 DOI: 10.3389/fmicb.2018.02630] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
Lactobacilli play a crucial role in maintaining the ecological equilibrium of the vaginal niche, preventing the colonization of exogenous microorganisms. Although many studies have discussed the mechanisms displayed by lactobacilli in counteracting several urogenital pathogens, a few data are available on the interaction between lactobacilli and Chlamydia trachomatis. This study aimed to elucidate the molecular bases of the interaction among vaginal lactobacilli, the sexually transmitted pathogen C. trachomatis and the epithelial cervical cells. We evaluated the in vitro activity of 15 Lactobacillus strains, belonging to different species (i.e., L. crispatus, L. gasseri, L. vaginalis), against C. trachomatis. In particular, we evaluated the capability of lactobacilli cells to interfere with C. trachomatis infection in HeLa cells, by exclusion assays. Lactobacilli significantly reduced C. trachomatis infectivity, being L. crispatus the most active species. Although a dose-dependent effect was noticed, a significant antagonistic activity was maintained even at lower doses. As other Gram-positive bacteria (i.e., Streptococcus agalactiae, Enterococcus faecalis, and Bacillus subtilis) failed to interfere with C. trachomatis infectivity, Lactobacillus activity proved to be specific. The potential mechanism of protection was investigated in Lactobacillus crispatus BC5, chosen as the model strain. The incubation of HeLa cell line with BC5 cells induced important modifications in the epithelial plasma membrane, by altering lipid composition and α5 integrin subunit exposure. When α5 integrin subunits were masked by a specific blocking antibody or ITGA5 gene expression was silenced, Chlamydia infection was significantly reduced. It follows that α5 integrin subunit is crucial for the pathogen infection process, and the anti-Chlamydia activity can be directly linked to membrane properties modifications in cervical cells. The three Gram-positive bacteria used as controls failed to modify the expression of α5β1 integrin. In conclusion, we identified a potential molecular mechanism at the basis of the protection exerted by L. crispatus BC5 against C. trachomatis, getting insights into the role of the cervico-vaginal microbiota for the woman’s health.
Collapse
Affiliation(s)
- Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Frisco
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Melissa Salvo
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Bacteriophages of the Urinary Microbiome. J Bacteriol 2018; 200:JB.00738-17. [PMID: 29378882 DOI: 10.1128/jb.00738-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Bacterial viruses (bacteriophages) play a significant role in microbial community dynamics. Within the human gastrointestinal tract, for instance, associations among bacteriophages (phages), microbiota stability, and human health have been discovered. In contrast to the gastrointestinal tract, the phages associated with the urinary microbiota are largely unknown. Preliminary metagenomic surveys of the urinary virome indicate a rich diversity of novel lytic phage sequences at an abundance far outnumbering that of eukaryotic viruses. These surveys, however, exclude the lysogenic phages residing within the bacteria of the bladder. To characterize this phage population, we examined 181 genomes representative of the phylogenetic diversity of bacterial species within the female urinary microbiota and found 457 phage sequences, 226 of which were predicted with high confidence. Phages were prevalent within the bladder bacteria: 86% of the genomes examined contained at least one phage sequence. Most of these phages are novel, exhibiting no discernible sequence homology to sequences in public data repositories. The presence of phages with substantial sequence similarity within the microbiota of different women supports the existence of a core community of phages within the bladder. Furthermore, the observed variation between the phage populations of women with and without overactive bladder symptoms suggests that phages may contribute to urinary health. To complement our bioinformatic analyses, viable phages were cultivated from the bacterial isolates for characterization; a novel coliphage was isolated, which is obligately lytic in the laboratory strain Escherichia coli C. Sequencing of bacterial genomes facilitates a comprehensive cataloguing of the urinary virome and reveals phage-host interactions.IMPORTANCE Bacteriophages are abundant within the human body. However, while some niches have been well surveyed, the phage population within the urinary microbiome is largely unknown. Our study is the first survey of the lysogenic phage population within the urinary microbiota. Most notably, the abundance of prophage exceeds that of the bacteria. Furthermore, many of the prophage sequences identified exhibited no recognizable sequence homology to sequences in data repositories. This suggests a rich diversity of uncharacterized phage species present in the bladder. Additionally, we observed a variation in the abundances of phages between bacteria isolated from asymptomatic "healthy" individuals and those with urinary symptoms, thus suggesting that, like phages within the gut, phages within the bladder may contribute to urinary health.
Collapse
|
26
|
Valenti P, Rosa L, Capobianco D, Lepanto MS, Schiavi E, Cutone A, Paesano R, Mastromarino P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front Immunol 2018; 9:376. [PMID: 29545798 PMCID: PMC5837981 DOI: 10.3389/fimmu.2018.00376] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/09/2018] [Indexed: 01/26/2023] Open
Abstract
The innate defense system of the female mucosal genital tract involves a close and complex interaction among the healthy vaginal microbiota, different cells, and various proteins that protect the host from pathogens. Vaginal lactobacilli and lactoferrin represent two essential actors in the vaginal environment. Lactobacilli represent the dominant bacterial species able to prevent facultative and obligate anaerobes outnumber in vaginal microbiota maintaining healthy microbial homeostasis. Several mechanisms underlie the protection exerted by lactobacilli: competition for nutrients and tissue adherence, reduction of the vaginal pH, modulation of immunity, and production of bioactive compounds. Among bioactive factors of cervicovaginal mucosa, lactoferrin, an iron-binding cationic glycoprotein, is a multifunctional glycoprotein with antibacterial, antifungal, antiviral, and antiparasitic activities, recently emerging as an important modulator of inflammation. Lactobacilli and lactoferrin are largely under the influence of female hormones and of paracrine production of various cytokines. Lactoferrin is strongly increased in lower genital tract mucosal fluid of women affected by Neisseria gonorrheae, Chlamydia trachomatis, and Trichomonas vaginalis infections promoting both innate and adaptive immune responses. In vaginal dysbiosis characterized by low amounts of vaginal lactobacilli and increased levels of endogenous anaerobic bacteria, the increase in lactoferrin could act as an immune modulator assuming the role normally played by the healthy microbiota in vaginal mucosa. Then lactoferrin and lactobacilli may be considered as biomarkers of altered microbial homeostasis at vaginal level. Considering the shortage of effective treatments to counteract recurrent and/or antibiotic-resistant bacterial infections, the intravaginal administration of lactobacilli and lactoferrin could be a novel efficient therapeutic strategy and a valuable tool to restore mucosal immune homeostasis.
Collapse
Affiliation(s)
- Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Daniela Capobianco
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Elisa Schiavi
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Rosalba Paesano
- Department of Gynecological-Obstetric and Urological Sciences, University of Rome La Sapienza, Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
27
|
Abstract
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Sarah Jane Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
28
|
Foschi C, Salvo M, Cevenini R, Parolin C, Vitali B, Marangoni A. Vaginal Lactobacilli Reduce Neisseria gonorrhoeae Viability through Multiple Strategies: An in Vitro Study. Front Cell Infect Microbiol 2017; 7:502. [PMID: 29270390 PMCID: PMC5723648 DOI: 10.3389/fcimb.2017.00502] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022] Open
Abstract
The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae (GC) underline the need of “antibiotic-free” strategies for the control of gonorrhea. The aim of this study was to assess the anti-gonococcal activity of 14 vaginal Lactobacillus strains, belonging to different species (L. crispatus, L. gasseri, L. vaginalis), isolated from healthy pre-menopausal women. In particular, we performed “inhibition” experiments, evaluating the ability of both lactobacilli cells and culture supernatants in reducing GC viability, at two different contact times (7 and 60 min). First, we found that the acidic environment, associated to lactobacilli metabolism, is extremely effective in counteracting GC growth, in a pH- and time-dependent manner. Indeed, a complete abolishment of GC viability by lactobacilli supernatants was observed only for pH values < 4.0, even at short contact times. On the contrary, for higher pH values, no 100%-reduction of GC growth was reached at any contact time. Experiments with organic/inorganic acid solutions confirmed the strict correlation between the pH levels and the anti-gonococcal effect. In this context, the presence of lactate seemed to be crucial for the anti-gonococcal activity, especially for pH values in the range 4.4–5.3, indicating that the presence of H+ ions is necessary but not sufficient to kill gonococci. Moreover, experiments with buffered supernatants led to exclude a direct role in the GC killing by other bioactive molecules produced by lactobacilli. Second, we noticed that lactobacilli cells are able to reduce GC viability and to co-aggregate with gonococci. In this context, we demonstrated that released-surface components with biosurfactant properties, isolated from “highly-aggregating” lactobacilli, could affect GC viability. The antimicrobial potential of biosurfactants isolated from lactobacilli against pathogens has been largely investigated, but this is the first report about a possible use of these molecules in order to counteract GC infectivity. In conclusion, we identified specific Lactobacillus strains, mainly belonging to L. crispatus species, able to counteract GC viability through multiple mechanisms. These L. crispatus strains could represent a new potential probiotic strategy for the prevention of GC infections in women.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Melissa Salvo
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Roberto Cevenini
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Kamińska D, Gajecka M. Is the role of human female reproductive tract microbiota underestimated? Benef Microbes 2017; 8:327-343. [PMID: 28504576 DOI: 10.3920/bm2015.0174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An issue that is currently undergoing extensive study is the influence of human vaginal microbiota (VMB) on the health status of women and their neonates. Healthy women are mainly colonised with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners; however, other bacteria may be elements of the VMB, particularly in women with bacterial vaginosis. The implementation of culture-independent molecular methods in VMB characterisation, especially next-generation sequencing, have provided new information regarding bacterial diversity in the vagina, revealing a large number of novel, fastidious, and/or uncultivated bacterial species. These molecular studies have contributed new insights regarding the role of bacterial community composition. In this study, we discuss recent findings regarding the reproductive tract microbiome. Not only bacteria but also viruses and fungi constitute important components of the reproductive tract microbiome. We focus on aspects related to the impact of the maternal microbiome on foetal development, as well as the establishment of the neonatal microbiomes, including the placenta microbiome, and the haematogenous source of intrauterine infection. We also discuss whether the role of the vaginal microbiome is currently understood and appreciated.
Collapse
Affiliation(s)
- D Kamińska
- 1 Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
| | - M Gajecka
- 1 Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland.,2 Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
30
|
Donders GGG, Bellen G, Grinceviciene S, Ruban K, Vieira-Baptista P. Aerobic vaginitis: no longer a stranger. Res Microbiol 2017; 168:845-858. [PMID: 28502874 DOI: 10.1016/j.resmic.2017.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Aerobic vaginitis (AV) is the name given in 2002 to a vaginal infectious entity which was not recognized as such before. It is characterized by abnormal (dysbiotic) vaginal microflora containing aerobic, enteric bacteria, variable levels of vaginal inflammation and deficient epithelial maturation. Although AV and bacterial vaginosis (BV) share some characteristics, such as a diminished number or absence of lactobacilli, increased discharge (fishy smelling in BV, while in severe forms of AV, a foul, rather rotten smell may be present) and increased pH (often more pronounced in AV), there are also striking differences between the two. There is no inflammation in women with BV, whereas the vagina of women with AV often appears red and edematous, and may even display small erosions or ulcerations. The color of the discharge in BV is usually whitish or gray and of a watery consistency, whereas in AV it is yellow to green and rather thick and mucoid. Women with BV do not have dyspareunia, while some women with severe AV do. Finally, the microscopic appearance differs in various aspects, such as the presence of leucocytes and parabasal or immature epithelial cells in AV and the absence of the granular aspect of the microflora, typical of BV. Despite all these differences, the distinction between AV and BV was not recognized in many former studies, leading to incomplete and imprecise diagnostic workouts and erroneous management of patients in both clinical and research settings. The prevalence of AV ranges between 7 and 12%, and is therefore less prevalent than BV. Although still largely undiagnosed, many researchers and clinicians increasingly take it into account as a cause of symptomatic vaginitis. AV can co-occur with other entities, such as BV and candidiasis. It can be associated with dyspareunia, sexually transmitted infections (such as human papilloma virus, human immunodeficiency virus, Trichomonas vaginalis and Chlamydia trachomatis), chorioamnionitis, fetal infection, preterm birth and cervical dysplasia. Many other possible pathological associations are currently under investigation. The diagnosis of AV is made using wet mount microscopy, ideally using phase contrast. An AV score is calculated, according to: lactobacillary grade, presence of inflammation, proportion of toxic leucocytes, characteristics of the microflora and presence of immature epithelial cells. To circumvent the hurdle of microscopic investigation, some groups have begun to develop nucleic-acid-based and enzymatic diagnostic tests, but the detailed information obtained with phase contrast microscopy is irreplaceable. The best treatment is not yet fully determined, but it must be tailored according to the microscopic findings and the patient's needs. There is a role for local estrogen therapy, corticosteroids, antimicrobials and probiotics. Further research will reveal more precise data on diagnosis, pathogenesis, management and prevention.
Collapse
Affiliation(s)
- Gilbert G G Donders
- Femicare vzw, Tienen, Belgium; Department of Obstetrics & Gynaecology, Antwerp University, Antwerp, Belgium.
| | | | - Svitrigaile Grinceviciene
- Femicare vzw, Tienen, Belgium; Vilnius University, Institute of Biotechnology, Department of Biothermodynamics and Drug Design, Vilnius, Lithuania
| | | | - Pedro Vieira-Baptista
- Department of Gynaecology and Obstetrics, Centro Hospitalar de São João, Porto, Portugal
| |
Collapse
|
31
|
The Application of Molecular Methods Towards an Understanding of the Role of the Vaginal Microbiome in Health and Disease. METHODS IN MICROBIOLOGY 2017. [DOI: 10.1016/bs.mim.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, Alonso R, Alamá P, Remohí J, Pellicer A, Ramon D, Simon C. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016; 215:684-703. [PMID: 27717732 DOI: 10.1016/j.ajog.2016.09.075] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/06/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. OBJECTIVE This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. STUDY DESIGN To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses. RESULTS When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates. CONCLUSION Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.
Collapse
|
33
|
Spurbeck RR, Harris PT, Raghunathan K, Arvidson DN, Arvidson CG. A Moonlighting Enolase from Lactobacillus gasseri does not Require Enzymatic Activity to Inhibit Neisseria gonorrhoeae Adherence to Epithelial Cells. Probiotics Antimicrob Proteins 2016; 7:193-202. [PMID: 25917402 DOI: 10.1007/s12602-015-9192-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Enolases are generally thought of as cytoplasmic enzymes involved in glycolysis and gluconeogenesis. However, several bacteria have active forms of enolase associated with the cell surface and these proteins are utilized for functions other than central metabolism. Recently, a surface-associated protein produced by Lactobacillus gasseri ATCC 33323 with homology to enolase was found to inhibit the adherence of the sexually transmitted pathogen, Neisseria gonorrhoeae, to epithelial cells in culture. Here, we show that the protein is an active enolase in vitro. A recombinantly expressed, C-terminal His-tagged version of the protein, His6-Eno3, inhibited gonococcal adherence. Assays utilizing inhibitors of enolase enzymatic activity showed that this inhibitory activity required the substrate-binding site to be in an open conformation; however, the enolase enzymatic activity of the protein was not necessary for inhibition of gonococcal adherence. An L. gasseri strain carrying an insertional mutation in eno3 was viable, indicating that eno3 is not an essential gene in L. gasseri 33323. This observation, along with the results of the enzyme assays, is consistent with reports that this strain encodes more than one enolase. Here we show that the three L. gasseri genes annotated as encoding an enolase are expressed. The L. gasseri eno3 mutant exhibited reduced, but not abolished, inhibition of gonococcal adherence, which supports the hypothesis that L. gasseri inhibition of gonococcal adherence is a multifactorial process.
Collapse
Affiliation(s)
- Rachel R Spurbeck
- The Genetics Program, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
34
|
Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 2015; 6:81. [PMID: 25859220 PMCID: PMC4373506 DOI: 10.3389/fphys.2015.00081] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies.
Collapse
Affiliation(s)
- Mariya I Petrova
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Elke Lievens
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Shweta Malik
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Nicole Imholz
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| |
Collapse
|
35
|
Huang B, Fettweis JM, Brooks JP, Jefferson KK, Buck GA. The changing landscape of the vaginal microbiome. Clin Lab Med 2014; 34:747-61. [PMID: 25439274 DOI: 10.1016/j.cll.2014.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deep sequence analysis of the vaginal microbiome is revealing an unexpected complexity that was not anticipated as recently as several years ago. The lack of clarity in the definition of a healthy vaginal microbiome, much less an unhealthy vaginal microbiome, underscores the need for more investigation of these phenomena. Some clarity may be gained by the careful analysis of the genomes of the specific bacteria in these women. Ongoing studies will clarify this process and offer relief for women with recurring vaginal maladies and hope for pregnant women to avoid the experience of preterm birth.
Collapse
Affiliation(s)
- Bernice Huang
- Department of Microbiology and Immunology, Center for the Study of Biological Complexity, 1101 East Marshall Street, PO Box 980678, Richmond, VA 23298, USA
| | - Jennifer M Fettweis
- Department of Microbiology and Immunology, Center for the Study of Biological Complexity, 1101 East Marshall Street, PO Box 980678, Richmond, VA 23298, USA
| | - J Paul Brooks
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, PO Box 843083, Richmond, VA 23284, USA
| | - Kimberly K Jefferson
- Department of Microbiology and Immunology, Center for the Study of Biological Complexity, 1101 East Marshall Street, PO Box 980678, Richmond, VA 23298, USA
| | - Gregory A Buck
- Department of Microbiology and Immunology, Center for the Study of Biological Complexity, 1101 East Marshall Street, PO Box 980678, Richmond, VA 23298, USA.
| |
Collapse
|
36
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
37
|
Pelzer ES, Allan JA, Theodoropoulos C, Ross T, Beagley KW, Knox CL. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles. PLoS One 2012; 7:e49965. [PMID: 23226503 PMCID: PMC3514270 DOI: 10.1371/journal.pone.0049965] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF) cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid) contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%). We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.
Collapse
Affiliation(s)
- Elise S Pelzer
- Institute of Health and Biomedical Innovation, Faculty of Science and Technology, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Nelson DE, Dong Q, Van Der Pol B, Toh E, Fan B, Katz BP, Mi D, Rong R, Weinstock GM, Sodergren E, Fortenberry JD. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS One 2012; 7:e36298. [PMID: 22606251 PMCID: PMC3350528 DOI: 10.1371/journal.pone.0036298] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/30/2012] [Indexed: 12/20/2022] Open
Abstract
Lactobacillus-dominated vaginal microbiotas are associated with reproductive health and STI resistance in women, whereas altered microbiotas are associated with bacterial vaginosis (BV), STI risk and poor reproductive outcomes. Putative vaginal taxa have been observed in male first-catch urine, urethral swab and coronal sulcus (CS) specimens but the significance of these observations is unclear. We used 16 S rRNA sequencing to characterize the microbiota of the CS and urine collected from 18 adolescent men over three consecutive months. CS microbiotas of most participants were more stable than their urine microbiotas and the composition of CS microbiotas were strongly influenced by circumcision. BV-associated taxa, including Atopobium, Megasphaera, Mobiluncus, Prevotella and Gemella, were detected in CS specimens from sexually experienced and inexperienced participants. In contrast, urine primarily contained taxa that were not abundant in CS specimens. Lactobacilllus and Streptococcus were major urine taxa but their abundance was inversely correlated. In contrast, Sneathia, Mycoplasma and Ureaplasma were only found in urine from sexually active participants. Thus, the CS and urine support stable and distinct bacterial communities. Finally, our results suggest that the penis and the urethra can be colonized by a variety of BV-associated taxa and that some of these colonizations result from partnered sexual activity.
Collapse
Affiliation(s)
- David E. Nelson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Qunfeng Dong
- Department of Biological Sciences, Department of Computer Science & Engineering, University of North Texas, Denton, Texas, United States of America
| | - Barbara Van Der Pol
- School of Public Health, Indiana University, Bloomington, Indiana, United States of America
| | - Evelyn Toh
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Baochang Fan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Barry P. Katz
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Deming Mi
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ruichen Rong
- Department of Biological Sciences, Department of Computer Science & Engineering, University of North Texas, Denton, Texas, United States of America
| | - George M. Weinstock
- Department of Genetics, Washington University St. Louis School of Medicine, St. Louis, Missouri, United States of America
| | - Erica Sodergren
- Department of Genetics, Washington University St. Louis School of Medicine, St. Louis, Missouri, United States of America
| | - J. Dennis Fortenberry
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
39
|
Fettweis JM, Serrano MG, Girerd PH, Jefferson KK, Buck GA. A new era of the vaginal microbiome: advances using next-generation sequencing. Chem Biodivers 2012; 9:965-76. [PMID: 22589096 PMCID: PMC3517151 DOI: 10.1002/cbdv.201100359] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Until recently, bacterial species that inhabit the human vagina have been primarily studied using organism-centric approaches. Understanding how these bacterial species interact with each other and the host vaginal epithelium is essential for a more complete understanding of vaginal health. Molecular approaches have already led to the identification of uncultivated bacterial taxa associated with bacterial vaginosis. Here, we review recent studies of the vaginal microbiome and discuss how culture-independent approaches, such as applications of next-generation sequencing, are advancing the field and shifting our understanding of how vaginal health is defined. This work may lead to improved diagnostic tools and treatments for women who suffer from, or are at risk for, vaginal imbalances, pregnancy complications, and sexually acquired infections. These approaches may also transform our understanding of how host genetic factors, physiological conditions (e.g., menopause), and environmental exposures (e.g., smoking, antibiotic usage) influence the vaginal microbiome.
Collapse
Affiliation(s)
- Jennifer M Fettweis
- Department of Microbiology and Immunology, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 E. Marshall Street, P.O. Box 980678, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
40
|
Nagalingam NA, Lynch SV. Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2012; 18:968-84. [PMID: 21936031 DOI: 10.1002/ibd.21866] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/16/2022]
Abstract
Studying the role of the human microbiome as it relates to human health status has revolutionized our view of microbial community contributions to a large number of diseases, particularly chronic inflammatory disorders. The lower gastrointestinal (GI) tract houses trillions of microbial cells representing a large diversity of species in relatively well-defined phylogenetic ratios that are associated with maintenance of key aspects of host physiology and immune homeostasis. It is not surprising, therefore, that many GI inflammatory diseases, including inflammatory bowel disease (IBD), are associated with substantial changes in the composition of these microbial assemblages, either as a cause or consequence of host inflammatory response. Here we review current knowledge in the emerging field of human microbiome research as it relates to IBD, specifically focusing on Crohn's disease (CD) and ulcerative colitis (UC). We discuss bacteriotherapeutic efforts to restore GI microbial assemblage integrity via probiotic supplementation of IBD patients, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Nabeetha A Nagalingam
- Colitis and Crohn's Disease Microbiome Research Core, Division of Gastroenterology, University of California, San Francisco, Calfornia 94143-0538, USA
| | | |
Collapse
|
41
|
Rose WA, McGowin CL, Spagnuolo RA, Eaves-Pyles TD, Popov VL, Pyles RB. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures. PLoS One 2012; 7:e32728. [PMID: 22412914 PMCID: PMC3296736 DOI: 10.1371/journal.pone.0032728] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/01/2012] [Indexed: 12/29/2022] Open
Abstract
The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives.
Collapse
Affiliation(s)
- William A. Rose
- Department of Microbiology and Immunology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Chris L. McGowin
- Department of Pathology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Rae Ann Spagnuolo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tonyia D. Eaves-Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Richard B. Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Glaveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Spurbeck RR, Arvidson CG. Lactobacilli at the front line of defense against vaginally acquired infections. Future Microbiol 2011; 6:567-82. [PMID: 21585263 DOI: 10.2217/fmb.11.36] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Probiotics are microorganisms that provide a health benefit to the host and are promoted as alternatives for the treatment and prevention of infectious diseases and other conditions. One of the most rapidly developing areas of probiotic research is in the management of vaginally acquired infections. Several Lactobacillus species produce compounds that kill or inhibit the growth of vaginally acquired pathogens. Other lactobacilli reduce the adherence of pathogens to urogenital epithelial cells in culture. This article discusses the mechanisms by which vaginal lactobacilli prevent pathogen colonization of the urogenital tract, and potential mechanisms that warrant investigation. Animal models and clinical studies, while limited, are discussed with the idea that these are the next critical steps to advance the study of probiotics for the treatment and prevention of vaginally acquired infections.
Collapse
Affiliation(s)
- Rachel R Spurbeck
- Genetics Program, Michigan State University, Michigan State University, East Lansing, 48824-1101, USA
| | | |
Collapse
|
43
|
Mailänder-Sánchez D, Wagener J, Schaller M. Potential role of probiotic bacteria in the treatment and prevention of localised candidosis. Mycoses 2011; 55:17-26. [PMID: 21672043 DOI: 10.1111/j.1439-0507.2010.01967.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The extensive use of immunosuppressive therapies in recent years has increased the number of patients prone to or actually suffering from localised candidosis. As Candida species gain increasing resistance towards common antifungal drugs, new strategies are needed to prevent and treat infections caused by these pathogens. Probiotic bacteria have been in vogue in the past two decades. More and more dairy products containing such organisms offer promising potential beneficial effects on human health and well-being. Because of the ability of probiotic bacteria to inhibit the growth of pathogens and to modulate human immune responses, these bacteria could provide new possibilities in antifungal therapy. We summarise the recent findings concerning the usefulness of probiotic treatment in localised candidosis, as well as discussing possible risks of probiotic treatment and highlighting the molecular mechanisms that are believed to contribute to probiotic effects.
Collapse
|
44
|
Dong Q, Nelson DE, Toh E, Diao L, Gao X, Fortenberry JD, Van Der Pol B. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS One 2011; 6:e19709. [PMID: 21603636 PMCID: PMC3094389 DOI: 10.1371/journal.pone.0019709] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/11/2011] [Indexed: 02/07/2023] Open
Abstract
Urine is the CDC-recommended specimen for STI testing. It was unknown if the
bacterial communities (microbiomes) in urine reflected those in the distal male
urethra. We compared microbiomes of 32 paired urine and urethral swab specimens
obtained from adult men attending an STD clinic, by 16S rRNA PCR and deep
pyrosequencing. Microbiomes of urine and swabs were remarkably similar,
regardless of STI status of the subjects. Thus, urine can be used to
characterize urethral microbiomes when swabs are undesirable, such as in
population-based studies of the urethral microbiome or where multiple sampling
of participants is required.
Collapse
Affiliation(s)
- Qunfeng Dong
- Department of Biology, University of North
Texas, Denton, Texas, United States of America
- Department of Computer Science and
Engineering, University of North Texas, Denton, Texas, United States of
America
| | - David E. Nelson
- Department of Biology, Indiana University,
Bloomington, Indiana, United States of America
- * E-mail: (BVDP); (DEN)
| | - Evelyn Toh
- Department of Biology, Indiana University,
Bloomington, Indiana, United States of America
| | - Lixia Diao
- Department of Bioinformatics and Computational
Biology, M.D. Anderson Cancer Center, University of Texas, Houston, Texas,
United States of America
| | - Xiang Gao
- Department of Biology, University of North
Texas, Denton, Texas, United States of America
| | - J. Dennis Fortenberry
- Section of Adolescent Medicine, Department of
Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United
States of America
| | - Barbara Van Der Pol
- Indiana University School of Public Health,
Bloomington, Indiana, United States of America
- Indiana University School of Medicine,
Indianapolis, Indiana, United States of America
- * E-mail: (BVDP); (DEN)
| |
Collapse
|
45
|
Marrazzo JM. Interpreting the epidemiology and natural history of bacterial vaginosis: are we still confused? Anaerobe 2011; 17:186-90. [PMID: 21524714 DOI: 10.1016/j.anaerobe.2011.03.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/06/2011] [Accepted: 03/11/2011] [Indexed: 11/28/2022]
Abstract
Bacterial vaginosis (BV) is a common cause of vaginitis and increases women's risk of pelvic inflammatory disease, adverse pregnancy outcomes, and risk of STD/HIV acquisition. The etiology of BV is unclear, though it is believed to involve loss of vaginal hydrogen peroxide-producing lactobacilli and acquisition of complex bacterial communities that include many fastidious BV-associated bacteria (BVAB) that have recently been detected using PCR methods. Treatment failure (persistence) is common, and may be facilitated by unprotected sex. Potential contributions to BV and BV persistence include (1) sexual partners as a reservoir for BVAB; (2) specific sexual practices, including male partners' condom use; and (3) the composition of the vaginal microbiota involved in BV. Specific BVAB in the Clostridiales order may predict BV persistence when detected pre-treatment, and have been detected in men whose female partners have BV. BVAB may be associated with unprotected sexual behavior and failure of BV to resolve in women, supporting the hypothesis that BVAB colonization of male genitalia may serve as a reservoir for re-infection of female partners. Moreover, specific sexual practices may favor vaginal colonization with certain BVAB that have been associated with persistence. This review provides background on BV, and discusses the epidemiologic and microbiologic data to support a role for acquisition of BVAB and how this process might differ among subsets of women.
Collapse
Affiliation(s)
- Jeanne M Marrazzo
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, 98104, United States.
| |
Collapse
|
46
|
Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect Immun 2010; 78:3103-11. [PMID: 20385752 DOI: 10.1128/iai.01200-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High numbers of lactobacilli in the vaginal tract have been correlated with a decreased risk of infection by the sexually transmitted pathogen Neisseria gonorrhoeae. We have previously shown that Lactobacillus jensenii, one of the most prevalent microorganisms in the healthy human vaginal tract, can inhibit gonococcal adherence to epithelial cells in culture. Here we examined the role of the epithelial cells and the components of L. jensenii involved in the inhibition of gonococcal adherence. L. jensenii inhibited the adherence of gonococci to glutaraldehyde-fixed epithelial cells like it inhibited the adherence of gonococci to live epithelial cells, suggesting that the epithelial cells do not need to be metabolically active for the inhibition to occur. In addition, methanol-fixed L. jensenii inhibited gonococcal adherence to live epithelial cells, indicating that L. jensenii uses a constitutive component to inhibit gonococcal interactions with epithelial cells. Proteinase K treatment of methanol-fixed lactobacilli eliminated the inhibitory effect, suggesting that the inhibitory component contains protein. Released surface components (RSC) isolated from L. jensenii were found to contain at least two inhibitory components, both of which are protease sensitive. Using anion-exchange and size exclusion chromatography, an inhibitory protein which exhibits significant similarity to the enzyme enolase was isolated. A recombinant His6-tagged version of this protein was subsequently produced and shown to inhibit gonococcal adherence to epithelial cells in a dose-dependent manner.
Collapse
|
47
|
Genetic characterization of the nucleotide excision repair system of Neisseria gonorrhoeae. J Bacteriol 2009; 192:665-73. [PMID: 19933360 DOI: 10.1128/jb.01018-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide excision repair (NER) is universally used to recognize and remove many types of DNA damage. In eubacteria, the NER system typically consists of UvrA, UvrB, UvrC, the UvrD helicase, DNA polymerase I, and ligase. In addition, when DNA damage blocks transcription, transcription-repair coupling factor (TRCF), the product of the mfd gene, recruits the Uvr complex to repair the damage. Previous work using selected mutants and assays have indicated that pathogenic Neisseria spp. carry a functional NER system. In order to comprehensively examine the role of NER in Neisseria gonorrhoeae DNA recombination and repair processes, the predicted NER genes (uvrA, uvrB, uvrC, uvrD, and mfd) were each disrupted by a transposon insertion, and the uvrB and uvrD mutants were complemented with a copy of each gene in an ectopic locus. Each uvr mutant strain was highly sensitive to UV irradiation and also showed sensitivity to hydrogen peroxide killing, confirming that all of the NER genes in N. gonorrhoeae are functional. The effect of RecA expression on UV survival was minor in uvr mutants but much larger in the mfd mutant. All of the NER mutants demonstrated wild-type levels of pilin antigenic variation and DNA transformation. However, the uvrD mutant exhibited higher frequencies of PilC-mediated pilus phase variation and spontaneous mutation, a finding consistent with a role for UvrD in mismatch repair. We conclude that NER functions are conserved in N. gonorrhoeae and are important for the DNA repair capabilities of this strict human pathogen.
Collapse
|
48
|
Probiotics and gastrointestinal infections. Interdiscip Perspect Infect Dis 2009; 2008:290769. [PMID: 19277100 PMCID: PMC2648624 DOI: 10.1155/2008/290769] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/27/2008] [Indexed: 01/24/2023] Open
Abstract
Gastrointestinal infections are a major cause of morbidity and mortality worldwide, particularly in developing countries. The use of probiotics to prevent and treat a variety of diarrheal diseases has gained favor in recent years. Examples where probiotics have positively impacted gastroenteritis will be highlighted. However, the overall efficacy of these treatments and the mechanisms by which probiotics ameliorate gastrointestinal infections are mostly unknown. We will discuss possible mechanisms by which probiotics could have a beneficial impact by enhancing the prevention or treatment of diarrheal diseases.
Collapse
|
49
|
Adhesion of human probiotic Lactobacillus rhamnosus to cervical and vaginal cells and interaction with vaginosis-associated pathogens. Infect Dis Obstet Gynecol 2009; 2008:549640. [PMID: 19190778 PMCID: PMC2631649 DOI: 10.1155/2008/549640] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/04/2008] [Accepted: 12/04/2008] [Indexed: 11/18/2022] Open
Abstract
Objectives. The ability of a probiotic Lactobacillus rhamnosus strain (Lcr35) to adhere to cervical and vaginal cells and to affect the viability of two main vaginosis-associated pathogens, Prevotella bivia, Gardnerella vaginalis, as well as Candida albicans was investigated.
Methods. Adhesion ability was determined in vitro with immortalized epithelial cells from the endocervix, ectocervix, and vagina. Coculture experiments were performed to count viable pathogens cells in the presence of Lcr35.
Results. Lcr35 was able to specifically and rapidly adhere to the three cell lines. In coculture assays, a decrease in pathogen cell division rate was observed as from 4 hours of incubation and bactericidal activity after a longer period of incubation, mostly with P. bivia. Conclusion. The ability of Lcr35 to adhere to cervicovaginal cells and its antagonist activities against vaginosis-associated pathogens suggest that this probiotic strain is a promising candidate for use in therapy.
Collapse
|