1
|
Farzand R, Kimani MW, Mourkas E, Jama A, Clark JL, De Ste Croix M, Monteith WM, Lucidarme J, Oldfield NJ, Turner DPJ, Borrow R, Martinez-Pomares L, Sheppard SK, Bayliss CD. High-throughput phenotype-to-genotype testing of meningococcal carriage and disease isolates detects genetic determinants of disease-relevant phenotypic traits. mBio 2024; 15:e0305924. [PMID: 39475240 PMCID: PMC11633189 DOI: 10.1128/mbio.03059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Genome-wide association studies (GWAS) with binary or single phenotype data have successfully identified disease-associated genotypes and determinants of antimicrobial resistance. We describe a novel phenotype-to-genotype approach for a major bacterial pathogen that involves simultaneously testing for associations among multiple disease-related phenotypes and linkages between phenotypic variation and genetic determinants. High-throughput assays quantified variation among 163 Neisseria meningitidis serogroup W ST-11 clonal complex isolates for 11 phenotypic traits. A comparison of carriage and two disease subgroups detected significant differences between groups for eight phenotypic traits. Candidate genotypic testing indicated that indels in csw, a capsular biosynthesis gene, were associated with reduced survival in antibody-depleted heat-inactivated serum. GWAS testing detected 341 significant genetic variants (3 single-nucleotide polymorphisms and 338 unitigs) across all traits except serum bactericidal antibody-depleted assays. Growth traits were associated with variants of capsular biosynthesis genes, carbonic anhydrase, and an iron-uptake system while adhesion-linked variation was in pilC2, marR, and mutS. Multiple phase variation states or combinatorial phasotypes were associated with significant differences in multiple phenotypes. Controlling for group effects through regression and recursive random forest approaches detected group-independent effects for nalP with biofilm formation and fetA with a growth trait. Through random forest testing, nine phenotypes were weakly predictive of MenW:cc11 sub-lineage, original or 2013, for disease isolates while three characteristics separated carriage and disease isolates with >80% accuracy. This study demonstrates the power of combining high-throughput phenotypic testing of pathogenically relevant isolate collections with genomics for identifying genetic determinants of specific disease-relevant phenotypes and the pathobiology of microbial pathogens.IMPORTANCENext-generation sequencing technologies have led to the creation of extensive microbial genome sequence databases for several bacterial pathogens. Mining of these databases is now imperative for unlocking the maximum benefits of these resources. We describe a high-throughput methodology for detecting associations between phenotypic variation in multiple disease-relevant traits and a range of genetic determinants for Neisseria meningitidis, a major causative agent of meningitis and septicemia. Phenotypic variation in 11 disease-related traits was determined for 163 isolates of the hypervirulent ST-11 lineage and linked to specific single-nucleotide polymorphisms, short sequence variants, and phase variation states. Application of machine learning algorithms to our data outputs identified combinatorial phenotypic traits and genetic variants predictive of a disease association. This approach overcomes the limitations of generic meta-data, such as disease versus carriage, and provides an avenue to explore the multi-faceted nature of bacterial disease, carriage, and transmissibility traits.
Collapse
Affiliation(s)
- Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Mercy W. Kimani
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Evangelos Mourkas
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abdullahi Jama
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jack L. Clark
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - William M. Monteith
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Milner Centre of Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | - Neil J. Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P. J. Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester, United Kingdom
| | | | | | - Christopher D. Bayliss
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Florek LC, Lin X, Lin YC, Lin MH, Chakraborty A, Price-Whelan A, Tong L, Rahme L, Dietrich LEP. The L-lactate dehydrogenases of Pseudomonas aeruginosa are conditionally regulated but both contribute to survival during macrophage infection. mBio 2024; 15:e0085224. [PMID: 39162563 PMCID: PMC11389411 DOI: 10.1128/mbio.00852-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it can serve as a carbon source for P. aeruginosa in the diverse settings that it inhabits. In this study, we evaluate the production and use of two redundant P. aeruginosa L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and ɑ-hydroxybutyrate, which, like lactate, are ɑ-hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays reveal that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.IMPORTANCEPseudomonas aeruginosa is a major cause of lung infections in people with cystic fibrosis, of hospital-acquired infections, and of wound infections. It consumes L-lactate, which is found at substantial levels in human blood and tissues. In this study, we investigated the spatial regulation of two redundant enzymes, called LldD and LldA, which enable L-lactate metabolism in P. aeruginosa biofilms. We uncovered mechanisms and identified compounds that control the preference of P. aeruginosa for LldD versus LldA. We also showed that both enzymes contribute to its ability to survive within macrophages, a behavior that is thought to augment the chronicity and recalcitrance of infections. Our findings shed light on a key metabolic strategy used by P. aeruginosa and have the potential to inform the development of therapies targeting bacterial metabolism during infection.
Collapse
Affiliation(s)
- Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Xi Lin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional responses of Neisseria gonorrhoeae to glucose and lactate: implications for resistance to oxidative damage and biofilm formation. mBio 2024; 15:e0176124. [PMID: 39012148 PMCID: PMC11323468 DOI: 10.1128/mbio.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding how bacteria adapt to different environmental conditions is crucial for advancing knowledge regarding pathogenic mechanisms that operate during infection as well as efforts to develop new therapeutic strategies to cure or prevent infections. Here, we investigated the transcriptional response of Neisseria gonorrhoeae, the causative agent of gonorrhea, to L-lactate and glucose, two important carbon sources found in the host environment. Our study revealed extensive transcriptional changes that gonococci make in response to L-lactate, with 37% of the gonococcal transcriptome being regulated, compared to only 9% by glucose. We found that L-lactate induces a transcriptional program that would negatively impact iron transport, potentially limiting the availability of labile iron, which would be important in the face of the multiple hydrogen peroxide attacks encountered by gonococci during its lifecycle. Furthermore, we found that L-lactate-mediated transcriptional response promoted aerobic respiration and dispersal of biofilms, contrasting with an anaerobic condition previously reported to favor biofilm formation. Our findings suggest an intricate interplay between carbon metabolism, iron homeostasis, biofilm formation, and stress response in N. gonorrhoeae, providing insights into its pathogenesis and identifying potential therapeutic targets.IMPORTANCEGonorrhea is a prevalent sexually transmitted infection caused by the human pathogen Neisseria gonorrhoeae, with ca. 82 million cases reported worldwide annually. The rise of antibiotic resistance in N. gonorrhoeae poses a significant public health threat, highlighting the urgent need for alternative treatment strategies. By elucidating how N. gonorrhoeae responds to host-derived carbon sources such as L-lactate and glucose, this study offers insights into the metabolic adaptations crucial for bacterial survival and virulence during infection. Understanding these adaptations provides a foundation for developing novel therapeutic approaches targeting bacterial metabolism, iron homeostasis, and virulence gene expression. Moreover, the findings reported herein regarding biofilm formation and L-lactate transport and metabolism contribute to our understanding of N. gonorrhoeae pathogenesis, offering potential avenues for preventing and treating gonorrhea infections.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
4
|
Florek LC, Lin X, Lin YC, Lin MH, Chakraborty A, Price-Whelan A, Tong L, Rahme L, Dietrich LE. The L-lactate dehydrogenases of Pseudomonas aeruginosa are conditionally regulated but both contribute to survival during macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586142. [PMID: 38562866 PMCID: PMC10983889 DOI: 10.1101/2024.03.21.586142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it is available to serve as a carbon source for P. aeruginosa in the diverse settings it inhabits. Here, we evaluate P. aeruginosa's production and use of its redundant L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and - hydroxybutyrate, which, like lactate, are -hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays revealed that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.
Collapse
Affiliation(s)
- Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Xi Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan 112
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
5
|
Potter AD, Criss AK. Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis. Emerg Top Life Sci 2024; 8:15-28. [PMID: 37144661 PMCID: PMC10625648 DOI: 10.1042/etls20220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is a human-adapted pathogen that does not productively infect other organisms. The ongoing relationship between N. gonorrhoeae and the human host is facilitated by the exchange of nutrient resources that allow for N. gonorrhoeae growth in the human genital tract. What N. gonorrhoeae 'eats' and the pathways used to consume these nutrients have been a topic of investigation over the last 50 years. More recent investigations are uncovering the impact of N. gonorrhoeae metabolism on infection and inflammatory responses, the environmental influences driving N. gonorrhoeae metabolism, and the metabolic adaptations enabling antimicrobial resistance. This mini-review is an introduction to the field of N. gonorrhoeae central carbon metabolism in the context of pathogenesis. It summarizes the foundational work used to characterize N. gonorrhoeae central metabolic pathways and the effects of these pathways on disease outcomes, and highlights some of the most recent advances and themes under current investigation. This review ends with a brief description of the current outlook and technologies under development to increase understanding of how the pathogenic potential of N. gonorrhoeae is enabled by metabolic adaptation.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
6
|
Potter AD, Baiocco CM, Papin JA, Criss AK. Transcriptome-guided metabolic network analysis reveals rearrangements of carbon flux distribution in Neisseria gonorrhoeae during neutrophil co-culture. mSystems 2023; 8:e0126522. [PMID: 37387581 PMCID: PMC10470122 DOI: 10.1128/msystems.01265-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
The ability of bacterial pathogens to metabolically adapt to the environmental conditions of their hosts is critical to both colonization and invasive disease. Infection with Neisseria gonorrhoeae (the gonococcus, Gc) is characterized by the influx of neutrophils [polymorphonuclear leukocytes (PMNs)], which fail to clear the bacteria and make antimicrobial products that can exacerbate tissue damage. The inability of the human host to clear Gc infection is particularly concerning in light of the emergence of strains that are resistant to all clinically recommended antibiotics. Bacterial metabolism represents a promising target for the development of new therapeutics against Gc. Here, we generated a curated genome-scale metabolic network reconstruction (GENRE) of Gc strain FA1090. This GENRE links genetic information to metabolic phenotypes and predicts Gc biomass synthesis and energy consumption. We validated this model with published data and in new results reported here. Contextualization of this model using the transcriptional profile of Gc exposed to PMNs revealed substantial rearrangements of Gc central metabolism and induction of Gc nutrient acquisition strategies for alternate carbon source use. These features enhanced the growth of Gc in the presence of neutrophils. From these results, we conclude that the metabolic interplay between Gc and PMNs helps define infection outcomes. The use of transcriptional profiling and metabolic modeling to reveal new mechanisms by which Gc persists in the presence of PMNs uncovers unique aspects of metabolism in this fastidious bacterium, which could be targeted to block infection and thereby reduce the burden of gonorrhea in the human population. IMPORTANCE The World Health Organization designated Gc as a high-priority pathogen for research and development of new antimicrobials. Bacterial metabolism is a promising target for new antimicrobials, as metabolic enzymes are widely conserved among bacterial strains and are critical for nutrient acquisition and survival within the human host. Here we used genome-scale metabolic modeling to characterize the core metabolic pathways of this fastidious bacterium and to uncover the pathways used by Gc during culture with primary human immune cells. These analyses revealed that Gc relies on different metabolic pathways during co-culture with human neutrophils than in rich media. Conditionally essential genes emerging from these analyses were validated experimentally. These results show that metabolic adaptation in the context of innate immunity is important to Gc pathogenesis. Identifying the metabolic pathways used by Gc during infection can highlight new therapeutic targets for drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
The source of carbon and nitrogen differentially affects the survival of Neisseria meningitidis in macrophages and epithelial cells. Arch Microbiol 2022; 204:404. [PMID: 35723778 DOI: 10.1007/s00203-022-03037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Neisseria meningitidis is a commensal of human nasopharynx which under certain unidentified conditions could lead to fulminant meningitis or sepsis. Availability of nutrients is essential for bacterial growth and virulence. The metabolic adaptations allow N. meningitidis to utilize host resources, colonize and cause virulence functions which are a crucial for the invasive infection. During colonization meningococci encounters a range of microenvironments involving fluctuations in the availability of carbon and nitrogen source. Therefore, the characterization of virulence factors of N. meningitidis under different microenvironmental conditions is a prime requisite to understand pathogenesis; however, the role of nutrients is not well understood. Here, we explore the expression of virulence phenotype leading to symptomatic behaviour as affected by available carbon and nitrogen sources. We evaluate the effect of carbon or nitrogen source on growth, adhesion to epithelial cells, macrophage infectivity, capsule formation and virulence gene expression of N. meningitidis. It was found that lactate, pyruvate, and acetate facilitate survival of N. meningitidis in macrophages. While in epithelial cells, the survival of N. meningitidis is negatively affected by the presence of lactate and pyruvate.
Collapse
|
8
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Transcriptional regulation of a gonococcal gene encoding a virulence factor (L-lactate permease). PLoS Pathog 2019; 15:e1008233. [PMID: 31860664 PMCID: PMC6957213 DOI: 10.1371/journal.ppat.1008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/13/2020] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
GdhR is a GntR-type regulator of Neisseria gonorrhoeae encoded by a gene (gdhR) belonging to the MtrR regulon, which comprises multiple genes required for antibiotic resistance such as the mtrCDE efflux pump genes. In previous work we showed that loss of gdhR results in enhanced gonococcal fitness in a female mouse model of lower genital tract infection. Here, we used RNA-Seq to perform a transcriptional profiling study to determine the GdhR regulon. GdhR was found to regulate the expression of 2.3% of all the genes in gonococcal strain FA19, of which 39 were activated and 11 were repressed. Within the GdhR regulon we found that lctP, which encodes a unique L-lactate transporter and has been associated with gonococcal pathogenesis, was the highest of GdhR-repressed genes. By using in vitro transcription and DNase I footpriting assays we mapped the lctP transcriptional start site (TSS) and determined that GdhR directly inhibits transcription by binding to an inverted repeat sequence located 9 bases downstream of the lctP TSS. Epistasis analysis revealed that, while loss of lctP increased susceptibility of gonococci to hydrogen peroxide (H2O2) the loss of gdhR enhanced resistance; however, this GdhR-endowed property was reversed in a double gdhR lctP null mutant. We assessed the effect of different carbon sources on lctP expression and found that D-glucose, but not L-lactate or pyruvate, repressed lctP expression within a physiological concentration range but in a GdhR-independent manner. Moreover, we found that adding glucose to the medium enhanced susceptibility of gonococci to hydrogen peroxide. We propose a model for the role of lctP regulation via GdhR and glucose in the pathogenesis of N. gonorrhoeae.
Collapse
|
10
|
Yung YP, McGill SL, Chen H, Park H, Carlson RP, Hanley L. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 2019; 5:31. [PMID: 31666981 PMCID: PMC6814747 DOI: 10.1038/s41522-019-0104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
Microorganisms enhance fitness by prioritizing catabolism of available carbon sources using a process known as carbon catabolite repression (CCR). Planktonically grown Pseudomonas aeruginosa is known to prioritize the consumption of organic acids including lactic acid over catabolism of glucose using a CCR strategy termed "reverse diauxie." P. aeruginosa is an opportunistic pathogen with well-documented biofilm phenotypes that are distinct from its planktonic phenotypes. Reverse diauxie has been described in planktonic cultures, but it has not been documented explicitly in P. aeruginosa biofilms. Here a combination of exometabolomics and label-free proteomics was used to analyze planktonic and biofilm phenotypes for reverse diauxie. P. aeruginosa biofilm cultures preferentially consumed lactic acid over glucose, and in addition, the cultures catabolized the substrates completely and did not exhibit the acetate secreting "overflow" metabolism that is typical of many model microorganisms. The biofilm phenotype was enabled by changes in protein abundances, including lactate dehydrogenase, fumarate hydratase, GTP cyclohydrolase, L-ornithine N(5)-monooxygenase, and superoxide dismutase. These results are noteworthy because reverse diauxie-mediated catabolism of organic acids necessitates a terminal electron acceptor like O2, which is typically in low supply in biofilms due to diffusion limitation. Label-free proteomics identified dozens of proteins associated with biofilm formation including 16 that have not been previously reported, highlighting both the advantages of the methodology utilized here and the complexity of the proteomic adaptation for P. aeruginosa biofilms. Documenting the reverse diauxic phenotype in P. aeruginosa biofilms is foundational for understanding cellular nutrient and energy fluxes, which ultimately control growth and virulence.
Collapse
Affiliation(s)
- Yeni P. Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - S. Lee McGill
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Hui Chen
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Heejoon Park
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Ross P. Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
11
|
Wang Y, Xiao D, Liu Q, Zhang Y, Hu C, Sun J, Yang C, Xu P, Ma C, Gao C. Two NAD-independent l-lactate dehydrogenases drive l-lactate utilization in Pseudomonas aeruginosa PAO1. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:569-575. [PMID: 30066495 DOI: 10.1111/1758-2229.12666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas aeruginosa often establishes a chronic infection in the airways of patients with cystic fibrosis (CF). l-Lactate is the most abundant carbon source in the CF sputum, and l-lactate utilization may be important for P. aeruginosa to survive in the lungs of CF patients. In this study, the key enzymes involved in l-lactate utilization by P. aeruginosa PAO1 were characterized using the synthetic CF sputum medium (SCFM). A highly conserved membrane-bound NAD-independent l-lactate dehydrogenase (l-iLDH) encoded by lldD (PA4771) and a novel flavin-containing membrane-bound l-iLDH encoded by lldA (PA2382) were both found to contribute to l-lactate utilization by P. aeruginosa PAO1. In addition, an lldD and lldA double mutant was incapable of growing in a medium containing l-lactate as the sole carbon source. This study clarifies the mechanism and importance of l-lactate catabolism, and demonstrates the first Pseudomonas spp. expressing two l-lactate-oxidizing enzymes.
Collapse
Affiliation(s)
- Yujiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, People's Republic of China
| | - Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Qiuyuan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Yipeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunxia Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Jinkai Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
12
|
Foschi C, Salvo M, Cevenini R, Parolin C, Vitali B, Marangoni A. Vaginal Lactobacilli Reduce Neisseria gonorrhoeae Viability through Multiple Strategies: An in Vitro Study. Front Cell Infect Microbiol 2017; 7:502. [PMID: 29270390 PMCID: PMC5723648 DOI: 10.3389/fcimb.2017.00502] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022] Open
Abstract
The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae (GC) underline the need of “antibiotic-free” strategies for the control of gonorrhea. The aim of this study was to assess the anti-gonococcal activity of 14 vaginal Lactobacillus strains, belonging to different species (L. crispatus, L. gasseri, L. vaginalis), isolated from healthy pre-menopausal women. In particular, we performed “inhibition” experiments, evaluating the ability of both lactobacilli cells and culture supernatants in reducing GC viability, at two different contact times (7 and 60 min). First, we found that the acidic environment, associated to lactobacilli metabolism, is extremely effective in counteracting GC growth, in a pH- and time-dependent manner. Indeed, a complete abolishment of GC viability by lactobacilli supernatants was observed only for pH values < 4.0, even at short contact times. On the contrary, for higher pH values, no 100%-reduction of GC growth was reached at any contact time. Experiments with organic/inorganic acid solutions confirmed the strict correlation between the pH levels and the anti-gonococcal effect. In this context, the presence of lactate seemed to be crucial for the anti-gonococcal activity, especially for pH values in the range 4.4–5.3, indicating that the presence of H+ ions is necessary but not sufficient to kill gonococci. Moreover, experiments with buffered supernatants led to exclude a direct role in the GC killing by other bioactive molecules produced by lactobacilli. Second, we noticed that lactobacilli cells are able to reduce GC viability and to co-aggregate with gonococci. In this context, we demonstrated that released-surface components with biosurfactant properties, isolated from “highly-aggregating” lactobacilli, could affect GC viability. The antimicrobial potential of biosurfactants isolated from lactobacilli against pathogens has been largely investigated, but this is the first report about a possible use of these molecules in order to counteract GC infectivity. In conclusion, we identified specific Lactobacillus strains, mainly belonging to L. crispatus species, able to counteract GC viability through multiple mechanisms. These L. crispatus strains could represent a new potential probiotic strategy for the prevention of GC infections in women.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Melissa Salvo
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Roberto Cevenini
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Abstract
Neisseria meningitidis is a harmless commensal bacterium finely adapted to humans. Unfortunately, under “privileged” conditions, it adopts a “devious” lifestyle leading to uncontrolled behavior characterized by the unleashing of molecular weapons causing potentially lethal disease such as sepsis and acute meningitis. Indeed, despite the lack of a classic repertoire of virulence genes in
N. meningitidis separating commensal from invasive strains, molecular epidemiology and functional genomics studies suggest that carriage and invasive strains belong to genetically distinct populations characterized by an exclusive pathogenic potential. In the last few years, “omics” technologies have helped scientists to unwrap the framework drawn by
N. meningitidis during different stages of colonization and disease. However, this scenario is still incomplete and would benefit from the implementation of physiological tissue models for the reproduction of mucosal and systemic interactions
in vitro. These emerging technologies supported by recent advances in the world of stem cell biology hold the promise for a further understanding of
N. meningitidis pathogenesis.
Collapse
|
14
|
Huis In 't Veld RAG, Kramer G, van der Ende A, Speijer D, Pannekoek Y. The Hfq regulon of Neisseria meningitidis. FEBS Open Bio 2017; 7:777-788. [PMID: 28593133 PMCID: PMC5458458 DOI: 10.1002/2211-5463.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/07/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
The conserved RNA‐binding protein, Hfq, has multiple regulatory roles within the prokaryotic cell, including promoting stable duplex formation between small RNAs and mRNAs, and thus hfq deletion mutants have pleiotropic phenotypes. Previous proteome and transcriptome studies of Neisseria meningitidis have generated limited insight into differential gene expression due to Hfq loss. In this study, reversed‐phase liquid chromatography combined with data‐independent alternate scanning mass spectrometry (LC‐MSE) was utilized for rapid high‐resolution quantitative proteomic analysis to further elucidate the differentially expressed proteome of a meningococcal hfq deletion mutant. Whole‐cell lysates of N. meningitidis serogroup B H44/76 wild‐type (wt) and H44/76Δhfq (Δhfq) grown in liquid growth medium were subjected to tryptic digestion. The resulting peptide mixtures were separated by liquid chromatography (LC) prior to analysis by mass spectrometry (MSE). Differential expression was analyzed by Student's t‐test with control for false discovery rate (FDR). Reliable quantitation of relative expression comparing wt and Δhfq was achieved with 506 proteins (20%). Upon FDR control at q ≤ 0.05, 48 up‐ and 59 downregulated proteins were identified. From these, 81 were identified as novel Hfq‐regulated candidates, while 15 proteins were previously found by SDS/PAGE/MS and 24 with microarray analyses. Thus, using LC‐MSE we have expanded the repertoire of Hfq‐regulated proteins. In conjunction with previous studies, a comprehensive network of Hfq‐regulated proteins was constructed and differentially expressed proteins were found to be involved in a large variety of cellular processes. The results and comparisons with other gram‐negative model systems, suggest still unidentified sRNA analogs in N. meningitidis.
Collapse
Affiliation(s)
- Robert A G Huis In 't Veld
- Department of Medical Microbiology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center Amsterdam The Netherlands
| | - Gertjan Kramer
- Clinical Proteomics Facility Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands.,Present address: Genome Biology Unit EMBL Heidelberg Heidelberg Germany
| | - Arie van der Ende
- Department of Medical Microbiology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center Amsterdam The Netherlands.,Reference Laboratory for Bacterial Meningitis Department of Medical Microbiology Academic Medical Center Amsterdam The Netherlands
| | - Dave Speijer
- Clinical Proteomics Facility Department of Medical Biochemistry Academic Medical Center Amsterdam The Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center Amsterdam The Netherlands
| |
Collapse
|
15
|
Ampattu BJ, Hagmann L, Liang C, Dittrich M, Schlüter A, Blom J, Krol E, Goesmann A, Becker A, Dandekar T, Müller T, Schoen C. Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence. BMC Genomics 2017; 18:282. [PMID: 28388876 PMCID: PMC5383966 DOI: 10.1186/s12864-017-3616-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023] Open
Abstract
Background Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3616-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Hagmann
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Human Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Elizaveta Krol
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35392, Gießen, Germany
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, Joseph-Schneider-Straße 2, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
16
|
Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal. PLoS Pathog 2017; 13:e1006251. [PMID: 28384279 PMCID: PMC5383330 DOI: 10.1371/journal.ppat.1006251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/18/2017] [Indexed: 12/11/2022] Open
Abstract
The development of meningococcal disease, caused by the human pathogen Neisseria meningitidis, is preceded by the colonization of the epithelial layer in the nasopharynx. After initial adhesion to host cells meningococci form aggregates, through pilus-pilus interactions, termed microcolonies from which the bacteria later detach. Dispersal from microcolonies enables access to new colonization sites and facilitates the crossing of the cell barrier; however, this process is poorly understood. In this study, we used live-cell imaging to investigate the process of N. meningitidis microcolony dispersal. We show that direct contact with host cells is not required for microcolony dispersal, instead accumulation of a host-derived effector molecule induces microcolony dispersal. By using a host-cell free approach, we demonstrated that lactate, secreted from host cells, initiate rapid dispersal of microcolonies. Interestingly, metabolic utilization of lactate by the bacteria was not required for induction of dispersal, suggesting that lactate plays a role as a signaling molecule. Furthermore, Neisseria gonorrhoeae microcolony dispersal could also be induced by lactate. These findings reveal a role of host-secreted lactate in microcolony dispersal and virulence of pathogenic Neisseria. The human restricted pathogen Neisseria meningitidis is a major cause of bacterial meningitis and sepsis worldwide. Colonization of the mucosal layer in the upper respiratory tract is essential to establish invasive disease. The initial interaction with host cells is characterized by bacterial proliferation and adhesion as aggregates, called microcolonies. Detachment from microcolonies in the nasopharyngeal epithelium facilitates crossing of the cell barrier that can result in invasive disease, yet this process is poorly understood. Here we demonstrate that lactate, an abundant molecule in host mucosal environments, induces N. meningitidis microcolony dispersal. Interestingly, metabolic utilization of lactate by the bacteria was not required for the process, suggesting that lactate play a role as a signaling molecule in pathogenic Neisseria. We propose that the microcolony dispersal in pathogenic Neisseria is influenced by environmental concentrations of lactate. These findings will assist in better understanding the transition from asymptomatic carriage to invasive disease.
Collapse
|
17
|
Antunes A, Derkaoui M, Terrade A, Denizon M, Deghmane AE, Deutscher J, Delany I, Taha MK. The Phosphocarrier Protein HPr Contributes to Meningococcal Survival during Infection. PLoS One 2016; 11:e0162434. [PMID: 27655040 PMCID: PMC5031443 DOI: 10.1371/journal.pone.0162434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
Neisseria meningitidis is an exclusively human pathogen frequently carried asymptomatically in the nasopharynx but it can also provoke invasive infections such as meningitis and septicemia. N. meningitidis uses a limited range of carbon sources during infection, such as glucose, that is usually transported into bacteria via the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), in which the phosphocarrier protein HPr (encoded by the ptsH gene) plays a central role. Although N. meningitidis possesses an incomplete PTS, HPr was found to be required for its virulence. We explored the role of HPr using bioluminescent wild-type and ΔptsH strains in experimental infection in transgenic mice expressing the human transferrin. The wild-type MC58 strain was recovered at higher levels from the peritoneal cavity and particularly from blood compared to the ΔptsH strain. The ΔptsH strain provoked lower levels of septicemia in mice and was more susceptible to complement-mediated killing than the wild-type strain. We tested whether meningococcal structures impacted complement resistance and observed that only the capsule level was decreased in the ΔptsH mutant. We therefore compared the transcriptomic profiles of wild-type and ΔptsH strains and identified 49 differentially expressed genes. The HPr regulon contains mainly hypothetical proteins (43%) and several membrane-associated proteins that could play a role during host interaction. Some other genes of the HPr regulon are involved in stress response. Indeed, the ΔptsH strain showed increased susceptibility to environmental stress conditions. Our data suggest that HPr plays a pleiotropic role in host-bacteria interactions most likely through the innate immune response that may be responsible for the enhanced clearance of the ΔptsH strain from blood.
Collapse
Affiliation(s)
- Ana Antunes
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| | - Meriem Derkaoui
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Aude Terrade
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Mélanie Denizon
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Centre National de la Recherche Scientifique, UMR8261 (affiliated with Univ. Paris Diderot, Sorbonne Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Isabel Delany
- Novartis Vaccines and Diagnostics s.r.l. (a GSK company), Via Fiorentina 1, 53100, Siena, Italy
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unité des Infections Bactériennes Invasives, Paris, France, 75724 Paris Cedex 15, France
- * E-mail: (AA); (MKT)
| |
Collapse
|
18
|
HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis. J Bacteriol 2015; 198:644-54. [PMID: 26644430 DOI: 10.1128/jb.00659-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes implicated in energy metabolism and nutrient transport, as well as some implicated in virulence. We identified and characterized a transcriptional regulator (HexR) that controls metabolic genes of N. meningitidis in response to glucose. We generated a mutant lacking HexR and found that the mutant was impaired in causing systemic infection in animal models. Since N. meningitidis lacks known bacterial regulators of energy metabolism, our findings suggest that HexR plays a major role in its biology by regulating metabolism in response to environmental signals.
Collapse
|
19
|
NAD-Independent L-Lactate Dehydrogenase Required for L-Lactate Utilization in Pseudomonas stutzeri A1501. J Bacteriol 2015; 197:2239-2247. [PMID: 25917905 DOI: 10.1128/jb.00017-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/22/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED NAD-independent L-lactate dehydrogenases (l-iLDHs) play important roles in L-lactate utilization of different organisms. All of the previously reported L-iLDHs were flavoproteins that catalyze the oxidation of L-lactate by the flavin mononucleotide (FMN)-dependent mechanism. Based on comparative genomic analysis, a gene cluster with three genes (lldA, lldB, and lldC) encoding a novel type of L-iLDH was identified in Pseudomonas stutzeri A1501. When the gene cluster was expressed in Escherichia coli, distinctive L-iLDH activity was detected. The expressed L-iLDH was purified by ammonium sulfate precipitation, ion-exchange chromatography, and affinity chromatography. SDS-PAGE and successive matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the purified L-iLDH indicated that it is a complex of LldA, LldB, and LldC (encoded by lldA, lldB, and lldC, respectively). Purified L-iLDH (LldABC) is a dimer of three subunits (LldA, LldB, and LldC), and the ratio between LldA, LldB, and LldC is 1:1:1. Different from the FMN-containing L-iLDH, absorption spectra and elemental analysis suggested that LldABC might use the iron-sulfur cluster for the L-lactate oxidation. LldABC has narrow substrate specificity, and only L-lactate and DL-2-hydrobutyrate were rapidly oxidized. Mg(2+) could activate L-iLDH activity effectively (6.6-fold). Steady-state kinetics indicated a ping-pong mechanism of LldABC for the L-lactate oxidation. Based on the gene knockout results, LldABC was confirmed to be required for the L-lactate metabolism of P. stutzeri A1501. LldABC is the first purified and characterized L-iLDH with different subunits that uses the iron-sulfur cluster as the cofactor. IMPORTANCE Providing new insights into the diversity of microbial lactate utilization could assist in the production of valuable chemicals and understanding microbial pathogenesis. An NAD-independent L-lactate dehydrogenase (L-iLDH) encoded by the gene cluster lldABC is indispensable for the L-lactate metabolism in Pseudomonas stutzeri A1501. This novel type of enzyme was purified and characterized in this study. Different from the well-characterized FMN-containing L-iLDH in other microbes, LldABC in P. stutzeri A1501 is a dimer of three subunits (LldA, LldB, and LldC) and uses the iron-sulfur cluster as a cofactor.
Collapse
|
20
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
21
|
Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol 2014; 22:589-99. [PMID: 24950803 DOI: 10.1016/j.tim.2014.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
Abstract
Lactate utilization endows microbes with the ability to use lactate as a carbon source. Lactate oxidizing enzymes play key roles in the lactate utilization pathway. Various types of these enzymes have been characterized, but novel ones remain to be identified. Lactate determination techniques and biocatalysts have been developed based on these enzymes. Lactate utilization has also been found to induce pathogenicity of several microbes, and the mechanisms have been investigated. More recently, studies on the structure and organization of operons of lactate utilization have been carried out. This review focuses on the recent progress and future perspectives in understanding microbial lactate utilization.
Collapse
Affiliation(s)
- Tianyi Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
22
|
Atack JM, Ibranovic I, Ong CLY, Djoko KY, Chen NH, Vanden Hoven R, Jennings MP, Edwards JL, McEwan AG. A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells. J Infect Dis 2014; 210:1311-8. [PMID: 24737798 DOI: 10.1093/infdis/jiu230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lactate is an abundant metabolite, produced by host tissues and commensal organisms, and it represents an important potential carbon source for bacterial pathogens. In the case of Neisseria spp., the importance of the lactate permease in colonization of the host has been demonstrated, but there have been few studies of lactate metabolism in pathogenic Neisseria in the postgenomic era. We describe herein the characterization of genome-annotated, respiratory, and substrate-level lactate dehydrogenases (LDHs) from the obligate human pathogen Neisseria gonorrhoeae. Biochemical assays using N. gonorrhoeae 1291 wild type and isogenic mutant strains showed that cytoplasmic LdhA (NAD(+)-dependent D-lactate dehydrogenase) and the membrane-bound respiratory enzymes, LdhD (D-lactate dehydrogenase) and LldD (L-lactate dehydrogenase) are correctly annotated. Mutants lacking LdhA and LdhD showed greatly reduced survival in neutrophils compared with wild type cells, highlighting the importance of D-lactate metabolism in gonococcal survival. Furthermore, an assay of host colonization using the well-established human primary cervical epithelial cell model revealed that the two respiratory enzymes make a significant contribution to colonization of and survival within the microaerobic environment of the host. Taken together, these data suggest that host-derived lactate is critical for the growth and survival of N. gonorrhoeae in human cells.
Collapse
Affiliation(s)
- John M Atack
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Ines Ibranovic
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Nathan H Chen
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Rachel Vanden Hoven
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| | - Michael P Jennings
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Jennifer L Edwards
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane
| |
Collapse
|
23
|
Lichtenegger S, Bina I, Roier S, Bauernfeind S, Keidel K, Schild S, Anthony M, Reidl J. Characterization of lactate utilization and its implication on the physiology of Haemophilus influenzae. Int J Med Microbiol 2014; 304:490-8. [PMID: 24674911 PMCID: PMC4012139 DOI: 10.1016/j.ijmm.2014.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023] Open
Abstract
Haemophilus influenzae is a Gram-negative bacillus and a frequent commensal of the human nasopharynx. Earlier work demonstrated that in H. influenzae type b, l-lactate metabolism is associated with serum resistance and in vivo survival of the organism. To further gain insight into lactate utilization of the non-typeable (NTHi) isolate 2019 and laboratory prototype strain Rd KW20, deletion mutants of the l-lactate dehydrogenase (lctD) and permease (lctP) were generated and characterized. It is shown, that the apparent KM of l-lactate uptake is 20.1 μM as determined for strain Rd KW20. Comparison of the COPD isolate NTHi 2019-R with the corresponding lctP knockout strain for survival in human serum revealed no lactate dependent serum resistance. In contrast, we observed a 4-fold attenuation of the mutant strain in a murine model of nasopharyngeal colonization. Characterization of lctP transcriptional control shows that the lactate utilization system in H. influenzae is not an inductor inducible system. Rather negative feedback regulation was observed in the presence of l-lactate and this is dependent on the ArcAB regulatory system. Additionally, for 2019 it was found that lactate may have signaling function leading to increased cell growth in late log phase under conditions where no l-lactate is metabolized. This effect seems to be ArcA independent and was not observed in strain Rd KW20. We conclude that l-lactate is an important carbon-source and may act as host specific signal substrate which fine tunes the globally acting ArcAB regulon and may additionally affect a yet unknown signaling system and thus may contribute to enhanced in vivo survival.
Collapse
Affiliation(s)
- Sabine Lichtenegger
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Isabelle Bina
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Sandro Roier
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Stilla Bauernfeind
- Insitute of Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider Str. 2 E1, Wuerzburg 97080, Germany
| | - Kristina Keidel
- Insitute of Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider Str. 2 E1, Wuerzburg 97080, Germany
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Mark Anthony
- Department of Paediatrics, Oxford University Hospitals, Headington, Oxford OX3 9DU, United Kingdom
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria.
| |
Collapse
|
24
|
Lim YW, Schmieder R, Haynes M, Furlan M, Matthews TD, Whiteson K, Poole SJ, Hayes CS, Low DA, Maughan H, Edwards R, Conrad D, Rohwer F. Mechanistic model of Rothia mucilaginosa adaptation toward persistence in the CF lung, based on a genome reconstructed from metagenomic data. PLoS One 2013; 8:e64285. [PMID: 23737977 PMCID: PMC3667864 DOI: 10.1371/journal.pone.0064285] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/13/2013] [Indexed: 01/21/2023] Open
Abstract
The impaired mucociliary clearance in individuals with Cystic Fibrosis (CF) enables opportunistic pathogens to colonize CF lungs. Here we show that Rothia mucilaginosa is a common CF opportunist that was present in 83% of our patient cohort, almost as prevalent as Pseudomonas aeruginosa (89%). Sequencing of lung microbial metagenomes identified unique R. mucilaginosa strains in each patient, presumably due to evolution within the lung. The de novo assembly of a near-complete R. mucilaginosa (CF1E) genome illuminated a number of potential physiological adaptations to the CF lung, including antibiotic resistance, utilization of extracellular lactate, and modification of the type I restriction-modification system. Metabolic characteristics predicted from the metagenomes suggested R. mucilaginosa have adapted to live within the microaerophilic surface of the mucus layer in CF lungs. The results also highlight the remarkable evolutionary and ecological similarities of many CF pathogens; further examination of these similarities has the potential to guide patient care and treatment.
Collapse
Affiliation(s)
- Yan Wei Lim
- Department of Biology, San Diego State University, San Diego, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mendum TA, Newcombe J, Mannan AA, Kierzek AM, McFadden J. Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biol 2011; 12:R127. [PMID: 22208880 PMCID: PMC3334622 DOI: 10.1186/gb-2011-12-12-r127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/26/2011] [Accepted: 12/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Neisseria meningitidis is an important human commensal and pathogen that causes several thousand deaths each year, mostly in young children. How the pathogen replicates and causes disease in the host is largely unknown, particularly the role of metabolism in colonization and disease. Completed genome sequences are available for several strains but our understanding of how these data relate to phenotype remains limited. Results To investigate the metabolism of N. meningitidis we generated and then selected a representative Tn5 library on rich medium, a minimal defined medium and in human serum to identify genes essential for growth under these conditions. To relate these data to a systems-wide understanding of the pathogen's biology we constructed a genome-scale metabolic network: Nmb_iTM560. This model was able to distinguish essential and non-essential genes as predicted by the global mutagenesis. These essentiality data, the library and the Nmb_iTM560 model are powerful and widely applicable resources for the study of meningococcal metabolism and physiology. We demonstrate the utility of these resources by predicting and demonstrating metabolic requirements on minimal medium, such as a requirement for phosphoenolpyruvate carboxylase, and by describing the nutritional and biochemical status of N. meningitidis when grown in serum, including a requirement for both the synthesis and transport of amino acids. Conclusions This study describes the application of a genome scale transposon library combined with an experimentally validated genome-scale metabolic network of N. meningitidis to identify essential genes and provide novel insight into the pathogen's metabolism both in vitro and during infection.
Collapse
Affiliation(s)
- Tom A Mendum
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | | |
Collapse
|
26
|
Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2011; 2:107. [PMID: 21747807 PMCID: PMC3129519 DOI: 10.3389/fmicb.2011.00107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17β-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
27
|
Muench DF, Kuch DJ, Wu H, Begum AA, Veit SJ, Pelletier ME, Soler-García AA, Jerse AE. Hydrogen peroxide-producing lactobacilli inhibit gonococci in vitro but not during experimental genital tract infection. J Infect Dis 2009; 199:1369-78. [PMID: 19301977 DOI: 10.1086/597390] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Commensal lactobacilli that produce hydrogen peroxide (H(2)O(2)) inhibit Neisseria gonorrhoeae in vitro, and clinical data suggest that they are associated with a reduced risk of gonorrhea. We precolonized mice with Lactobacillus crispatus and then challenged them with N. gonorrhoeae, to measure the effects of H(2)O(2)-producing lactobacilli on gonococcal infection. We found no difference in the duration of infection or the number of gonococci recovered from untreated mice and mice colonized with L. crispatus. A gonococcal catalase mutant and a catalase, cytochrome C peroxidase mutant exhibited greater susceptibility to L. crispatus in vitro than did wild-type bacteria; however, recovery of these mutants from mice was not affected by L. crispatus. We also found no evidence that utilization of lactobacillus-produced lactate by N. gonorrhoeae balances the detrimental effects of H(2)O(2) during infection. We conclude that the association between lactobacilli and gonococci is complex and may be subject to factors that have not been reproduced in vitro.
Collapse
Affiliation(s)
- Dawn F Muench
- Department of Microbiology and Immunology, F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Talà A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P. The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 2008; 10:2461-82. [PMID: 18680551 DOI: 10.1111/j.1462-5822.2008.01222.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we used HeLa cells to investigate the role of the HrpB-HrpA two-partner secretion (TPS) system in the meningococcal infection cycle. Although there is evidence that several pathogenic microorganisms may use TPS systems to colonize epithelial surfaces, the meningococcal HrpB-HrpA TPS system was not primarily involved in adhesion to or invasion of HeLa cells. Instead, this system was essential for intracellular survival and escape from infected cells. Gentamicin protection assays, immunofluorescence and transmission electron microscopy analyses demonstrated that, in contrast to the wild-type strain, HrpB-HrpA-deficient mutants were primarily confined to late endocytic vacuoles and trapped in HeLa cells. Haemolytic tests using human erythrocytes suggested that the secreted HrpA proteins could act as manganese-dependent lysins directly involved in mediating vacuole escape. In addition, we demonstrated that escape of wild-type meningococci from infected cells required the use of an intact tubulin cytoskeleton and that the hrpB-hrpA genes, which are absent in other Neisseria spp., were upregulated during infection.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|