1
|
Jiang Z, Luo Y, Wei L, Gu R, Zhang X, Zhou Y, Zhang S. Bioinformatic Analysis and Machine Learning Methods in Neonatal Sepsis: Identification of Biomarkers and Immune Infiltration. Biomedicines 2023; 11:1853. [PMID: 37509492 PMCID: PMC10377054 DOI: 10.3390/biomedicines11071853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The disease neonatal sepsis (NS) poses a serious threat to life, and its pathogenesis remains unclear. Using the Gene Expression Omnibus (GEO) database, differentially expressed genes (DEGs) were identified and functional enrichment analyses were conducted. Three machine learning algorithms containing the least absolute shrinkage and selection operator (LASSO), support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) were applied to identify the optimal feature genes (OFGs). This study conducted CIBERSORT to present the abundance of immune infiltrates between septic and control neonates and assessed the relationship between OFGs and immune cells. In total, 44 DEGs were discovered between the septic and control newborns. Throughout the enrichment analysis, DEGs were primarily related to inflammatory signaling pathways and immune responses. The OFGs derived from machine learning algorithms were intersected to yield four biomarkers, namely Hexokinase 3 (HK3), Cystatin 7 (CST7), Resistin (RETN), and Glycogenin 1 (GYG1). The potential biomarkers were validated in other datasets and LPS-stimulated HEUVCs. Septic infants showed a higher proportion of neutrophils (p < 0.001), M0 macrophages (p < 0.001), and regulatory T cells (p = 0.004). HK3, CST7, RETN, and GYG1 showed significant correlations with immune cells. Overall, the biomarkers offered promising insights into the molecular mechanisms of immune regulation for the prediction and treatment of NS.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 368 Xiasha Road, Qiantang District, Hangzhou 310016, China
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 368 Xiasha Road, Qiantang District, Hangzhou 310016, China
| | - Li Wei
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 368 Xiasha Road, Qiantang District, Hangzhou 310016, China
| | - Rui Gu
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 368 Xiasha Road, Qiantang District, Hangzhou 310016, China
| | - Xuandong Zhang
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 368 Xiasha Road, Qiantang District, Hangzhou 310016, China
| | - Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Shangcheng District, Hangzhou 310016, China
| |
Collapse
|
2
|
Kale A, Şener EF, Günay NE, Tahtasakal R, Demiryürek S, Günay N, Demiryürek AT. Evaluation of the rs35996865 polymorphism of the ROCK1 gene in sepsis. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:586-590. [DOI: 10.1590/1806-9282.20211105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
3
|
Tanshinone IIA improves sepsis-induced acute lung injury through the ROCK2/NF-κB axis. Toxicol Appl Pharmacol 2022; 446:116021. [DOI: 10.1016/j.taap.2022.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
4
|
Baicalein Attenuates Severe Polymicrobial Sepsis via lleviating Immune Dysfunction of T Lymphocytes and Inflammation. Chin J Integr Med 2022; 28:711-718. [PMID: 35355199 DOI: 10.1007/s11655-022-3510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of baicalein on polymicrobial sepsis-induced immune dysfunction and organ injury. METHODS A sepsis model was induced in Sprague-Dawley rats via caecal ligation and puncture (CLP). Specific pathogen free rats were randomly divided into a sham group, CLP group and CLP + baicalein (Bai) group (n=16 each). Rats in the CLP + Bai group were intravenously injected with baicalein (20 mg/kg) at 1 and 10 h after CLP. Survival rate, bacterial load, and organ damage were assessed. Then each group was evaluated at 6, 12, and 24 h to investigate the effect of baicalein on immune cells and inflammatory cytokines in septic rats. RESULTS Baicalein treatment significantly improved the survival of septic rats, decreased the bacterial burden, and moderated tissue damage (spleen, liver, and lung), as observed by haematoxylin and eosin staining. Septic rats treated with baicalein had strikingly increased proportions of CD3+CD4+ T cells and ratios of CD4+/CD8+ T cells in the peripheral blood and spleen (all P<0.05). Moreover, baicalein treatment decreased the apoptotic rate of whole white blood cells and spleen cells at 24 h after surgery (P<0.05). Baicalein significantly reduced the levels of tumor necrosis factor α and interleukin-6 (IL-6) and increased IL-10, and the expression levels of galectin 9 were also raised in the spleen (P<0.01). CONCLUSION Baicalein may be an effective immunomodulator that attenuates overwhelming inflammatory responses in severe abdominal sepsis.
Collapse
|
5
|
Kim S, Kim SA, Han J, Kim IS. Rho-Kinase as a Target for Cancer Therapy and Its Immunotherapeutic Potential. Int J Mol Sci 2021; 22:ijms222312916. [PMID: 34884721 PMCID: PMC8657458 DOI: 10.3390/ijms222312916] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is fast rising as a prominent new pillar of cancer treatment, harnessing the immune system to fight against numerous types of cancer. Rho-kinase (ROCK) pathway is involved in diverse cellular activities, and is therefore the target of interest in various diseases at the cellular level including cancer. Indeed, ROCK is well-known for its involvement in the tumor cell and tumor microenvironment, especially in its ability to enhance tumor cell progression, migration, metastasis, and extracellular matrix remodeling. Importantly, ROCK is also considered to be a novel and effective modulator of immune cells, although further studies are needed. In this review article, we describe the various activities of ROCK and its potential to be utilized in cancer treatment, particularly in cancer immunotherapy, by shining a light on its activities in the immune system.
Collapse
Affiliation(s)
- Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seong A. Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jihoon Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Correspondence:
| |
Collapse
|
6
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
7
|
Martín-Fernández JM, Fleischer A, Vallejo-Diez S, Palomino E, Sánchez-Gilabert A, Ruiz R, Bejarano Y, Llinàs P, Gayá A, Bachiller D. New Bicistronic TALENs Greatly Improve Genome Editing. ACTA ACUST UNITED AC 2021; 52:e104. [PMID: 32023363 DOI: 10.1002/cpsc.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Genome editing has become one of the most powerful tools in present-day stem cell and regenerative medicine research, but despite its rapid acceptance and widespread use, some elements of the technology still need improvement. In this unit, we present data regarding the use of a new, more efficient type of transcription activator-like effector nuclease (TALEN) for gene editing. Our group has generated bicistronic genes in which classical TALEN coding sequences are linked by 2A elements to different reporter molecules, such as fluorochromes (TALEN-F) or membrane receptors (TALEN-M). This structure results in two proteins transcribed from the same transcript, of which the second (the reporter) can be used as the target for selection by fluorescence-assisted cell sorting (FACS) or magnetic-activated cell sorting (MACS). The application of these new TALEN genes allows a rapid enrichment of cells in which both members of the TALEN pair are active, thus eliminating the need for lengthy selection in culture and laborious characterization of a large number of clones. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of new TALENs Basic Protocol 2: Genome editing using TALEN-F Alternate Protocol 1: Generation of TALEN-M Support Protocol 1: mRNA in vitro transcription (IVT) of TALEN-T2A-reporter expression vector Alternate Protocol 2: Editing of primary T cells using TALEN-M Basic Protocol 3: Verifying gene editing Support Protocol 2: Rapid expansion protocol for edited T-cells.
Collapse
Affiliation(s)
| | - Aarne Fleischer
- Karuna Good Cells Technologies SL, Vitoria-Gasteiz, Álava, Spain.,Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Sara Vallejo-Diez
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Esther Palomino
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Almudena Sánchez-Gilabert
- Karuna Good Cells Technologies SL, Vitoria-Gasteiz, Álava, Spain.,Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Raúl Ruiz
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Yazmine Bejarano
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain.,Current address: Centro de Investigación del Cáncer, Campus Miguel de Unamuno, Salamanca, Spain
| | - Pere Llinàs
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain.,Current address: Josep Carreras Leukaemia Research Institute (IJC), Ctra. de Can Ruti, Camí de les Escoles, Badalona, Spain
| | - Antoni Gayá
- Instituto de Investigación Sanitaria Illes Balears (IDISBA), Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Grupo de Terapia Celular e Ingenieria Tisular, Palma de Mallorca, Spain
| | - Daniel Bachiller
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| |
Collapse
|
8
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
9
|
Chen H, Hu X, Li R, Liu B, Zheng X, Fang Z, Chen L, Chen W, Min L, Hu S. LncRNA THRIL aggravates sepsis-induced acute lung injury by regulating miR-424/ROCK2 axis. Mol Immunol 2020; 126:111-119. [PMID: 32818819 DOI: 10.1016/j.molimm.2020.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023]
Abstract
Here, we aimed to investigate the role of long noncoding RNA (lncRNA) THRIL in septic-induced acute lung injury. C57BL/6 mice were injected with Adenoviruses (Ad)-shTHRIL or negative control (NC) before caecal ligation and puncture (CLP) operation. MPVECs were transfected with Ad-shTHRIL or NC, followed by lipopolysaccharide (LPS) treatment. MiR-424 and Rho-associated kinase 2 (ROCK2) were predicted and verified as direct targets of THRIL and miR-424, respectively, by using dual-luciferase reporter assay. ROCK2 overexpression vector and shTHRIL were co-transfected into mouse pulmonary microvascular endothelial cells for 24 h before LPS treatment. Our results showed that THRIL was highly expressed in the lung of sepsis mice. CLP triggered severe lung injury and apoptosis in mice, which was abolished by THRIL knockdown. Moreover, CLP treatment visibly increased protein concentration, the number of total cell of neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF). Besides, elevated protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were observed in both lung and BALF. However, inhibition of THRIL reduced the number of inflammatory cells and the production of pro-inflammatory cytokines in sepsis mouse model. The effect of THRIL on inflammatory response and apoptosis in the lung was confirmed in sepsis cell model. Moreover, mechanistic studies have shown that THRIL up-regulated ROCK2 level through sponging miR-424. Furthermore, ROCK2 overexpression reversed the inhibitory effects of THRIL knockdown on LPS-induced inflammatory response and apoptosis. Overall, in vivo and in vitro results suggested that THRIL accelerates sepsis-induced lung injury by sponging miR-424 and further restoring ROCK2.
Collapse
Affiliation(s)
- Huibin Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Xuemei Hu
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Ruiting Li
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430022, China
| | - Boyi Liu
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Xiang Zheng
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Zhicheng Fang
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Li Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Wei Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Li Min
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Shengli Hu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China.
| |
Collapse
|
10
|
Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21072356. [PMID: 32235291 PMCID: PMC7177531 DOI: 10.3390/ijms21072356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are important mediators of immunological self-tolerance and homeostasis. Being cluster of differentiation 4+Forkhead box protein3+ (CD4+FOXP3+), these cells are a subset of CD4+ T lymphocytes and can originate from the thymus (tTregs) or from the periphery (pTregs). The malfunction of CD4+ Tregs is associated with autoimmune responses such as rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), inflammatory bowel diseases (IBD), psoriasis, systemic lupus erythematosus (SLE), and transplant rejection. Recent evidence supports an opposed role in sepsis. Therefore, maintaining functional Tregs is considered as a therapy regimen to prevent autoimmunity and allograft rejection, whereas blocking Treg differentiation might be favorable in sepsis patients. It has been shown that Tregs can be generated from conventional naïve T cells, called iTregs, due to their induced differentiation. Moreover, Tregs can be effectively expanded in vitro based on blood-derived tTregs. Taking into consideration that the suppressive role of Tregs has been mainly attributed to the expression and function of the transcription factor Foxp3, modulating its expression and binding to the promoter regions of target genes by altering the chromatin histone acetylation state may turn out beneficial. Hence, we discuss the role of histone deacetylation inhibitors as epigenetic modulators of Tregs in this review in detail.
Collapse
|
11
|
Yu B, Sladojevic N, Blair JE, Liao JK. Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opin Ther Targets 2020; 24:47-62. [PMID: 31906742 PMCID: PMC7662835 DOI: 10.1080/14728222.2020.1712593] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Pathological cardiac fibrosis, through excessive extracellular matrix protein deposition from fibroblasts and pro-fibrotic immune responses and vascular stiffening is associated with most forms of cardiovascular disease. Pathological cardiac fibrosis and stiffening can lead to heart failure and arrythmias and vascular stiffening may lead to hypertension. ROCK, a serine/threonine kinase downstream of the Rho-family of GTPases, may regulate many pro-fibrotic and pro-stiffening signaling pathways in numerous cell types.Areas covered: This article outlines the molecular mechanisms by which ROCK in fibroblasts, T helper cells, endothelial cells, vascular smooth muscle cells, and macrophages mediate fibrosis and stiffening. We speculate on how ROCK could be targeted to inhibit cardiovascular fibrosis and stiffening.Expert opinion: Critical gaps in knowledge must be addressed if ROCK inhibitors are to be used in the clinic. Numerous studies indicate that each ROCK isoform may play differential roles in regulating fibrosis and may have opposing roles in specific tissues. Future work needs to highlight the isoform- and tissue-specific contributions of ROCK in fibrosis, and how isoform-specific ROCK inhibitors in murine models and in clinical trials affect the pathophysiology of cardiac fibrosis and stiffening. This could progress knowledge regarding new treatments for heart failure, arrythmias and hypertension and the repair processes after myocardial infarction.
Collapse
Affiliation(s)
- Brian Yu
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nikola Sladojevic
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Yan XX, Zheng AD, Zhang ZE, Pan GC, Zhou W. Protective effect of pantoprazole against sepsis-induced acute lung and kidney injury in rats. Am J Transl Res 2019; 11:5197-5211. [PMID: 31497234 PMCID: PMC6731408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
To investigate the effect of pantoprazole on acute lung and kidney injury with sepsis and its possible mechanism. Rats were randomly divided into six groups, the status and lung wet/dry weight ratio were determined at various time points. Hematoxylin Eosin staining (HE) for pathological changes in the lungs and kidneys of rats with sepsis. Western blot (WB) and immunohistochemistry were used to detect the pulmonary surfactant protein A(SPA) and D(SPD). The levels of markers for kidney damage in serum and urine various time points were measured by ELISA. The apoptosis in lung and kidney tissue of rats were detected using TUNEL assay. Subsequently, the cell apoptosis of LPS-induced BEAS-2B and HK-2 cells after pantoprazole treatment were detected using flow cytometry. The levels of RHOA/ROCK signaling pathway proteins in the lung and kidney tissues and cells were detected using WB. Our results indicated that Pantoprazole could suppress the expression of inflammatory factors in the blood and alleviate pathological damage of lung and kidney tissues in rats with sepsis. Pantoprazole treatment could reduce apoptosis in lung and kidney tissues and inhibit cell apoptosis induced by LPS. In addition, pantoprazole can inhibit RHOA/ROCK signaling pathway proteins and the levels of inflammatory factors in LPS-induced BEAS-2B and HK-2 cells. Pantoprazole can improve the symptoms of acute lung and kidney injury in septic rats, which suggested that pantoprazole might be used to guide the treatment of sepsis.
Collapse
Affiliation(s)
- Xi-Xiang Yan
- Department of Critical Care Medicine, Jiangsu Jianhu People’s HospitalYancheng 224700, Jiangsu, China
| | - Ai-Dong Zheng
- Department of Critical Care Medicine, Jiangsu Jianhu People’s HospitalYancheng 224700, Jiangsu, China
| | - Zhen-En Zhang
- Department of Critical Care Medicine, Jiangsu Jianhu People’s HospitalYancheng 224700, Jiangsu, China
| | - Guo-Cui Pan
- Department of Critical Care Medicine, Jiangsu Jianhu People’s HospitalYancheng 224700, Jiangsu, China
| | - Wen Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood PurificationChangsha 410011, Hunan, China
| |
Collapse
|
13
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
14
|
Yamamoto T, Ugawa Y, Kawamura M, Yamashiro K, Kochi S, Ideguchi H, Takashiba S. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics. J Cell Commun Signal 2018; 12:369-378. [PMID: 29086204 PMCID: PMC5842188 DOI: 10.1007/s12079-017-0425-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022] Open
Abstract
Cells behave in a variety of ways when they perceive changes in their microenvironment; the behavior of cells is guided by their coordinated interactions with growth factors, niche cells, and extracellular matrix (ECM). Modulation of the microenvironment affects the cell morphology and multiple gene expressions. Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) signaling is one of the key regulators of cytoskeletal dynamics and actively and/or passively determines the cell fate, such as proliferation, migration, differentiation, and apoptosis, by reciprocal communication with the microenvironment. During periodontal wound healing, it is important to recruit the residential stem cells into the defect site for regeneration and homeostasis of the periodontal tissue. Periodontal ligament (PDL) cells contain a heterogeneous fibroblast population, including mesenchymal stem cells, and contribute to the reconstruction of tooth-supporting tissues. Therefore, bio-regeneration of PDL cells has been the ultimate goal of periodontal therapy for decades. Recent stem cell researches have shed light on intrinsic ECM properties, providing paradigm shifts in cell fate determination. This review focuses on the role of ROCK activity and the effects of Y-27632, a specific inhibitor of ROCK, in the modulation of ECM-microenvironment. Further, it presents the current understanding of how Rho/ROCK signaling affects the fate determination of stem cells, especially PDL cells. In addition, we have also discussed in detail the underlying mechanisms behind the reciprocal response to the microenvironment.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mari Kawamura
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
15
|
Ding R, Han J, Zhao D, Hu Z, Ma X. Pretreatment with Rho-kinase inhibitor ameliorates lethal endotoxemia-induced liver injury by improving mitochondrial function. Int Immunopharmacol 2016; 40:125-130. [PMID: 27588912 DOI: 10.1016/j.intimp.2016.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/09/2016] [Accepted: 08/26/2016] [Indexed: 12/26/2022]
Abstract
Rho kinase (ROCK) inhibition has been reported to improve various inflammatory diseases including endotoxemia. Mitochondrial dysfunction might be the key to the pathophysiology of sepsis-induced organ failure. Therefore, this study aimed to explore whether ROCK inhibition protects against the liver injury by regulating mitochondrial function in endotoxemia model mice. The mice were randomly divided into four groups (N=6-8 per group): control, LPS, LPS+Y-27632 (LPS+Y), and LPS+Mito-TEMPO (LPS+M). For induction of endotoxin-induced acute liver injury, the mice were intraperitoneally administered lipopolysaccharide (LPS, 20mg/kg). The ROCK inhibitor Y-27632 (or mitochondrial antioxidant Mito-TEMPO) was intraperitoneally administered at 18 and 1h before injection of LPS. The mice were euthanized 8h after LPS administration. The liver and blood samples were taken and preserved for analysis. Results of this study showed that pretreatment with Y-27632 or Mito-TEMPO significantly attenuated the liver injury as compared to the LPS group. This was confirmed by decreased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and by reduced hepatocellular apoptosis and histologic damage. Pretreatment with Y-27632 or Mito-TEMPO markedly reduced the LPS-induced inflammatory response and oxidative stress the in liver. Furthermore, it showed similar protective effects on the hepatic mitochondrial function, including an increased activity of complexes I and IV and mitochondrial superoxide dismutase (MnSOD), and an upregulated expression of mtDNA-encoded genes. Taken together, these data demonstrate that Mito-TEMPO can potently inhibit the endotoxin-induced mitochondrial and hepatic abnormalities and indicate that mitochondrial dysfunction might play a key role in the endotoxemia-induced acute liver injury. Moreover, our study shows that ROCK inhibition protects against the endotoxemia-induced liver injury by improving the mitochondrial function.
Collapse
Affiliation(s)
- Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| | - Jiali Han
- Department of Otolaryngology, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Dongmei Zhao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Ziwei Hu
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China
| | - Xiaochun Ma
- Department of Intensive Care Unit, The First Hospital of China Medical University, Nanjing Bei Street 155, Shenyang 110001, Liaoning Province, PR China.
| |
Collapse
|
16
|
|
17
|
Anti-Inflammatory Profile of Levosimendan in Cecal Ligation-Induced Septic Mice and in Lipopolysaccharide-Stimulated Macrophages*. Crit Care Med 2015; 43:e508-20. [DOI: 10.1097/ccm.0000000000001269] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Zanella R, Gava D, Peixoto JDO, Schaefer R, Ciacci-Zanella JR, Biondo N, da Silva MVGB, Cantão ME, Ledur MC. Unravelling the genetic components involved in the immune response of pigs vaccinated against influenza virus. Virus Res 2015; 210:327-36. [PMID: 26362524 DOI: 10.1016/j.virusres.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
A genome-wide association study for immune response to influenza vaccination in a crossbred swine population was conducted. Swine influenza is caused by influenza A virus (FLUAV) which is considered one of the most prevalent respiratory pathogens in swine worldwide. The main strategy used to control influenza in swine herds is through vaccination. However, the currently circulating FLUAV subtypes in swine are genetically and antigenically diverse and their interaction with the host genetics poses a challenge for the production of efficacious and cross-protective vaccines. In this study, 103 pigs vaccinated with an inactivated H1N1 pandemic virus were genotyped with the Illumina PorcineSNP60V2 BeadChip for the identification of genetic markers associated with immune response efficacy to influenza A virus vaccination. Immune response was measured based on the presence or absence of HA (hemagglutinin) and NP (nucleoprotein) antibodies induced by vaccination and detected in swine sera by the hemagglutination inhibition (HI) and ELISA assays, respectively. The ELISA test was also used as a measurement of antibody levels produced following the FLUAV vaccination. Associations were tested with x(2) test for a case and control data and using maximum likelihood method for the quantitative data, where a moderate association was considered if p<5×10(-5). When testing the association using the HI results, three markers with unknown location and three located on chromosomes SSCX, SSC14 and SSC18 were identified as associated with the immune response. Using the response to vaccination measured by ELISA as a qualitative and quantitative phenotype, four genomic regions were associated with immune response: one on SSC12 and three on chromosomes SSC1, SSC7, and SSC15, respectively. Those regions harbor important functional candidate genes possibly involved with the degree of immune response to vaccination. These results show an important role of host genetics in the immune response to influenza vaccination. Genetic selection for pigs with better response to FLUAV vaccination might be an alternative to reduce the impact of influenza virus infection in the swine industry. However, these results should to be validated in additional populations before its use.
Collapse
Affiliation(s)
- Ricardo Zanella
- Embrapa Swine and Poultry, Concórdia, SC, Brazil; Present Address: University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu CL, Wu QY, Du JJ, Zeng JY, Li TT, Xu CQ, Sun YH. Calcium-sensing receptor in the T lymphocyte enhanced the apoptosis and cytokine secretion in sepsis. Mol Immunol 2014; 63:337-42. [PMID: 25256599 DOI: 10.1016/j.molimm.2014.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/29/2022]
Abstract
Calcium-sensing receptor (CaSR) is a member of the G protein-coupled receptor superfamily that existed in lymphocytes and promoted cytokine secretion. Lymphocytes are also involved in sepsis. However, the role of CaSR in lymphocytes in sepsis is unclear. In this study, we want to examine whether the CaSR in lymphocytes in sepsis is involved in the cytokine secretions and apoptosis and make clear the relationship between NF-κB and MAPK signal transduction pathways. We investigated the issues mentioned earlier using Western blotting, ELISA, and Flow Cytometry. The sepsis was remodeled by cecal ligation and puncture (CLP). We found that CaSR protein expression increased in the peripheral blood T lymphocytes in CLP rats. The calcimimetic R568 (NPS R568) promoted, whereas the calcilytic NPS 2143 attenuated, signaling pathways proteins P65 (subunit of NF-κB), ERK1/2, and JNK (one subgroup of MAPKs) phosphorylation. However, P-P38 and P-JAKs exhibit no significant changes. Furthermore, the production TNF-α and IL-4 was greater in CLP rats than in normal rats, and NPS R568 promoted secretion of these cytokines. Simultaneously, the apoptotic ratio of T cells in CLP increased, and NPS R 568 exacerbated the apoptosis degree. However, these effects could also be inhibited by U0126 or SP600125 (MAPKs pathway inhibitor) or Bay-11-7082 or (NF-κB pathway inhibitor). From these results, we can conclude that, in the sepsis, CaSR activation promoted T-cell apoptosis and the secretion of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokines IL-4 probably through NF-κB and partial MAPK signal transduction pathways.
Collapse
Affiliation(s)
- Chun-li Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qiu-yue Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-jing Du
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-ya Zeng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ting-ting Li
- Department of Clinical Laboratory, Daqing Affiliated School of Harbin Medical University, Daqing 150000, China
| | - Chang-qing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Yi-hua Sun
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|