1
|
Tewari N, Dey P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol Res 2024; 286:127832. [PMID: 39013300 DOI: 10.1016/j.micres.2024.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.
Collapse
Affiliation(s)
- Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
2
|
Dey P, Ray Chaudhuri S. The opportunistic nature of gut commensal microbiota. Crit Rev Microbiol 2023; 49:739-763. [PMID: 36256871 DOI: 10.1080/1040841x.2022.2133987] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
The abundance of gut commensals has historically been associated with health-promoting effects despite the fact that the definition of good or bad microbiota remains condition-specific. The beneficial or pathogenic nature of microbiota is generally dictated by the dimensions of host-microbiota and microbe-microbe interactions. With the increasing popularity of gut microbiota in human health and disease, emerging evidence suggests opportunistic infections promoted by those gut bacteria that are generally considered beneficial. Therefore, the current review deals with the opportunistic nature of the gut commensals and aims to summarise the concepts behind the occasional commensal-to-pathogenic transformation of the gut microbes. Specifically, relevant clinical and experimental studies have been discussed on the overgrowth and bacteraemia caused by commensals. Three key processes and their underlying mechanisms have been summarised to be responsible for the opportunistic nature of commensals, viz. improved colonisation fitness that is dictated by commensal-pathogen interactions and availability of preferred nutrients; pathoadaptive mutations that can trigger the commensal-to-pathogen transformation; and evasion of host immune response as a survival and proliferation strategy of the microbes. Collectively, this review provides an updated concept summary on the underlying mechanisms of disease causative events driven by gut commensal bacteria.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
3
|
Moțățăianu A, Șerban G, Andone S. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. Int J Mol Sci 2023; 24:15094. [PMID: 37894774 PMCID: PMC10606032 DOI: 10.3390/ijms242015094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by the gradual loss of motor neurons in the brain and spinal cord, leading to progressive motor function decline. Unfortunately, there is no effective treatment, and its increasing prevalence is linked to an aging population, improved diagnostics, heightened awareness, and changing lifestyles. In the gastrointestinal system, the gut microbiota plays a vital role in producing metabolites, neurotransmitters, and immune molecules. Short-chain fatty acids, of interest for their potential health benefits, are influenced by a fiber- and plant-based diet, promoting a diverse and balanced gut microbiome. These fatty acids impact the body by binding to receptors on enteroendocrine cells, influencing hormones like glucagon-like peptide-1 and peptide YY, which regulate appetite and insulin sensitivity. Furthermore, these fatty acids impact the blood-brain barrier, neurotransmitter levels, and neurotrophic factors, and directly stimulate vagal afferent nerves, affecting gut-brain communication. The vagus nerve is a crucial link between the gut and the brain, transmitting signals related to appetite, inflammation, and various processes. Dysregulation of this pathway can contribute to conditions like obesity and irritable bowel syndrome. Emerging evidence suggests the complex interplay among these fatty acids, the gut microbiota, and environmental factors influences neurodegenerative processes via interconnected pathways, including immune function, anti-inflammation, gut barrier, and energy metabolism. Embracing a balanced, fiber-rich diet may foster a diverse gut microbiome, potentially impacting neurodegenerative disease risk. Comprehensive understanding requires further research into interventions targeting the gut microbiome and fatty acid production and their potential therapeutic role in neurodegeneration.
Collapse
Affiliation(s)
- Anca Moțățăianu
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| | - Georgiana Șerban
- Doctoral School, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| | - Sebastian Andone
- 1st Neurology Clinic, Mures County Clinical Emergency Hospital, 540136 Târgu Mures, Romania
- Department of Neurology, University of Medicine, Pharmacy, Science and Technology of Târgu Mures ‘George Emil Palade’, 540142 Târgu Mures, Romania
| |
Collapse
|
4
|
Gupta U, Dey P. Rise of the guardians: Gut microbial maneuvers in bacterial infections. Life Sci 2023; 330:121993. [PMID: 37536616 DOI: 10.1016/j.lfs.2023.121993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
AIMS Bacterial infections are one of the major causes of mortality globally. The gut microbiota, primarily comprised of the commensals, performs an important role in maintaining intestinal immunometabolic homeostasis. The current review aims to provide a comprehensive understanding of how modulation of the gut microbiota influences opportunistic bacterial infections. MATERIALS AND METHODS Primarily centered around mechanisms related to colonization resistance, nutrient, and metabolite-associated factors, mucosal immune response, and commensal-pathogen reciprocal interactions, we discuss how gut microbiota can promote or prevent bacterial infections. KEY FINDINGS Opportunistic infections can occur directly due to obligate pathogens or indirectly due to the overgrowth of opportunistic pathobionts. Gut microbiota-centered mechanisms of altered intestinal immunometabolic and metabolomic homeostasis play a significant role in infection promotion and prevention. Depletion in the population of commensals, increased abundance of pathobionts, and overall decrease in gut microbial diversity and richness caused due to prolonged antibiotic use are risk factors of opportunistic bacterial infections, including infections from multidrug-resistant spp. Gut commensals can limit opportunistic infections by mechanisms including the production of antimicrobials, short-chain fatty acids, bile acid metabolism, promoting mucin formation, and maintaining immunological balance at the mucosa. Gut microbiota-centered strategies, including the administration of probiotics and fecal microbiota transplantation, could help attenuate opportunistic bacterial infections. SIGNIFICANCE The current review discussed the gut microbial population and function-specific aspects contributing to bacterial infection susceptibility and prophylaxis. Collectively, this review provides a comprehensive understanding of the mechanisms related to the dual role of gut microbiota in bacterial infections.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
5
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
6
|
Melo-González F, Sepúlveda-Alfaro J, Schultz BM, Suazo ID, Boone DL, Kalergis AM, Bueno SM. Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Front Immunol 2022; 13:877533. [PMID: 35572549 PMCID: PMC9095905 DOI: 10.3389/fimmu.2022.877533] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious diseases are one of the leading causes of morbidity and mortality worldwide, affecting high-risk populations such as children and the elderly. Pathogens usually activate local immune responses at the site of infection, resulting in both protective and inflammatory responses, which may lead to local changes in the microbiota, metabolites, and the cytokine environment. Although some pathogens can disseminate and cause systemic disease, increasing evidence suggests that local infections can affect tissues not directly invaded. In particular, diseases occurring at distal mucosal barriers such as the lung and the intestine seem to be linked, as shown by epidemiological studies in humans. These mucosal barriers have bidirectional interactions based mainly on multiple signals derived from the microbiota, which has been termed as the gut-lung axis. However, the effects observed in such distal places are still incompletely understood. Most of the current research focuses on the systemic impact of changes in microbiota and bacterial metabolites during infection, which could further modulate immune responses at distal tissue sites. Here, we describe how the gut microbiota and associated metabolites play key roles in maintaining local homeostasis and preventing enteric infection by direct and indirect mechanisms. Subsequently, we discuss recent murine and human studies linking infectious diseases with changes occurring at distal mucosal barriers, with particular emphasis on bacterial and viral infections affecting the lung and the gastrointestinal tract. Further, we discuss the potential mechanisms by which pathogens may cause such effects, promoting either protection or susceptibility to secondary infection.
Collapse
Affiliation(s)
- Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David L. Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Generation of resolving memory neutrophils through pharmacological training with 4-PBA or genetic deletion of TRAM. Cell Death Dis 2022; 13:345. [PMID: 35418110 PMCID: PMC9007399 DOI: 10.1038/s41419-022-04809-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Neutrophils are the dominant leukocytes in circulation and the first responders to infection and inflammatory cues. While the roles of neutrophils in driving inflammation have been widely recognized, the contribution of neutrophils in facilitating inflammation resolution is under-studied. Here, through single-cell RNA sequencing analysis, we identified a subpopulation of neutrophils exhibiting pro-resolving characteristics with greater Cd200r and Cd86 expression at the resting state. We further discovered that 4-PBA, a peroxisomal stress-reducing agent, can potently train neutrophils into the resolving state with enhanced expression of CD200R, CD86, as well as soluble pro-resolving mediators Resolvin D1 and SerpinB1. Resolving neutrophils trained by 4-PBA manifest enhanced phagocytosis and bacterial-killing functions. Mechanistically, the generation of resolving neutrophils is mediated by the PPARγ/LMO4/STAT3 signaling circuit modulated by TLR4 adaptor molecule TRAM. We further demonstrated that genetic deletion of TRAM renders the constitutive expansion of resolving neutrophils, with an enhanced signaling circuitry of PPARγ/LMO4/STAT3. These findings may have profound implications for the effective training of resolving neutrophils with therapeutic potential in the treatment of both acute infection as well as chronic inflammatory diseases.
Collapse
|
8
|
Sun Y, Bedlack R, Armon C, Beauchamp M, Bertorini T, Bowser R, Bromberg M, Caress J, Carter G, Crayle J, Cudkowicz ME, Glass JD, Jackson C, Lund I, Martin S, Paganoni S, Pattee G, Ratner D, Salmon K, Wicks P. ALSUntangled #64: butyrates. Amyotroph Lateral Scler Frontotemporal Degener 2022; 23:638-643. [PMID: 35225121 DOI: 10.1080/21678421.2022.2045323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review butyrate and its different chemical forms (butyrates). Butyrates have plausible mechanisms for slowing ALS progression and positive pre-clinical studies. One trial suggests that sodium phenylbutyrate (NaPB) in combination with Tauroursodeoxycholic acid (TUDCA) can slow ALS progression and prolong survival, but the specific contribution of NaPB toward this effect is unclear. Butyrates appear reasonably safe for use in humans. Based on the above information, we support a trial of a butyrate in PALS, but we cannot yet recommend one as a treatment.
Collapse
Affiliation(s)
- Yuyao Sun
- Neurology Department, Duke University, Durham, NC, USA
| | | | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Morgan Beauchamp
- Undergraduate, North Carolina State University, Raleigh, NC, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - James Caress
- Department of Neurology, Baptist Medical Center, Winston Salem, NC, USA
| | - Gregory Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Spokane, WA, USA
| | - Jesse Crayle
- Neurology Department, Washington University, St. Louis, MO, USA
| | | | | | - Carlayne Jackson
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Isaac Lund
- Student, Green Hope High School, Cary, NC, USA
| | - Sarah Martin
- Physical Therapy Program, Duke University, Durham, NC, USA
| | | | - Gary Pattee
- Department of Neurology, Nebraska Medical Center, Omaha, NE, USA
| | - Dylan Ratner
- Student, Longmeadow High School, Longmeadow, MA, USA
| | - Kristiana Salmon
- Department of Neurology, Montreal Neurological Institute, Montreal Canada
| | | |
Collapse
|
9
|
The Combined Beneficial Effects of Postbiotic Butyrate on Active Vitamin D3-Orchestrated Innate Immunity to Salmonella Colitis. Biomedicines 2021; 9:biomedicines9101296. [PMID: 34680413 PMCID: PMC8533643 DOI: 10.3390/biomedicines9101296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. Remains a major public health problem globally. Biomedicine is the cornerstone of modern health care and could be a solution for antibiotic-resistant Salmonellosis. Although postbiotics seem to be an effective treatment in various clinical conditions, their clinical effects on Salmonella colitis have not been reported. Our previous report revealed that active vitamin D attenuates the severity of Salmonella colitis and invasiveness by reducing inflammation and enhancing the production of antimicrobial peptides. Therefore, we investigated the synergistic effects of butyrate, the most studied postbiotic, and active vitamin D on the severity of Salmonella colitis, invasiveness of Salmonella, and host immune responses, as well as its novel mechanisms, using in vitro and in vivo studies. We demonstrated that a combination of butyrate and active vitamin D (1 alpha, 25-dihydroxyvitamin D3) synergically reduced the severity of Salmonella colitis in C57BL/6 mice and reduced cecal inflammatory mIL-6, mIL-8, mTNF-α, and mIL-1β mRNA expression, but enhanced the antimicrobial peptide mhBD-3 mRNA, compared to a single treatment. Additionally, upregulated vitamin D receptor (VDR) plays a critical role in the synergistic effects. This suggests combined benefits of butyrate and active vitamin D on Salmonella colitis through VDR-mediated antibacterial and anti-inflammatory responses. The combined use of both supplements could be a potential biomedicine for infectious and autoimmune colitis.
Collapse
|
10
|
Influenza Virus Infection Impairs the Gut's Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids. Infect Immun 2021; 89:e0073420. [PMID: 33820816 DOI: 10.1128/iai.00734-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Along with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation.
Collapse
|
11
|
Eradication of Candida albicans Biofilm Viability: In Vitro Combination Therapy of Cationic Carbosilane Dendrons Derived from 4-Phenylbutyric Acid with AgNO 3 and EDTA. J Fungi (Basel) 2021; 7:jof7070574. [PMID: 34356953 PMCID: PMC8305162 DOI: 10.3390/jof7070574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Candida albicans is a human pathogen of significant clinical relevance. This pathogen is resistant to different drugs, and most clinical antifungals are not effective against the prevention and treatment of C. albicans infections. As with other microorganisms, it can produce biofilms that serve as a barrier against antifungal agents and other substances, contributing to infection in humans and environmental tolerance of this microorganism. Thus, resistances and biofilm formation make treatment difficult. In addition, the complete eradication of biofilms in implants, catheters and other medical devices, is challenging and necessary to prevent relapses of candidemia. Therefore, it is a priority to find new molecules or combinations of compounds with anti-Candida biofilm activity. Due to the difficulty of treating and removing biofilms, the aim of this study was to evaluate the in vitro ability of different generation of cationic carbosilane dendrons derived from 4-phenylbutyric acid, ArCO2Gn(SNMe3I)m, to eradicate C. albicans biofilms. Here, we assessed the antifungal activity of the second generation dendron ArCO2G2(SNMe3I)4 against C. albicans cells and established biofilms since it managed to seriously damage the membrane. In addition, the combinations of the second generation dendron with AgNO3 or EDTA eradicated the viability of biofilm cells. Alterations were observed by scanning electron microscopy and cytotoxicity was assessed on HeLa cells. Our data suggest that the dendritic compound ArCO2G2(SNMe3I)4 could represent an alternative to control the infections caused by this pathogen.
Collapse
|
12
|
Lee J, Geng S, Li S, Li L. Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits. Front Immunol 2021; 12:627036. [PMID: 33708217 PMCID: PMC7940189 DOI: 10.3389/fimmu.2021.627036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation of monocytes, which could lead to inflammatory diseases including atherosclerosis and metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compound which can reduce the inflammation caused by SD-LPS. To understand the gene regulatory networks of these processes, we have generated scRNA-seq data from mouse monocytes treated with these compounds and identified 11 novel cell clusters. We have developed a machine learning method to integrate scRNA-seq, ATAC-seq, and binding motifs to characterize gene regulatory networks underlying these cell clusters. Using guided regularized random forest and feature selection, our method achieved high performance and outperformed a traditional enrichment-based method in selecting candidate regulatory genes. Our method is particularly efficient in selecting a few candidate genes to explain observed expression pattern. In particular, among 531 candidate TFs, our method achieves an auROC of 0.961 with only 10 motifs. Finally, we found two novel subpopulations of monocyte cells in response to SD-LPS and we confirmed our analysis using independent flow cytometry experiments. Our results suggest that our new machine learning method can select candidate regulatory genes as potential targets for developing new therapeutics against low grade inflammation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Song Li
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
13
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang M, Wang H, Zhang F, Xue F, Hua D, Liu J, Yao J, Xiong B. Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis. J Anim Sci Biotechnol 2021; 12:36. [PMID: 33557959 PMCID: PMC7869221 DOI: 10.1186/s40104-020-00543-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Background Due to the high prevalence and complex etiology, bovine mastitis (BM) is one of the most important diseases to compromise dairy cow health and milk quality. The shift in milk compositions has been widely investigated during mastitis, but recent studies suggested that gastrointestinal microorganism also has a crucial effect on the inflammation of other peripheral tissues and organs, including the mammary gland. However, research focused on the variation of rumen inner-environment during mastitis is still limited. Therefore, the ruminal microbial profiles, metabolites, and milk compositions in cows with different udder health conditions were compared in the present study. Furthermore, the correlations between udder health status and ruminal conditions were investigated. Based on the somatic cell counts (SCC), California mastitis test (CMT) parameters and clinical symptoms of mastitis, 60 lactating Holstein dairy cows with similar body conditions (excepted for the udder health condition) were randomly divided into 3 groups (n = 20 per group) including the healthy (H) group, the subclinical mastitis (SM) group and the clinical mastitis (CM) group. Lactation performance and rumen fermentation parameters were recorded. And rumen microbiota and metabolites were also analyzed via 16S rRNA amplicon sequencing and untargeted metabolomics, respectively. Results As the degree of mastitis increased, rumen lactic acid (LA) (P < 0.01), acetate, propionate, butyrate, valerate (P < 0.001), and total volatile fatty acids (TVFAs) (P < 0.01) concentrations were significantly decreased. In the rumen of CM cows, the significantly increased bacteria related to intestinal and oral inflammation, such as Lachnospiraceae (FDR-adjusted P = 0.039), Moraxella (FDR-adjusted P = 0.011) and Neisseriaceae (FDR-adjusted P = 0.036), etc., were accompanied by a significant increase in 12-oxo-20-dihydroxy-leukotriene B4 (FDR-adjusted P = 5.97 × 10− 9) and 10beta-hydroxy-6beta-isobutyrylfuranoeremophilane (FDR-adjusted P = 3.88 × 10− 10). Meanwhile, in the rumen of SM cows, the Ruminiclostridium_9 (FDR-adjusted P = 0.042) and Enterorhabdus (FDR-adjusted P = 0.043) were increased along with increasing methenamine (FDR-adjusted P = 6.95 × 10− 6), 5-hydroxymethyl-2-furancarboxaldehyde (5-HMF) (FDR-adjusted P = 2.02 × 10− 6) and 6-methoxymellein (FDR-adjusted P = 2.57 × 10− 5). The short-chain fatty acids (SCFAs)-producing bacteria and probiotics in rumen, including Prevoterotoella_1 (FDR-adjusted P = 0.045) and Bifidobacterium (FDR-adjusted P = 0.035), etc., were significantly reduced, with decreasing 2-phenylbutyric acid (2-PBA) (FDR-adjusted P = 4.37 × 10− 6). Conclusion The results indicated that there was a significant shift in the ruminal microflora and metabolites associated with inflammation and immune responses during CM. Moreover, in the rumen of cows affected by SM, the relative abundance of several opportunistic pathogens and the level of metabolites which could produce antibacterial compounds or had a competitive inhibitory effect were all increased. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00543-1.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China.
| | - Mengling Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguang Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Engineering Research Center of Feed Development, Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, 065000, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
14
|
Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication. PLoS One 2020; 15:e0240949. [PMID: 33290416 PMCID: PMC7723272 DOI: 10.1371/journal.pone.0240949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023] Open
Abstract
Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages. We hypothesize that IFN-γ decreases iron availability to intracellular pathogens consequently limiting replication in these cells. In this study, we show that IFN-γ regulates the expression of iron-related proteins hepcidin, ferroportin, and ferritin to induce iron export from macrophages. Listeria monocytogenes, S. enterica, and M. tuberculosis infections significantly induce iron sequestration in human macrophages. In contrast, IFN-γ significantly reduces hepcidin secretion in S. enterica and M. tuberculosis infected macrophages. Similarly, IFN-γ-activated macrophages express higher ferroportin levels than untreated controls even after infection with L. monocytogenes bacilli; bacterial infection greatly down-regulates ferroportin expression. Collectively, IFN-γ significantly inhibits pathogen-associated intracellular iron sequestration in macrophages and consequently retards the growth of intracellular bacterial pathogens by decreasing iron availability.
Collapse
|
15
|
Chen J, Vitetta L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw 2020; 20:e15. [PMID: 32395367 PMCID: PMC7192831 DOI: 10.4110/in.2020.20.e15] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/09/2020] [Accepted: 01/19/2020] [Indexed: 12/17/2022] Open
Abstract
An excessive hyperinflammatory response-caused septic shock is a major medical problem that is associated with pathogenic bacterial infections leading to high mortality rates. The intestinal microbiota and the associated elaborated metabolites such as short chain fatty acid butyrate have been shown to relieve pathogenic bacterial-caused acute inflammation. Butyrate can down-regulate inflammation by inhibiting the growth of pathobionts, increasing mucosal barrier integrity, encouraging obligate anaerobic bacterial dominance and decreasing oxygen availability in the gut. Butyrate can also decrease excessive inflammation through modulation of immune cells such as increasing functionalities of M2 macrophages and regulatory T cells and inhibiting infiltration by neutrophils. Therefore, various approaches can be used to increase butyrate to relieve pathogenic bacterial-caused hyperinflammation. In this review we summarize the roles of butyrate in attenuating pathogenic bacterial-caused hyperinflammatory responses and discuss the associated plausible mechanisms.
Collapse
Affiliation(s)
| | - Luis Vitetta
- Medlab Clinical Ltd, Sydney 2015, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney 2006, Australia
| |
Collapse
|
16
|
Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics (Basel) 2020; 9:antibiotics9010021. [PMID: 31936156 PMCID: PMC7168302 DOI: 10.3390/antibiotics9010021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of mortality and morbidity, particularly in developing countries, presenting a major threat to the public health. The currently recommended long term treatment regimen with multiple antibiotics is associated with poor patient compliance, which in turn, may contribute to the emergence of multi-drug resistant TB (MDR-TB). The low global treatment efficacy of MDR-TB has highlighted the necessity to develop novel treatment options. Host-directed therapy (HDT) together with current standard anti-TB treatments, has gained considerable interest, as HDT targets novel host immune mechanisms. These immune mechanisms would otherwise bypass the antibiotic bactericidal targets to kill Mycobacterium tuberculosis (Mtb), which may be mutated to cause antibiotic resistance. Additionally, host-directed therapies against TB have been shown to be associated with reduced lung pathology and improved disease outcome, most likely via the modulation of host immune responses. This review will provide an update of host-directed therapies and their mechanism(s) of action against Mycobacterium tuberculosis.
Collapse
|
17
|
Douzandeh-Mobarrez B, Kariminik A. Gut Microbiota and IL-17A: Physiological and Pathological Responses. Probiotics Antimicrob Proteins 2019; 11:1-10. [PMID: 28921400 DOI: 10.1007/s12602-017-9329-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-17A is a cytokine which is produced by several immune and non-immune cells. The cytokine plays dual roles from protection from microbes and protection from pro-inflammatory based diseases to induction of the pro-inflammatory based diseases. The main mechanisms which lead to the controversial roles of IL-17A are yet to be clarified. Gut microbiota (GM) are the resident probiotic bacteria in the gastrointestinal tracts which have been introduced as a plausible regulator of IL-17A production and functions. This review article describes the recent information regarding the roles played by GM in determination of IL-17A functions outcome.
Collapse
Affiliation(s)
- Banafsheh Douzandeh-Mobarrez
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| |
Collapse
|
18
|
Missailidis C, Sørensen N, Ashenafi S, Amogne W, Kassa E, Bekele A, Getachew M, Gebreselassie N, Aseffa A, Aderaye G, Andersson J, Brighenti S, Bergman P. Vitamin D and Phenylbutyrate Supplementation Does Not Modulate Gut Derived Immune Activation in HIV-1. Nutrients 2019; 11:nu11071675. [PMID: 31330899 PMCID: PMC6682943 DOI: 10.3390/nu11071675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Dysbiosis and a dysregulated gut immune barrier function contributes to chronic immune activation in HIV-1 infection. We investigated if nutritional supplementation with vitamin D and phenylbutyrate could improve gut-derived inflammation, selected microbial metabolites, and composition of the gut microbiota. Treatment-naïve HIV-1-infected individuals (n = 167) were included from a double-blind, randomized, and placebo-controlled trial of daily 5000 IU vitamin D and 500 mg phenylbutyrate for 16 weeks (Clinicaltrials.gov NCT01702974). Baseline and per-protocol plasma samples at week 16 were analysed for soluble CD14, the antimicrobial peptide LL-37, kynurenine/tryptophan-ratio, TMAO, choline, and betaine. Assessment of the gut microbiota involved 16S rRNA gene sequencing of colonic biopsies. Vitamin D + phenylbutyrate treatment significantly increased 25-hydroxyvitamin D levels (p < 0.001) but had no effects on sCD14, the kynurenine/tryptophan-ratio, TMAO, or choline levels. Subgroup-analyses of vitamin D insufficient subjects demonstrated a significant increase of LL-37 in the treatment group (p = 0.02), whereas treatment failed to significantly impact LL-37-levels in multiple regression analysis. Further, no effects on the microbiota was found in number of operational taxonomic units (p = 0.71), Shannon microbial diversity index (p = 0.82), or in principal component analyses (p = 0.83). Nutritional supplementation with vitamin D + phenylbutyrate did not modulate gut-derived inflammatory markers or microbial composition in treatment-naïve HIV-1 individuals with active viral replication.
Collapse
Affiliation(s)
- Catharina Missailidis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden.
| | | | - Senait Ashenafi
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Wondwossen Amogne
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Endale Kassa
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Meron Getachew
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | | | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), 1005 Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Department of Internal Medicine, Faculty of Medicine, Black Lion University Hospital and Addis Ababa University, 1176 Addis Ababa, Ethiopia
| | - Jan Andersson
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), F59, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 14152 Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden
| |
Collapse
|
19
|
Sun W, Zhang L, Lu X, Feng L, Sun S. The synergistic antifungal effects of sodium phenylbutyrate combined with azoles against Candida albicans via the regulation of the Ras-cAMP-PKA signalling pathway and virulence. Can J Microbiol 2018; 65:105-115. [PMID: 30261147 DOI: 10.1139/cjm-2018-0337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathogenic fungus Candida albicans is one of the most commonly clinically isolated fungal species, and its resistance to the antifungal drug fluconazole is known to be increasing. In this paper, we sought to characterize the effect of sodium phenylbutyrate used alone or in combination with azoles against resistant C. albicans. The minimum inhibitory concentrations and sessile minimum inhibitory concentrations were determined to explore the synergistic mechanism. The results showed that sodium phenylbutyrate exerted clear antifungal activity and that the combination of sodium phenylbutyrate and azoles functioned synergistically to combat resistant C. albicans. In our study of the mechanism, we initially found that the combination therapy resulted in the inhibition of hypha growth, the increased penetration of fluconazole through C. albicans biofilm, and the decreased expression of hyphae-related genes and the upstream regulatory genes (CYR1 and TPK2) of the Ras-cAMP-PKA signalling pathway, as determined by RT-PCR. In addition, the combination treatment decreased the extracellular phospholipase activities and the expression of aspartyl proteinase genes (SAP1-SAP3). The synergistic antifungal effects of the combination of sodium phenylbutyrate and azoles against resistant C. albicans was mainly based on the regulation of the Ras-cAMP-PKA signalling pathway, hyphae-related genes, and virulence factors.
Collapse
Affiliation(s)
- Wenwen Sun
- a Affiliated Hospital of Jining Medical University, Jining, Shandong Province, P.R. China.,b Taishan Medical University, Taian, Shandong Province, P.R. China
| | - Liuping Zhang
- b Taishan Medical University, Taian, Shandong Province, P.R. China.,c Pharmaceutical Department, Shanxian Central Hospital, Heze, Shandong Province, P.R. China
| | - Xiaoyan Lu
- c Pharmaceutical Department, Shanxian Central Hospital, Heze, Shandong Province, P.R. China
| | - Lei Feng
- a Affiliated Hospital of Jining Medical University, Jining, Shandong Province, P.R. China
| | - Shujuan Sun
- d Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, P.R. China
| |
Collapse
|
20
|
Mohammadi A, Sharifi A, Pourpaknia R, Mohammadian S, Sahebkar A. Manipulating macrophage polarization and function using classical HDAC inhibitors: Implications for autoimmunity and inflammation. Crit Rev Oncol Hematol 2018; 128:1-18. [DOI: 10.1016/j.critrevonc.2018.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
|
21
|
Brown DM, Jones S, Daniel ZCTR, Brearley MC, Lewis JE, Ebling FJP, Parr T, Brameld JM. Effect of sodium 4-phenylbutyrate on Clenbuterol-mediated muscle growth. PLoS One 2018; 13:e0201481. [PMID: 30052661 PMCID: PMC6063449 DOI: 10.1371/journal.pone.0201481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
Previously, we highlighted induction of an integrated stress response (ISR) gene program in skeletal muscle of pigs treated with a beta-adrenergic agonist. Hence we tested the hypothesis that the ER-stress inhibitor, sodium 4-phenylbutyrate (PBA), would inhibit Clenbuterol-mediated muscle growth and reduce expression of genes that are known indicators of an ISR in mice. Clenbuterol (1mg/kg/day) administered to C57BL6/J mice for 21 days increased body weight (p<0.001), muscle weights (p<0.01), and muscle fibre diameters (p<0.05). Co-administration of PBA (100mg/kg/day) did not alter the Clenbuterol-mediated phenotype, nor did PBA alone have any effects compared to that of the vehicle treated mice. Clenbuterol increased skeletal muscle mRNA expression of phosphoserine amino transferase 1 (PSAT1, p<0.001) and cyclophillin A (p<0.01) at day 3, but not day 7. Clenbuterol decreased mRNA expression of activating transcription factor (ATF) 4 and ATF5 at day 3 (p<0.05) and day 7 (p<0.01), X-box binding protein 1 (XBP1) variant 2 mRNA at day 3 only (p<0.01) and DNA damage inducible transcript 3 (DDIT3/CHOP) mRNA at day 7 only (p<0.05). Co-administration of PBA had no effect on Clenbuterol-induced changes in skeletal muscle gene expression. In contrast, treatment of C2C12 myotubes with 5mM PBA (8hr) attenuated the thapsigargin-induced ISR gene program. Prolonged (24-48hr) treatment with PBA caused atrophy (p<0.01), reduced neoprotein synthesis (p<0.0001) and decreased expression of myogenin and fast myosin heavy chain genes (p<0.01), indicating an inhibition of myogenic differentiation. In summary, Clenbuterol did not induce an ISR gene program in mouse muscle. On the contrary, it reduced expression of a number of ISR genes, but it increased expression of PSAT1 mRNA. Co-administration of PBA had no effect on Clenbuterol-mediated muscle growth or gene expression in mice, whereas PBA did inhibit thapsigargin-induced ISR gene expression in cultured C2C12 cells and appeared to inhibit myogenic differentiation, independent of altering ISR gene expression.
Collapse
Affiliation(s)
- David M. Brown
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Sarah Jones
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Zoe C. T. R. Daniel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Madelaine C. Brearley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Jo E. Lewis
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Francis J. P. Ebling
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Tim Parr
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - John M. Brameld
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Rekha RS, Mily A, Sultana T, Haq A, Ahmed S, Mostafa Kamal SM, van Schadewijk A, Hiemstra PS, Gudmundsson GH, Agerberth B, Raqib R. Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D 3 as host directed therapy. BMC Infect Dis 2018; 18:303. [PMID: 29973153 PMCID: PMC6033279 DOI: 10.1186/s12879-018-3203-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background We have previously shown that 8 weeks’ treatment with phenylbutyrate (PBA) (500mgx2/day) with or without vitamin D3 (vitD3) (5000 IU/day) as host-directed therapy (HDT) accelerated clinical recovery, sputum culture conversion and increased expression of cathelicidin LL-37 by immune cells in a randomized, placebo-controlled trial in adults with pulmonary tuberculosis (TB). In this study we further aimed to examine whether HDT with PBA and vitD3 promoted clinically beneficial immunomodulation to improve treatment outcomes in TB patients. Methods Cytokine concentration was measured in supernatants of peripheral blood mononuclear cells (PBMC) from patients (n = 31/group). Endoplasmic reticulum stress-related genes (GADD34 and XBP1spl) and human beta-defensin-1 (HBD1) gene expression were studied in monocyte-derived-macrophages (MDM) (n = 18/group) from PBMC of patients. Autophagy in MDM (n = 6/group) was evaluated using LC3 expression by confocal microscopy. Results A significant decline in the concentration of cytokines/chemokines was noted from week 0 to 8 in the PBA-group [TNF-α (β = − 0.34, 95% CI = − 0.68, − 0.003; p = 0.04), CCL11 (β = − 0.19, 95% CI = − 0.36, − 0.03; p = 0.02) and CCL5 (β = − 0.08, 95% CI = − 0.16, 0.002; p = 0.05)] and vitD3-group [(CCL11 (β = − 0.17, 95% CI = − 0.34, − 0.001; p = 0.04), CXCL10 (β = − 0.38, 95% CI = − 0.77, 0.003; p = 0.05) and PDGF-β (β = − 0.16, 95% CI = − 0.31, 0.002; p = 0.05)] compared to placebo. Both PBA- and vitD3-groups showed a decline in XBP1spl mRNA on week 8 (p < 0.03). All treatment groups demonstrated increased LC3 expression in MDM compared to placebo over time (p < 0.037). Conclusion The use of PBA and vitD3 as adjunct therapy to standard TB treatment promoted favorable immunomodulation to improve treatment outcomes. Trials registration This trial was retrospectively registered in clinicaltrials.gov, under identifier NCT01580007. Electronic supplementary material The online version of this article (10.1186/s12879-018-3203-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rokeya Sultana Rekha
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Akhirunnesa Mily
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tajnin Sultana
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Ahsanul Haq
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh
| | - Sultan Ahmed
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.,Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - S M Mostafa Kamal
- National Institute of the Diseases of the Chest and Hospital, Mohakhali, Dhaka, Bangladesh
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Dhaka, 1212, Bangladesh.
| |
Collapse
|
23
|
Lewis BB, Pamer EG. Microbiota-Based Therapies for Clostridium difficile and Antibiotic-Resistant Enteric Infections. Annu Rev Microbiol 2017; 71:157-178. [PMID: 28617651 DOI: 10.1146/annurev-micro-090816-093549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens are increasingly antibiotic resistant, and development of clinically effective antibiotics is lagging. Curing infections increasingly requires antimicrobials that are broader spectrum, more toxic, and more expensive, and mortality attributable to antibiotic-resistant pathogens is rising. The commensal microbiota, comprising microbes that colonize the mammalian gastrointestinal tract, can provide high levels of resistance to infection, and the contributions of specific bacterial species to resistance are being discovered and characterized. Microbiota-mediated mechanisms of colonization resistance and pathogen clearance include bactericidal activity, nutrient depletion, immune activation, and manipulation of the gut's chemical environment. Current research is focusing on development of microbiota-based therapies to reduce intestinal colonization with antibiotic-resistant pathogens, with the goal of reducing pathogen transmission and systemic dissemination.
Collapse
Affiliation(s)
- Brittany B Lewis
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| | - Eric G Pamer
- Infectious Diseases Service, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; ,
| |
Collapse
|
24
|
Wotzka SY, Nguyen BD, Hardt WD. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell Host Microbe 2017; 21:443-454. [PMID: 28407482 DOI: 10.1016/j.chom.2017.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022]
Abstract
Despite decades of research, efficient therapies for most enteropathogenic bacteria are still lacking. In this review, we focus on Salmonella enterica Typhimurium (S. Typhimurium), a frequent cause of acute, self-limiting food-borne diarrhea and a model that has revealed key principles of enteropathogen infection. We review the steps of gut infection and the mucosal innate-immune defenses limiting pathogen burdens, and we discuss how inflammation boosts gut luminal S. Typhimurium growth. We also discuss how S. Typhimurium-induced inflammation accelerates the transfer of plasmids and phages, which may promote the transmission of antibiotic resistance and facilitate emergence of pathobionts and pathogens with enhanced virulence. The targeted manipulation of the microbiota and vaccination might offer strategies to prevent this evolution. As gut luminal microbes impact various aspects of the host's physiology, improved strategies for preventing enteropathogen infection and disease-inflicted DNA exchange may be of broad interest well beyond the acute infection.
Collapse
Affiliation(s)
- Sandra Y Wotzka
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
25
|
Karavolos M, Holban A. Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota. Pharmaceuticals (Basel) 2016; 9:E62. [PMID: 27690060 PMCID: PMC5198037 DOI: 10.3390/ph9040062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
The new age of nanotechnology has signaled a stream of entrepreneurial possibilities in various areas, form industry to medicine. Drug delivery has benefited the most by introducing nanostructured systems in the transport and controlled release of therapeutic molecules at targeted sites associated with a particular disease. As many nanosized particles reach the gastrointestinal tract by various means, their interactions with the molecular components of this highly active niche are intensively investigated. The well-characterized antimicrobial activities of numerous nanoparticles are currently being considered as a reliable and efficient alternative to the eminent world crisis in antimicrobial drug discovery. The interactions of nanosystems present in the gastrointestinal route with host microbiota is unavoidable; hence, a major research initiative is needed to explore the mechanisms and effects of these nanomaterials on microbiota and the impact that microbiota may have in the outcome of therapies entailing drug delivery nanosystems through the gastrointestinal route. These coordinated studies will provide novel techniques to replace or act synergistically with current technologies and help develop new treatments for major diseases via the discovery of unique antimicrobial molecules.
Collapse
Affiliation(s)
| | - Alina Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 77206, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
| |
Collapse
|