1
|
Qin L, Liu L, Wu Y, Chen Y, Wu Y, Luo H, Xi Y, Xiu F, Hu J, Chen L, Wu N, He J, Zeng Y, Zhu C, You X. Mycoplasma pneumoniae downregulates RECK to promote matrix metalloproteinase-9 secretion by bronchial epithelial cells. Virulence 2022; 13:1270-1284. [PMID: 35892136 PMCID: PMC9336473 DOI: 10.1080/21505594.2022.2101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Airway epithelial cells function as both a physical barrier against harmful substances and pathogenic microorganisms and as an important participant in the innate immune system. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in modulating inflammatory responses during respiratory infections. However, the signalling cascade that induces MMP-9 secretion from epithelial cells infected with Mycoplasma pneumoniae remains poorly understood. In this study, we investigated the mechanism of MMP-9 secretion in airway epithelial cells infected with M. pneumoniae. Our data clearly showed that M. pneumoniae induced the secretion of MMP-9 from bronchial epithelial cells and upregulated its enzymatic activity in a time- and dose-dependent manner. Using specific inhibitors and chromatin co-precipitation experiments, we confirmed that the expression of MMP-9 is reliant on the activation of the Toll-like receptor 2 (TLR2) and TLR6-dependent mitogen-activated protein kinase/nuclear factor- κB/activator protein-1 (MAPK/NF-κB/AP-1) pathways. Additionally, epigenetic modifications such as histone acetylation and the nuclear transcription factor Sp1 also regulate MMP-9 expression. M. pneumoniae infection also decreased the expression of the tumour suppressor reversion-inducing cysteine-rich protein with Kazal motifs (RECK) by inducing Sp1 phosphorylation. Overexpression of RECK significantly impaired the M. pneumoniae-triggered increase in MMP-9 enzymatic activity, although the level of MMP-9 protein remained constant. The study demonstrated that M. pneumoniae-triggered MMP-9 expression is modulated by TLR2 and 6, the MAPK/NF-κB/AP-1 signalling cascade, and histone acetylation, and M. pneumoniae downregulated the expression of RECK, thereby increasing MMP-9 activity to modulate the inflammatory response, which could play a role in airway remodelling.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueping Wu
- Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yixuan Xi
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jun Hu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Ning Wu
- Department of Clinical Laboratory, Hengyang No.1 People's Hospital, Hengyang, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
2
|
Ramos EI, Das K, Harrison AL, Garcia A, Gadad SS, Dhandayuthapani S. Mycoplasma genitalium and M. pneumoniae Regulate a Distinct Set of Protein-Coding Genes in Epithelial Cells. Front Immunol 2021; 12:738431. [PMID: 34707609 PMCID: PMC8544821 DOI: 10.3389/fimmu.2021.738431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mycoplasma genitalium and M. pneumoniae are two significant mycoplasmas that infect the urogenital and respiratory tracts of humans. Despite distinct tissue tropisms, they both have similar pathogenic mechanisms and infect/invade epithelial cells in the respective regions and persist within these cells. However, the pathogenic mechanisms of these species in terms of bacterium-host interactions are poorly understood. To gain insights on this, we infected HeLa cells independently with M. genitalium and M. pneumoniae and assessed gene expression by whole transcriptome sequencing (RNA-seq) approach. The results revealed that HeLa cells respond to M. genitalium and M. pneumoniae differently by regulating various protein-coding genes. Though there is a significant overlap between the genes regulated by these species, many of the differentially expressed genes were specific to each species. KEGG pathway and signaling network analyses revealed that the genes specific to M. genitalium are more related to cellular processes. In contrast, the genes specific to M. pneumoniae infection are correlated with immune response and inflammation, possibly suggesting that M. pneumoniae has some inherent ability to modulate host immune pathways.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alana L. Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Anissa Garcia
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, United States
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
3
|
Kataoka H, Saeki A, Hasebe A, Shibata K, Into T. Naringenin suppresses Toll-like receptor 2-mediated inflammatory responses through inhibition of receptor clustering on lipid rafts. Food Sci Nutr 2021; 9:963-972. [PMID: 33598179 PMCID: PMC7866581 DOI: 10.1002/fsn3.2063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are important innate immune receptors that sometimes cause excessive inflammatory responses and a perpetuated inflammatory loop that can be involved in inflammatory and autoimmune diseases. TLR2 recognizes bacterial lipoproteins in association with TLR1 or TLR6, and triggers inflammatory responses through activation of the transcription factor NF-κB. Naringenin, a type of citrus flavonoid, has been shown to possess anti-inflammatory properties, but its detailed action against TLR2 remains to be fully elucidated. The present study was designed to determine whether naringenin affects the inflammatory responses triggered by TLR2. Naringenin inhibited proinflammatory cytokine production and attenuated NF-κB activation in cells stimulated with a synthetic triacylated-type lipopeptide known as a TLR2/TLR1 ligand, as well as a synthetic diacylated-type lipopeptide known as a TLR2/TLR6 ligand. Moreover, a similar inhibitory effect was observed in cells stimulated with a crude lipophilic fraction extracted from Staphylococcus aureus cell walls and in cells stimulated with S. aureus cells. Furthermore, we showed that such an effect is caused by inhibition of TLR2 clustering in lipid rafts on the cell membrane. These results suggest that naringenin suppresses the inflammatory responses induced by TLR2 signal transduction. Our findings indicate a novel anti-inflammatory property of naringenin, mediated through the regulation of cell surface TLR2 functioning.
Collapse
Affiliation(s)
- Hideo Kataoka
- Division of Oral Infections and Health SciencesDepartment of Oral MicrobiologyAsahi University School of DentistryMizuhoJapan
| | - Ayumi Saeki
- Department of Oral Molecular MicrobiologyFaculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Akira Hasebe
- Department of Oral Molecular MicrobiologyFaculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Ken‐ichiro Shibata
- Department of Oral Molecular MicrobiologyFaculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Takeshi Into
- Division of Oral Infections and Health SciencesDepartment of Oral MicrobiologyAsahi University School of DentistryMizuhoJapan
| |
Collapse
|
4
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
5
|
Su SB, Tao L, Deng ZP, Chen W, Qin SY, Jiang HX. TLR10: Insights, controversies and potential utility as a therapeutic target. Scand J Immunol 2020; 93:e12988. [PMID: 33047375 DOI: 10.1111/sji.12988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
The Toll-like receptor (TLR) family acts as a bridge connecting innate and acquired immunity. TLR10 remains one of the least understood members of this family. Some studies have examined TLR10 ligands, dimerization of TLR10 with other TLRs, and downstream signalling pathways and functions, but they have often arrived at conflicting conclusions. TLR10 can induce the production of proinflammatory cytokines by forming homodimers with itself or heterodimers with TLR1 or other TLRs, but it can also inhibit proinflammatory responses when co-expressed with TLR2 or potentially other TLRs. Mutations in the Toll/Interleukin 1 receptor (TIR) domain of TLR10 alter its signalling activity. Polymorphisms in the TLR10 gene can change the balance between pro- and anti-inflammatory responses and hence modulate the susceptibility to infection and autoimmune diseases. Understanding the full range of TLR10 ligands and functions may allow the receptor to be exploited as a therapeutic target in inflammation- or immune-related diseases. Here, we summarize recent findings on the pro- and anti-inflammatory roles of TLR10 and the molecular pathways in which it is implicated. Our goal is to pave the way for future studies of the only orphan TLR thought to have strong potential as a target in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Si-Biao Su
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Tao
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ze-Ping Deng
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen Chen
- Department of Academic Affairs, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Yu Qin
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Blötz C, Singh N, Dumke R, Stülke J. Characterization of an Immunoglobulin Binding Protein (IbpM) From Mycoplasma pneumoniae. Front Microbiol 2020; 11:685. [PMID: 32373096 PMCID: PMC7176901 DOI: 10.3389/fmicb.2020.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteria evolved many ways to invade, colonize and survive in the host tissue. Such complex infection strategies of other bacteria are not present in the cell-wall less Mycoplasmas. Due to their strongly reduced genomes, these bacteria have only a minimal metabolism. Mycoplasma pneumoniae is a pathogenic bacterium using its virulence repertoire very efficiently, infecting the human lung. M. pneumoniae can cause a variety of conditions including fever, inflammation, atypical pneumoniae, and even death. Due to its strongly reduced metabolism, M. pneumoniae is dependent on nutrients from the host and aims to persist as long as possible, resulting in chronic diseases. Mycoplasmas evolved strategies to subvert the host immune system which involve proteins fending off immunoglobulins (Igs). In this study, we investigated the role of MPN400 as the putative factor responsible for Ig-binding and host immune evasion. MPN400 is a cell-surface localized protein which binds strongly to human IgG, IgA, and IgM. We therefore named the protein MPN400 immunoglobulin binding protein of Mycoplasma (IbpM). A strain devoid of IbpM is slightly compromised in cytotoxicity. Taken together, our study indicates that M. pneumoniae uses a refined mechanism for immune evasion.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Roger Dumke
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Mycoplasma pneumoniae and toll-like receptors: A mutual avenue. Allergol Immunopathol (Madr) 2018; 46:508-513. [PMID: 29331619 DOI: 10.1016/j.aller.2017.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Mycoplasma pneumoniae is an intracellular bacterium leading to several complications in humans. M. pneumoniae is cleared in some cases and induces complications in others. The main responsible mechanisms regarding the controversy are yet to be cleared. Toll-like receptors (TLRs) are the important cell membrane and intracellular receptors which recognize a wide range of microbial macromolecules. The roles of TLRs in the eradication of several pathogens and also induction of their related complications have been demonstrated. This review article presents recent data about the roles of TLRs in the induction of immune responses which lead to M. pneumoniae eradication and related complications.
Collapse
|
8
|
Christodoulides A, Gupta N, Yacoubian V, Maithel N, Parker J, Kelesidis T. The Role of Lipoproteins in Mycoplasma-Mediated Immunomodulation. Front Microbiol 2018; 9:1682. [PMID: 30108558 PMCID: PMC6080569 DOI: 10.3389/fmicb.2018.01682] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/05/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma infections, such as walking pneumonia or pelvic inflammatory diseases, are a major threat to public health. Despite their relatively small physical and genomic size, mycoplasmas are known to elicit strong host immune responses, generally inflammatory, while also being able to evade the immune system. The mycoplasma membrane is composed of approximately two-thirds protein and one-third lipid and contains several lipoproteins that are known to regulate host immune responses. Herein, the immunomodulatory effects of mycoplasma lipoproteins are reviewed. A better understanding of the immunomodulatory effects, both activating and evasive, of Mycoplasma surface lipoproteins will contribute to understanding mechanisms potentially relevant to mycoplasma disease vaccine development and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Theodoros Kelesidis
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Interaction of Mycoplasma hominis PG21 with Human Dendritic Cells: Interleukin-23-Inducing Mycoplasmal Lipoproteins and Inflammasome Activation of the Cell. J Bacteriol 2017; 199:JB.00213-17. [PMID: 28559291 DOI: 10.1128/jb.00213-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/18/2017] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hominis lacks a cell wall, and lipoproteins anchored to the extracellular side of the plasma membrane are in direct contact with the host components. A Triton X-114 extract of M. hominis enriched with lipoproteins was shown to stimulate the production of interleukin-23 (IL-23) by human dendritic cells (hDCs). The inflammasome activation of the host cell has never been reported upon M. hominis infection. We studied here the interaction between M. hominis PG21 and hDCs by analyzing both the inflammation-inducing mycoplasmal lipoproteins and the inflammasome activation of the host cell. IL-23-inducing lipoproteins were determined using a sequential extraction strategy with two nondenaturing detergents, Sarkosyl and Triton X-114, followed by SDS-PAGE separation and mass spectrometry identification. The activation of the hDC inflammasome was assessed using PCR array and enzyme-linked immunosorbent assay (ELISA). We defined a list of 24 lipoproteins that could induce the secretion of IL-23 by hDCs, 5 with a molecular mass between 20 and 35 kDa and 19 with a molecular mass between 40 and 100 kDa. Among them, lipoprotein MHO_4720 was identified as potentially bioactive, and a synthetic lipopeptide corresponding to the N-terminal part of the lipoprotein was subsequently shown to induce IL-23 release by hDCs. Regarding the hDC innate immune response, inflammasome activation with caspase-dependent production of IL-1β was observed. After 24 h of coincubation of hDCs with M. hominis, downregulation of the NLRP3-encoding gene and of the adaptor PYCARD-encoding gene was noticed. Overall, this study provides insight into both protagonists of the interaction of M. hominis and hDCs.IMPORTANCEMycoplasma hominis is a human urogenital pathogen involved in gynecologic and opportunistic infections. M. hominis lacks a cell wall, and its membrane contains many lipoproteins that are anchored to the extracellular side of the plasma membrane. In the present study, we focused on the interaction between M. hominis and human dendritic cells and examined both sides of the interaction, the mycoplasmal lipoproteins involved in the activation of the host cell and the immune response of the cell. On the mycoplasmal side, we showed for the first time that M. hominis lipoproteins with high molecular mass were potentially bioactive. On the cell side, we reported an activation of the inflammasome, which is involved in the innate immune response.
Collapse
|
10
|
Mitterreiter JG, Ouwendijk WJD, van Velzen M, van Nierop GP, Osterhaus ADME, Verjans GMGM. Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors. Eur J Immunol 2017; 47:1181-1187. [PMID: 28508449 DOI: 10.1002/eji.201746989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) orchestrate immune responses to a wide variety of danger- and pathogen-associated molecular patterns. Compared to the central nervous system (CNS), expression profile and function of TLRs in the human peripheral nervous system (PNS) are ill-defined. We analyzed TLR expression of satellite glial cells (SGCs) and microglia, glial cells predominantly involved in local immune responses in ganglia of the human PNS and normal-appearing white matter (NAWM) of the CNS, respectively. Ex vivo flow cytometry analysis of cell suspensions obtained from human cadaveric trigeminal ganglia (TG) and NAWM showed that both SGCs and microglia expressed TLR1-5, TLR7, and TLR9, although expression levels varied between these cell types. Immunohistochemistry confirmed expression of TLR1-TLR4 and TLR9 by SGCs in situ. Stimulation of TG- and NAWM-derived cell suspensions with ligands of TLR1-TLR6, but not TLR7 and TLR9, induced interleukin 6 (IL-6) secretion. We identified CD45LOW CD14POS SGCs and microglia, but not CD45HIGH leukocytes and CD45NEG cells as the main source of IL-6 and TNF-α upon stimulation with TLR3 and TLR5 ligands. In conclusion, human TG-resident SGCs express a broad panel of functional TLRs, suggesting their role in initiating and orchestrating inflammation to pathogens in human sensory ganglia.
Collapse
Affiliation(s)
- Johanna G Mitterreiter
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Germany.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gijsbert P van Nierop
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Germany
| | - Georges M G M Verjans
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Germany.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
An improved non-denaturing method for the purification of spiralin, the main membrane lipoprotein of the pathogenic bacteria Spiroplasma melliferum. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1036-1037:149-156. [DOI: 10.1016/j.jchromb.2016.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022]
|
12
|
He J, Liu M, Ye Z, Tan T, Liu X, You X, Zeng Y, Wu Y. Insights into the pathogenesis of Mycoplasma pneumoniae (Review). Mol Med Rep 2016; 14:4030-4036. [PMID: 27667580 PMCID: PMC5101875 DOI: 10.3892/mmr.2016.5765] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/25/2016] [Indexed: 11/08/2022] Open
Abstract
Mycoplasma are the smallest prokaryotic microbes present in nature. These wall-less, malleable organisms can pass through cell filters, and grow and propagate under cell-free conditions in vitro. Of the pathogenic Mycoplasma Mycoplasma pneumoniae has been examined the most. In addition to primary atypical pneumonia and community-acquired pneumonia with predominantly respiratory symptoms, M. pneumoniae can also induce autoimmune hemolytic anemia and other diseases in the blood, cardiovascular system, gastrointestinal tract and skin, and can induce pericarditis, myocarditis, nephritis and meningitis. The pathogenesis of M. pneumoniae infection is complex and remains to be fully elucidated. The present review aimed to summarize several direct damage mechanisms, including adhesion damage, destruction of membrane fusion, nutrition depletion, invasive damage, toxic damage, inflammatory damage and immune damage. Further investigations are required for determining the detailed pathogenesis of M. pneumoniae.
Collapse
Affiliation(s)
- Jun He
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mihua Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhufeng Ye
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tianping Tan
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinghui Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxing You
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanhua Zeng
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yimou Wu
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Shimizu T. Inflammation-inducing Factors of Mycoplasma pneumoniae. Front Microbiol 2016; 7:414. [PMID: 27065977 PMCID: PMC4814563 DOI: 10.3389/fmicb.2016.00414] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Mycoplasma pneumoniae, which causes mycoplasmal pneumonia in human, mainly causes pneumonia in children, although it occasionally causes disease in infants and geriatrics. Some pathogenic factors produced by M. pneumoniae, such as hydrogen peroxide and Community-Acquired Respiratory Distress Syndrome (CARDS) toxin have been well studied. However, these factors alone cannot explain this predilection. The low incidence rate of mycoplasmal pneumonia in infants and geriatrics implies that the strong inflammatory responses induced by M. pneumoniae coordinate with the pathogenic factors to induce pneumonia. However, M. pneumoniae lacks a cell wall and does not possess an inflammation-inducing endotoxin, such as lipopolysaccharide (LPS). In M. pneumoniae, lipoproteins were identified as an inflammation-inducing factor. Lipoproteins induce inflammatory responses through Toll-like receptors (TLR) 2. Because Mycoplasma species lack a cell wall and lipoproteins anchored in the membrane are exposed, lipoproteins and TLR2 have been thought to be important for the pathogenesis of M. pneumoniae. However, recent reports suggest that M. pneumoniae also induces inflammatory responses also in a TLR2-independent manner. TLR4 and autophagy are involved in this TLR2-independent inflammation. In addition, the CARDS toxin or M. pneumoniae cytadherence induces inflammatory responses through an intracellular receptor protein complex called the inflammasome. In this review, the inflammation-inducing factors of M. pneumoniae are summarized.
Collapse
Affiliation(s)
- Takashi Shimizu
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University Yamaguchi, Japan
| |
Collapse
|
14
|
Macrophage-activating lipopeptide-2 requires Mal and PI3K for efficient induction of heme oxygenase-1. PLoS One 2014; 9:e103433. [PMID: 25077631 PMCID: PMC4117634 DOI: 10.1371/journal.pone.0103433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
AIMS This study is to investigate the mechanisms by which macrophage-activating lipopeptide-2 (MALP-2) induces heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme, in human monocytes. METHODS Human monocytic THP-1 cells were cultured for transient transfection with plasmids and stimulation with MALP-2 for indicative time intervals. After incubation with MALP-2, cells were collected and disrupted, before being tested for promoter activity using luciferase assay. For analysis of proteins, immunoreactive bands were detected using an enhanced chemiluminescence Western blotting system, and the band intensity was measured by densitometryic analysis. For the detection of co-immunoprecipitation, SDS-PAGE was performed and the membranes were probed using respective antibodies. To investigate the cellular localization of NF-E2-related factor 2 (Nrf2), cells underwent immunofluorescence staining and confocal microscopy, and were analyzed using electrophoretic mobility shift assay. RESULTS MALP-2-induced HO-1 expression and promoter activity were abrogated by transfection with dominant negative (DN) plasmids of TLR2 and TLR6, or their neutralizing antibodies. However, inhibition of MyD88 or transfection with the DN-MyD88 was insufficient to attenuate HO-1 expression. In contrast, mutation or silencing of MyD88 adapter-like (Mal) by DN-Mal or siRNA almost completely blocked HO-1 induction. Btk, c-Src and PI3K were also involved in MALP-2-induced HO-1 expression, as revealed by specific inhibitors LFM-A13, PP1 and LY294002, or by transfection with siRNA of c-Src. MALP-2-induced activation of PI3K was attenuated by transfection with DN mutant of Mal, and by pretreatment with LFM-A13 or PP1. Furthermore, MALP-2 stimulated the translocation of Nrf2 from the cytosol to the nucleus and Nrf2 binding to the ARE site in the HO-1 promoter, which could also be inhibited by pretreatment with a PI3K inhibitor, LY294002. CONCLUSIONS These results indicated that MALP-2 required TLR2/6, Btk, Mal and c-Src to activate PI3K, which in turn initiated the activation of Nrf2 for efficient HO-1 induction.
Collapse
|
15
|
Oven I, Resman Rus K, Dušanić D, Benčina D, Keeler CL, Narat M. Diacylated lipopeptide from Mycoplasma synoviae mediates TLR15 induced innate immune responses. Vet Res 2013; 44:99. [PMID: 24134665 PMCID: PMC4014865 DOI: 10.1186/1297-9716-44-99] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/03/2013] [Indexed: 11/17/2022] Open
Abstract
Avian-specific toll like receptor 15 (TLR15) is functionally equivalent to a group of TLR2 family proteins that the mammalian innate immune system utilizes to recognize a broad spectrum of microbe-associated molecular patterns, including bacterial lipoproteins. In this study we examined the role of chicken TLR2 family members in the innate immune response to the avian pathogenic bacterium, Mycoplasma synoviae. We found that Mycoplasma synoviae, and specifically the N-terminal diacylated lipopeptide (MDLP) representing the amino-terminal portion of its mature haemagglutinin protein, significantly induces the expression of TLR15, but not TLR1 and TLR2 in chicken macrophages and chondrocytes. TLR15 activation is specific and depends on diacylation of the lipopeptide. Activation of TLR15 after stimulation with Mycoplasma synoviae and MDLP triggers an increase in the expression of transcription factor nuclear factor kappa B and nitric oxide production. Moreover, transfection of avian macrophage cells with small interfering RNA reduces the expression of TLR15 after stimulation with MDLP. This leads to decreased activation of the innate immune response, as measured by nitric oxide production. Additionally, pretreatment of cells with neutralizing anti-TLR15 antibody results in a notable attenuation of MDLP-driven release of nitric oxide. This positive correlation may constitute a mechanism for stimulating the innate immune response against avian mycoplasmas in chicken cells via TLR15.
Collapse
Affiliation(s)
| | | | | | | | | | - Mojca Narat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 DomŽale, Slovenia.
| |
Collapse
|
16
|
Bezemer GFG, Sagar S, van Bergenhenegouwen J, Georgiou NA, Garssen J, Kraneveld AD, Folkerts G. Dual role of Toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol Rev 2012; 64:337-58. [PMID: 22407613 DOI: 10.1124/pr.111.004622] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the last decade, significant research has been focused on Toll-like receptors (TLRs) in the pathogenesis of airway diseases. TLRs are pattern recognition receptors that play pivotal roles in the detection of and response to pathogens. Because of the involvement of TLRs in innate and adaptive immunity, these receptors are currently being exploited as possible targets for drug development. Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory airway diseases in which innate and adaptive immunity play an important role. To date, asthma is the most common chronic disease in children aged 5 years and older. COPD is prevalent amongst the elderly and is currently the fifth-leading cause of death worldwide with still-growing prevalence. Both of these inflammatory diseases result in shortness of breath, which is treated, often ineffectively, with bronchodilators and glucocorticosteroids. Symptomatic treatment approaches are similar for both diseases; however, the underlying immunological mechanisms differ greatly. There is a clear need for improved treatment specific for asthma and for COPD. This review provides an update on the role of TLRs in asthma and in COPD and discusses the merits and difficulties of targeting these proteins as novel treatment strategies for airway diseases. TLR agonist, TLR adjuvant, and TLR antagonist therapies could all be argued to be effective in airway disease management. Because of a possible dual role of TLRs in airway diseases with shared symptoms and risk factors but different immunological mechanisms, caution should be taken while designing pulmonary TLR-based therapies.
Collapse
Affiliation(s)
- Gillina F G Bezemer
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Vaccination of BALB/c mice with an avirulent Mycoplasma pneumoniae P30 mutant results in disease exacerbation upon challenge with a virulent strain. Infect Immun 2012; 80:1007-14. [PMID: 22252865 DOI: 10.1128/iai.06078-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycoplasma pneumoniae is a significant human respiratory pathogen that causes high morbidity worldwide. No vaccine to prevent M. pneumoniae infection currently exists, since the mechanisms of pathogenesis are poorly understood. To this end, we constructed a P30 cytadhesin mutant (P-130) with a drastically reduced capacity for binding to erythrocytes and an inability to glide on glass substrates. This mutant was determined to be avirulent and cannot survive in the lungs of BALB/c mice. We also ascertained that the previously identified P30 gliding motility mutant II-3R is avirulent and also cannot be recovered from the lungs of mice after infection. Mutant P130 was then assessed for its efficacy as a live attenuated vaccine candidate in mice after challenge with wild-type M. pneumoniae. After vaccination with the P-130 P30 mutant, mice showed evidence of exacerbated disease upon subsequent challenge with the wild-type strain PI1428, which appears to be driven by a Th17 response and corresponding eosinophilia. Our results are in accordance with other reports of vaccine-induced disease exacerbation in rodents and emphasize the need to better understand the basic mechanisms of M. pneumoniae pathogenesis.
Collapse
|
18
|
Dauphinee SM, Voelcker V, Tebaykina Z, Wong F, Karsan A. Heterotrimeric Gi/Go proteins modulate endothelial TLR signaling independent of the MyD88-dependent pathway. Am J Physiol Heart Circ Physiol 2011; 301:H2246-53. [PMID: 21949112 DOI: 10.1152/ajpheart.01194.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The innate immune recognition of bacterial lipopolysaccharide (LPS) is mediated by Toll-like receptor 4 (TLR4) and results in activation of proinflammatory signaling including NF-κB and MAPK pathways. Heterotrimeric G proteins have been previously implicated in LPS signaling in macrophages and monocytes. In the present study, we show that pertussis toxin sensitive heterotrimeric G proteins (Gα(i/o)) are involved in the activation of MAPK and Akt downstream of TLR2, TLR3, and TLR4 in endothelial cells. Gα(i/o) are also required for full activation of interferon signaling downstream of TLR3 and TLR4 but are not required for the activation of NF-κB. We find that Gα(i/o)-mediated activation of the MAPK is independent of the canonical MyD88, interleukin-1 receptor-associated kinase, and tumor necrosis factor receptor-associated factor 6 signaling cascade in LPS-stimulated cells. Taken together, the data presented here suggest that heterotrimeric G proteins are widely involved in TLR pathways along a signaling cascade that is distinct from MyD88-TRAF6.
Collapse
|
19
|
Fuchs B, Braun A. Modulation of asthma and allergy by addressing toll-like receptor 2. J Occup Med Toxicol 2011; 3 Suppl 1:S5. [PMID: 18315836 PMCID: PMC2259399 DOI: 10.1186/1745-6673-3-s1-s5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors play an important role in innate and adaptive immunity and in balancing immune responses with tolerance. TLR2 is related to protection against allergies and allergic asthma by sensing pathogen associated patterns as lipoproteins and lipopeptides. A constant Th1 triggering is thought to prevent Th2 related disorders. TLR2 is expressed on a variety of cells, both structural as well as immune cells. Importantly, TLR2 is also expressed on dendritic cells, which are thought to be one of the key players of initiating and maintaining immune responses. Therefore, TLR2 on dendritic cells is a good target for modulating immunity either to Th1 or Th2 responses, or induction of tolerance. TLR2 agonists show high immunomodulatory and adjuvantic capacity. This makes TLR2 agonisation a promising approach for pharmaceutical intervention of allergic disorders.
Collapse
Affiliation(s)
- Barbara Fuchs
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|
20
|
Leng CH, Chen HW, Chang LS, Liu HH, Liu HY, Sher YP, Chang YW, Lien SP, Huang TY, Chen MY, Chou AH, Chong P, Liu SJ. A recombinant lipoprotein containing an unsaturated fatty acid activates NF-kappaB through the TLR2 signaling pathway and induces a differential gene profile from a synthetic lipopeptide. Mol Immunol 2010; 47:2015-21. [PMID: 20478617 DOI: 10.1016/j.molimm.2010.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/19/2010] [Accepted: 04/22/2010] [Indexed: 01/29/2023]
Abstract
The lipid moiety of a novel recombinant lipoprotein, which contains a dengue virus envelope protein domain 3, rlipo-D1E3, has been shown to activate antigen-presenting cells (APCs) as an intrinsic adjuvant. Because the lipid moiety of rlipo-D1E3 contains an unsaturated fatty acid, it is unclear if the receptor usage by bacterially derived lipoproteins is the same as that of the synthetic lipopeptide palmitoyl-3-Cys-Ser-(Lys)(4) (Pam3). In the present study, we show that the rlipo-D1E3 lipoprotein can induce the activation of spleen cells and bone marrow-derived dendritic cells (BM-DCs) in wild-type and TLR4-deficient mice, but not in TLR2(-/-) mice. After analyzing the co-receptor usage of TLR2 using TLR1(-/-) or TLR6(-/-) mice, the TLR2 signaling triggered by rlipo-D1E3 and Pam3 could use either TLR1 or TLR6 as a co-receptor. Analysis of the MAPK signaling pathway revealed that rlipo-D1E3 could initiate the phosphorylation of p38, ERK1/2 and JNK1/2 earlier than the synthetic lipopeptide. In addition, the expression levels of IL-23, IL-27 and MIP-1 alpha in BM-DCs stimulated by rlipo-D1E3 were higher than the expression levels in BM-DCs stimulated by Pam3. Taken together, these results demonstrate that different TLR2 ligands can promote various immune responses by inducing different levels of biological cytokines and chemokines.
Collapse
Affiliation(s)
- Chih-Hsiang Leng
- Vaccine Research and Development Center, National Health Research Institutes, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Structure-activity relationship of lipopeptide Group A streptococcus (GAS) vaccine candidates on toll-like receptor 2. Vaccine 2009; 28:2243-2248. [PMID: 20045502 DOI: 10.1016/j.vaccine.2009.12.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/17/2009] [Accepted: 12/20/2009] [Indexed: 11/20/2022]
Abstract
Incorporation of lipoamino acids (LAAs) into peptide structures effectively imparts self-adjuvanting activity onto otherwise ineffective immunogens. Our fully synthetic lipopeptide vaccine candidates against group A streptococcus (GAS) were composed of J14 as a target GAS B-cell epitope alongside a universal helper T-cell epitope (P25) and a LAA-based lipid moiety. In the current study, we investigated the ability of our lipopeptides to activate nuclear factor-kappaB (NF-kappaB) in a toll-like receptor-2 (TLR2)-dependent manner as the possible mode of action and reported the structure-function requirements for novel TLR2 targeting lipopeptides based on LAAs. The NF-kappaB activation was dependent on the dose and the length of the alkyl chains of the incorporated lipid moieties with the hierarchy LAA 3 (16 carbons)>LAA 2 (14 carbons)>LAA 1 (12 carbons). The position of the lipid moiety (C-terminus vs. N(epsilon)-terminus of the central lysine residue) does not significantly affect NF-kappaB activation. Lipopeptides containing different copies of LAA 3 were synthesized and the di-lipidated analogue was the most effective in NFkappaB activation.
Collapse
|
22
|
Brant KA, Fabisiak JP. Nickel alterations of TLR2-dependent chemokine profiles in lung fibroblasts are mediated by COX-2. Am J Respir Cell Mol Biol 2007; 38:591-9. [PMID: 18096868 DOI: 10.1165/rcmb.2007-0314oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Particulate matter air pollution (PM) has been linked with chronic respiratory diseases. Real-life exposures are likely to involve a mixture of chemical and microbial stimuli, yet little attention has been paid to the potential interactions between PM components (e.g., Ni) and microbial agents on the development of inflammatory-like conditions in the lung. Using the Toll-like receptor (TLR)-2 agonist MALP-2 as a lipopeptide relevant to microbial colonization, we hypothesized that nickel sensitizes human lung fibroblasts (HLF) for microbial-driven chemokine release through modulation of TLR signaling pathways. NiSO(4) (200 muM) synergistically enhanced CXCL8, yet antagonized CXCL10 mRNA expression and protein release from HLF in response to MALP-2. RT(2)-PCR pathway-focused array results indicated that NiSO(4) exposure did not alter the expression of TLRs or their downstream signaling mediators, yet significantly increased the expression of cyclooxygenase 2 (COX-2). Moreover, when NiSO(4) was given in combination with MALP-2, there was an amplified induction of COX-2 mRNA and protein along with its metabolic product, PGE2, in HLF. The COX-2 inhibitor, NS-398, attenuated NiSO(4) and MALP-2-induced PGE2 and CXCL8 release and partially reversed the NiSO(4)-dependent inhibition of MALP-2-induced CXCL10 release from HLF. These data indicate that NiSO(4) alters the pattern of TLR-2-dependent chemokine release from HLF via a COX-2-mediated pathway. The quantitative and qualitative effects of NiSO(4) on microbial-driven chemokine release from HLF shed new light on how PM-derived metals can exacerbate respiratory diseases.
Collapse
Affiliation(s)
- Kelly A Brant
- University of Pittsburgh Graduate School of Public Health, Department of Environmental and Occupational Health, Bridgeside Point, 100 Technology Drive, Room 327, BRIDG, Pittsburgh, PA 15219-3130, USA.
| | | |
Collapse
|
23
|
Regulation of MyD88-dependent signaling events by S nitrosylation retards toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol Cell Biol 2007; 28:1338-47. [PMID: 18086890 DOI: 10.1128/mcb.01412-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nitric oxide (NO) has been thought to regulate the immune system through S nitrosylation of the transcriptional factor NF-kappaB. However, regulatory effects of NO on innate immune responses are unclear. Here, we report that NO has a capability to control Toll-like receptor-mediated signaling through S nitrosylation. We found that the adaptor protein MyD88 was primarily S nitrosylated, depending on the presence of endothelial NO synthase (eNOS). S nitrosylation at a particular cysteine residue within the TIR domain of MyD88 resulted in slight reduction of the NF-kappaB-activating property. This modification could be restored by the antioxidant glutathione. Through S nitrosylation, NO could negatively regulate the multiple steps of MyD88 functioning, including translocation to the cell membrane after LPS stimulation, interaction with TIRAP, binding to TRAF6, and induction of IkappaBalpha phosphorylation. Interestingly, glutathione could reversely neutralize such NO-derived effects. We also found that an acute febrile response to LPS was precipitated in eNOS-deficient mice, indicating that eNOS-derived NO exerts an initial suppressive effect on inflammatory processes. Thus, NO has a potential to retard induction of MyD88-dependent signaling events through the reversible and oxidative modification by NO, by which precipitous signaling reactions are relieved. Such an effect may reflect appropriate regulation of the acute-phase inflammatory responses in living organisms.
Collapse
|
24
|
Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect Immun 2007; 76:270-7. [PMID: 17954722 DOI: 10.1128/iai.00955-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of Mycoplasma pneumoniae infection is considered to be in part attributable to excessive immune responses. In this study, we investigated whether synthetic lipopeptides of subunit b of F0F1-type ATPase (F0F1-ATPase), NF-kappaB-activating lipoprotein 1 (N-ALP1), and N-ALP2 (named FAM20, sN-ALP1, and sN-ALP2, respectively) derived from M. pneumoniae induce cytokine and chemokine production and leukocyte infiltration in vivo. Intranasal administration of FAM20 and sN-ALP2 induced infiltration of leukocyte cells and production of chemokines and cytokines in bronchoalveolar lavage fluid, but sN-ALP1 failed to do so. The activity of FAM20 was notably higher than that of sN-ALP2. FAM20 and sN-ALP2 induced tumor necrosis factor alpha (TNF-alpha) through Toll-like receptor 2 in mouse peritoneal macrophages. Moreover, in the range of low concentrations of lipopeptides, FAM20 showed relatively high activity of inducing TNF-alpha in mouse peritoneal macrophages compared to synthetic lipopeptides such as MALP-2 and FSL-1, derived from Mycoplasma fermentans and Mycoplasma salivarium, respectively. These findings indicate that the F0F1-ATPase might be a key molecule in inducing cytokines and chemokines contributing to inflammatory responses during M. pneumoniae infection in vivo.
Collapse
|