1
|
Badger-Emeka L, Emeka P, Thirugnanasambantham K, Alatawi AS. The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches. Pharmaceutics 2024; 16:1074. [PMID: 39204419 PMCID: PMC11360345 DOI: 10.3390/pharmaceutics16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Promise Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| |
Collapse
|
2
|
Wu J, Wang W, Yuan F, Zheng J, Zhang W, Guo H, Wang L, Dai C, Han F, Wu X, Gao J. CXCL16 exacerbates Pseudomonas aeruginosa keratitis by promoting neutrophil activation. Int Immunopharmacol 2024; 127:111375. [PMID: 38154213 DOI: 10.1016/j.intimp.2023.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Pseudomonas aeruginosa (PA) keratitis is a major cause of blindness characterized by corneal inflammation. In a murine model of PA keratitis, we assessed the detrimental effects of CXC chemokine ligand 16 (CXCL16). Quantitative PCR (qPCR), western blotting (WB) and immunofluorescence were used to measure the expression and localization of CXCL16 and its receptor, CXC chemokine receptor 6 (CXCR6). Clinical scores, plate counting, and hematoxylin-eosin staining were used to assess infection severity and its exacerbation by CXCL16. Immunofluorescence, myeloperoxidase assays, and flow cytometry were used to detect neutrophil activity and colocalization with CXCR6. WB and immunofluorescence were used to measure levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). These methods also were used to measure the activation of downstream NF-κB signaling and its positive feedback on CXCL16 expression. ELISA, flow cytometry, and qPCR were used to measure the expression of CXCL2 and T helper 17 (Th17) cell-related genes. CXCL16 and CXCR6 expression was increased in infected corneas. Topical application of CXCL16 exacerbated keratitis by increasing corneal bacterial load and promoting neutrophil infiltration, whereas neutralizing antibody against CXCL16 had the opposite effect. CXCL16 also increased ROS and MMP levels. This neutrophil activation may be caused by its positive feedback with the NF-κB pathway and the upregulation of CXCL2 and Th17 cell related-genes. These data suggest that CXCL16 is an attractive therapeutic target for PA keratitis.
Collapse
Affiliation(s)
- Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Ophthalmology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Wentao Wang
- Department of Surgery, Liaocheng Tumor Hospital, Liaocheng, Shandong 252000, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Weihua Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Leyi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Chenyang Dai
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jianlu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
3
|
Hazlett LD, Xu S, Somayajulu M, McClellan SA. Host-microbe interactions in cornea. Ocul Surf 2023; 28:413-423. [PMID: 34619389 PMCID: PMC8977393 DOI: 10.1016/j.jtos.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022]
Abstract
Corneal infections result through interaction between microbes and host innate immune receptors. Damage to the cornea occurs as a result of microbial virulence factors and is often exacerbated by lack of a controlled host immune response; the latter contributing to bystander damage to corneal structure. Understanding mechanisms involved in host microbial interactions is critical to development of novel therapeutic targets, ultimate control of microbial pathogenesis, and restoration of tissue homeostasis. Studies on these interactions continue to provide exciting findings directly related to this ultimate goal.
Collapse
Affiliation(s)
- Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
4
|
Konda N, Chakrabarti S, Garg P, Willcox MDP. Association of Single-Nucleotide Polymorphisms in Interleukin Genes with Microbial Keratitis in a South Indian Population. Pathogens 2022; 11:1387. [PMID: 36422638 PMCID: PMC9692714 DOI: 10.3390/pathogens11111387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND To examine the relationship between single-nucleotide polymorphisms (SNPs) in interleukin (IL) genes and keratitis and its clinical manifestations. METHODS SNPs in IL1B, IL6, CXCL8, IL10, and IL12B were analysed. Differences in frequencies of alleles, genotypes and haplotypes between cases and controls as well as associations between SNPs and clinical variables were calculated by χ2 tests with odds ratios. RESULTS The minor homologous genotype in IL1B rs16944 (p = 0.036; odds ratio (OR) = 2.063, 95% confidence interval (CI): 1.048-4.061) and CXCL8 rs4073 (p = 0.041; OR = 0.463, 95% CI: 0.224-0.956) and the heterologous genotypes in IL6 rs1800795 (p = 0.046; OR = 0.563, 95% CI: 0.326-0.972) and IL12B rs2569254 (p = 0.0446; OR = 0.557, 95% CI: 0.314-0.989) or rs730691 (p = 0.0051; OR = 0.451, 95% CI: 0.260-0.784) were associated with keratitis. The minor genotype of rs16944 was associated with severe infection (p = 0.046). The heterologous genotype in rs2569254 was associated with hospital admission, photophobia, and mode of contact lens wear (p ≤ 0.041). The heterologous genotype in rs730691 was associated with blurred vision, discharge, anterior chamber reaction, and mode of wear (p ≤ 0.047). CONCLUSIONS This study demonstrates that SNPs in IL1B and CXCL8 are associated with risk of developing keratitis. The study also found relationships between SNPs and clinical measures of keratitis. The potential for ethnic differences in frequency of SNPs and their association with keratitis should be followed up using different populations.
Collapse
Affiliation(s)
- Nagaraju Konda
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia
- Brien Holden Vision Institute, Sydney 2052, Australia
- School of Medical Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Subhabrata Chakrabarti
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Prashant Garg
- The Cornea Institute, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
5
|
Nissen EJ, Saeger M, Nölle B, Roider J. Clinicopathological Correlation of Microbial Keratitis and Ahead: Is There a Corneal Sepsis? Klin Monbl Augenheilkd 2022; 239:857-866. [PMID: 35858596 DOI: 10.1055/a-1811-7171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microbial, infectious keratitis is a relevant indication for penetrating keratoplasty. The requirement for transplantation results in histopathological examination of the entire thickness of the cornea. Although the clinical diagnosis is not always possible to confirm, pathology can support diagnostic evidence of clinical presentation and pathogenesis. This is achieved with multiple methods from cytology, histochemistry, immunohistology, molecular pathology and in rare cases electron microscopy. These allow tissue-based detection of previous and parallel diseases and the responsible pathogens. The failure of satisfactory clinicopathological correlation raises the question whether a suspected pathogen was not ultimately responsible for destroyed corneal tissue. The pathogenesis of keratitis requiring transplantation is not yet completely understood, also on the experimental level. The development of such a keratitis can lead to a clinical symptomatology which can be described as "threatening organ dysfunction", a term used in sepsis research. Considering recent literature, possible correlations between sepsis and microbial keratitis and their relation to histopathology are discussed.
Collapse
Affiliation(s)
- Ebba J Nissen
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| | - Mark Saeger
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| | - Bernhard Nölle
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| | - Johann Roider
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| |
Collapse
|
6
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Hirose S, Jaggi U, Wang S, Tormanen K, Nagaoka Y, Katsumata M, Ghiasi H. Role of TH17 Responses in Increasing Herpetic Keratitis in the Eyes of Mice Infected with HSV-1. Invest Ophthalmol Vis Sci 2020; 61:20. [PMID: 32516406 PMCID: PMC7415293 DOI: 10.1167/iovs.61.6.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose TH17 cells play an important role in host defense and autoimmunity yet very little is known about the role of IL17 in herpes simplex virus (HSV)-1 infectivity. To better understand the relationship between IL17 and HSV-1 infection, we assessed the relative impact of IL17A-deficiency and deficiency of its receptors on HSV-1 responses in vivo. Methods We generated IL17RA−/− and IL17RA−/−RC−/− mice in-house and infected them along with IL17A−/− and IL17RC−/− mice in the eyes with 2 × 105 PFU/eye of wild type (WT) HSV-1 strain McKrae. WT C57BL/6 mice were used as control. Virus replication in the eye, survival, corneal scarring (CS), angiogenesis, levels of latency-reactivation, and levels of CD8 and exhaustion markers (PD1, TIM3, LAG3, CTLA4, CD244, and CD39) in the trigeminal ganglia (TG) of infected mice were determined on day 28 postinfection. Results No significant differences in virus replication in the eye, survival, latency, reactivation, and exhaustion markers were detected among IL17A−/−, IL17RA−/−, IL17RC−/−, IL17RA−/−RC−/−, and WT mice. However, mice lacking IL17 had significantly less CS and angiogenesis than WT mice. In addition, angiogenesis levels in the absence of IL17RC and irrespective of the absence of IL17RA were significantly less than in IL17A- or IL17RA-deficient mice. Conclusions Our results suggest that the absence of IL17 protects against HSV-1-induced eye disease, but has no role in protecting against virus replication, latency, or reactivation. In addition, our data provide rationale for blocking IL17RC function rather than IL17A or IL17RA function as a key driver of HSV-1-induced eye disease.
Collapse
|
8
|
Interleukin-17 mediates lung injury by promoting neutrophil accumulation during the development of contagious caprine pleuropneumonia. Vet Microbiol 2020; 243:108651. [PMID: 32273025 DOI: 10.1016/j.vetmic.2020.108651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Contagious caprine pleuropneumonia (CCPP) is a highly contagious infectious disease of goats caused by Mycoplasma capricolum subspecies capripneumoniae (Mccp). CCPP outbreaks usually result in high morbidity and mortality of the affected goats, making this disease a major cause of economic losses to goat producers globally. However, the pathogenesis of CCPP remains unclear. Here, we show that IL-17-driven neutrophil accumulation is involved in the lung damage in CCPP goats. During CCPP development, intense inflammatory infiltrates could be observed in the injured lungs. Specifically, neutrophils were observed to be present within the alveoli. Increased IL-17 release drove the excessive influx of neutrophils into the lung, as IL-17 effectively stimulated the production of neutrophil chemoattractants from lung epithelial cells following Mccp infection. Our data highlight a critical role of IL-17-driven neutrophil accumulation in the pathogenesis of CCPP and suggest that IL-17 may potentially be a useful immunotherapeutic target for the treatment of CCPP.
Collapse
|
9
|
Carnt NA, Cipriani V, Stapleton FJ, Calder V, Willcox MD. Association study of single nucleotide polymorphisms in IL-10 and IL-17 genes with the severity of microbial keratitis. Cont Lens Anterior Eye 2019; 42:658-661. [DOI: 10.1016/j.clae.2019.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
|
10
|
Me R, Gao N, Dai C, Yu FSX. IL-17 Promotes Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. THE JOURNAL OF IMMUNOLOGY 2019; 204:169-179. [PMID: 31767781 DOI: 10.4049/jimmunol.1900736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to elucidate the expression and functions of IL-17 in C57BL/6 mouse corneas in response to Pseudomonas aeruginosa infection. We found that P. aeruginosa infection induced and increased signaling of IL-23/23R/17/17R in mouse corneas. Targeting IL-17A or the IL-17A-specific receptor IL-17RA/IL-17RC with neutralizing Abs resulted in a significant decrease in the severity of P. aeruginosa keratitis, including a decrease in bacterial burden and polymorphonuclear leukocyte infiltration. IL-17A-signaling blockade also significantly reduced the expression of the proinflammatory cytokines L-1β, IL-24, and MMP-13 and increased the expression of the anti-inflammatory cytokine IL-1RA in mouse corneal epithelium. The presence of mouse IL-17A exacerbated P. aeruginosa-mediated tissue destruction. A cytokine protein array revealed that the expression of osteoprotegerin (OPG) was regulated by IL-17A, and OPG neutralization also resulted in a decrease in the severity of P. aeruginosa keratitis. Although both IL-17 and OPG affected the balanced expression of IL-1β and IL-1RA, only IL-17 inhibited the expression of TH2 cytokines. Taken together, our results revealed that IL-17A, along with its downstream factor OPG, plays a detrimental role in the pathogenesis of P. aeruginosa keratitis. Targeting IL-17A and/or the OPG/RANKL/RANK/TRAIL system is a potential therapeutic strategy in controlling the outcome of P. aeruginosa keratitis, which was demonstrated by concurrent topical application of IL-17A-neutralizing Ab and ciprofloxacin in B6 mice.
Collapse
Affiliation(s)
- Rao Me
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Nan Gao
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Chenyang Dai
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and.,Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China 250014
| | - Fu-Shin X Yu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
11
|
Xu S, Hazlett LD. MicroRNAs in Ocular Infection. Microorganisms 2019; 7:microorganisms7090359. [PMID: 31533211 PMCID: PMC6780979 DOI: 10.3390/microorganisms7090359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding, regulatory RNA molecules and constitute a newly recognized, important layer of gene-expression regulation at post-transcriptional levels. miRNAs quantitatively fine tune the expression of their downstream genes in a cell type- and developmental stage-specific fashion. miRNAs have been proven to play important roles in the normal development and function as well as in the pathogenesis of diseases in all tissues and organ systems. miRNAs have emerged as new therapeutic targets and biomarkers for treatment and diagnosis of various diseases. Although miRNA research in ocular infection remains in its early stages, a handful of pioneering studies have provided insight into the roles of miRNAs in the pathogenesis of parasitic, fungal, bacterial, and viral ocular infections. Here, we review the current status of research in miRNAs in several major ocular infectious diseases. We predict that the field of miRNAs in ocular infection will greatly expand with the discovery of novel miRNA-involved molecular mechanisms that will inform development of new therapies and identify novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
12
|
Cui X, Gao N, Me R, Xu J, Yu FSX. TSLP Protects Corneas From Pseudomonas aeruginosa Infection by Regulating Dendritic Cells and IL-23-IL-17 Pathway. Invest Ophthalmol Vis Sci 2019; 59:4228-4237. [PMID: 30128494 PMCID: PMC6103385 DOI: 10.1167/iovs.18-24672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose We sought to determine the role of epithelium-produced thymic stromal lymphopoietin (TSLP) and its underlying mechanisms in corneal innate immune defense against Pseudomonas (P.) aeruginosa keratitis. Methods The expression of TSLP and TSLPR in cultured human corneal epithelial cells (HCECs) and mouse corneas was determined by PCR, Western, and/or ELISA. Cellular localization of TSLP receptor (TSLPR) was determined by whole mount confocal microscopy. TSLP-TSLPR signaling was downregulated by neutralizing antibodies and/or small interfering (si)RNA; their effects on the severity of P. aeruginosa–keratitis and cytokine expression were assessed using clinical scoring, bacterial counting, PMN infiltration, and real-time PCR. The role of dendritic cells (DCs) in corneal innate immunity was determined by local DC depletion using CD11c-DTR mice. Results P. aeruginosa–infection induced the expression of TSLP and TSLPR in both cultured primary HCECs and in C57BL/6 mouse corneas. While TSLP was mostly expressed by epithelial cells, CD11c-positive cells were positive for TSLPR. Targeting TSLP or TSLPR with neutralizing antibodies or TSLPR with siRNA resulted in more severe keratitis, attributable to an increase in bacterial burden and PMN infiltration. TSLPR neutralization significantly suppressed infection-induced TSLP and interleukin (IL)-17C expression and augmented the expression of IL-23 and IL-17A. Local depletion of DCs markedly increased the severity of keratitis and exhibited no effects on TSLP and IL-23 expression while suppressing IL-17A and C expression in P. aeruginosa–infected corneas. Conclusions The epithelium-expressed TSLP plays a protective role in P. aeruginosa keratitis through targeting of DCs and in an IL-23/IL-17 signaling pathway-related manner.
Collapse
Affiliation(s)
- Xinhan Cui
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rao Me
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jianjiang Xu
- Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
13
|
Zaidi TS, Zaidi T, Pier GB. Antibodies to Conserved Surface Polysaccharides Protect Mice Against Bacterial Conjunctivitis. Invest Ophthalmol Vis Sci 2019; 59:2512-2519. [PMID: 29847658 PMCID: PMC5963004 DOI: 10.1167/iovs.18-23795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Bacterial conjunctivitis is a major problem in ocular health. Little is known about protective immune effectors in the conjunctiva. We evaluated whether opsonic antibody to the conserved surface/capsular polysaccharide poly-N-acetyl glucosamine (PNAG) expressed by Streptococcus pneumoniae and Staphylococcus aureus was protective against bacterial conjunctivitis, as well as an antibody to the Pseudomonas aeruginosa surface polysaccharide alginate. Methods Bacteria were injected directly into the conjunctivae of either A/J mice or into conjunctivae of wild type C57Bl/6 mice for comparisons to responses of recombination activating gene 1-knock out (RAG 1 KO) or germ-free mice in the C57Bl/6 genetic background. Human IgG1 monoclonal antibodies (MAb) to either PNAG or alginate were administered as follows: direct injection of 10 μg into the conjunctivae or topical application onto the cornea 4, 24, and 32 hours post infection; or intraperitoneal injection of 200 μg 18 hours prior to and then 4, 24, and 32-hours postinfection. After 48 hours, eyes were scored for pathology, mice were euthanized, and CFU/conjunctiva was determined. Results All methods of antibody administration reduced S. pneumoniae, S. aureus, or P. aeruginosa pathology and bacterial levels in the conjunctivae. Histopathologic analysis showed severe inflammatory cell infiltrates in conjunctivae of mice treated with control MAb, whereas immune mice showed only very mild cellular infiltration. The protective effect of MAb to PNAG was abolished in RAG 1 KO and germ-free mice. Conclusions Antibodies to both PNAG and alginate demonstrated therapeutic efficacy in models of S. pneumoniae, S. aureus, and P. aeruginosa conjunctivitis, validating the protective capacity of antibodies to surface polysaccharides in distinct ocular tissues.
Collapse
Affiliation(s)
- Tanweer S Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Garbutcheon-Singh KB, Carnt N, Pattamatta U, Samarawickrama C, White A, Calder V. A Review of the Cytokine IL-17 in Ocular Surface and Corneal Disease. Curr Eye Res 2018; 44:1-10. [PMID: 30230384 DOI: 10.1080/02713683.2018.1519834] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aim: To investigate the role of interleukin-17 in ocular surface and corneal disease. Ocular surface and corneal disease is a leading cause of blindness and is an ongoing challenge for the public health sector to implement effective therapies. The majority of cells in corneal lesions are derived primarily from neutrophils that induce inflammatory events that lead to tissue damage. One of the key pro-inflammatory cytokines is IL-17, and it has been investigated in order to facilitate the understanding of the pathogenesis of ocular surface lesion development. Method: A review of the literature was performed through a systematic approach. Results: IL-17 has been shown to exacerbate dry eye disease, viral and bacterial keratitis lesion severity, although it was found to be protective for Acanthamoeba. Antibodies developed to neutralize IL-17 have shown some promise in reducing the severity of some diseases. Conclusion: IL-17 plays a role in the pathogenesis of ocular surface and corneal disease and targeting this cytokine may provide a useful treatment option in the future.
Collapse
Affiliation(s)
| | - N Carnt
- a Westmead Millennium Institute , Sydney , Australia.,b University of New South Wales , Sydney , Australia
| | - U Pattamatta
- a Westmead Millennium Institute , Sydney , Australia.,c University of Sydney , Sydney , Australia
| | | | - A White
- a Westmead Millennium Institute , Sydney , Australia.,c University of Sydney , Sydney , Australia
| | - V Calder
- d Institute of Ophthalmology , University College London , London , England
| |
Collapse
|
15
|
St Leger AJ, Hansen AM, Karauzum H, Horai R, Yu CR, Laurence A, Mayer-Barber KD, Silver P, Villasmil R, Egwuagu C, Datta SK, Caspi RR. STAT-3-independent production of IL-17 by mouse innate-like αβ T cells controls ocular infection. J Exp Med 2018; 215:1079-1090. [PMID: 29490936 PMCID: PMC5881461 DOI: 10.1084/jem.20170369] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 01/03/2023] Open
Abstract
St. Leger et al. identify and examine innate-like αβ T cells that circumvent canonical STAT-3 phosphorylation to produce protective IL-17. These cells can exist in the ocular mucosa and protect the ocular surface from pathogenic Staphylococcus aureus infection. Appropriate regulation of IL-17 production in the host can mean the difference between effective control of pathogens and uncontrolled inflammation that causes tissue damage. Investigation of conventional CD4+ T cells (Th17 cells) has yielded invaluable insights into IL-17 function and its regulation. More recently, we and others reported production of IL-17 from innate αβ+ T cell populations, which was shown to occur primarily via IL-23R signaling through the transcription factor STAT-3. In our current study, we identify promyelocytic leukemia zinc finger (PLZF)–expressing iNKT, CD4−/CD8+, and CD4−/CD8− (DN) αβ+T cells, which produce IL-17 in response to TCR and IL-1 receptor ligation independently of STAT-3 signaling. Notably, this noncanonical pathway of IL-17 production may be important in mucosal defense and is by itself sufficient to control pathogenic Staphylococcus aureus infection at the ocular surface.
Collapse
Affiliation(s)
- Anthony J St Leger
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Anna M Hansen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Hatice Karauzum
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Cheng-Rong Yu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Katrin D Mayer-Barber
- Laboratory of Clinical Immunology and Microbiology, Inflammation and Innate Immunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Phyllis Silver
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Rafael Villasmil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Charles Egwuagu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Sandip K Datta
- Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Chamoun MN, Blumenthal A, Sullivan MJ, Schembri MA, Ulett GC. Bacterial pathogenesis and interleukin-17: interconnecting mechanisms of immune regulation, host genetics, and microbial virulence that influence severity of infection. Crit Rev Microbiol 2018; 44:465-486. [PMID: 29345518 DOI: 10.1080/1040841x.2018.1426556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the control of many different disorders, including autoimmune, oncogenic, and diverse infectious diseases. In the context of infectious diseases, IL-17 protects the host against various classes of microorganisms but, intriguingly, can also exacerbate the severity of some infections. The regulation of IL-17 expression stems, in part, from the activity of Interleukin-23 (IL-23), which drives the maturation of different classes of IL-17-producing cells that can alter the course of infection. In this review, we analyze IL-17/IL-23 signalling in bacterial infection, and examine the interconnecting mechanisms that link immune regulation, host genetics, and microbial virulence in the context of bacterial pathogenesis. We consider the roles of IL-17 in both acute and chronic bacterial infections, with a focus on mouse models of human bacterial disease that involve infection of mucosal surfaces in the lungs, urogenital, and gastrointestinal tracts. Polymorphisms in IL-17-encoding genes in humans, which have been associated with heightened host susceptibility to some bacterial pathogens, are discussed. Finally, we examine the implications of IL-17 biology in infectious diseases for the development of novel therapeutic strategies targeted at preventing bacterial infection.
Collapse
Affiliation(s)
- Michelle N Chamoun
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| | - Antje Blumenthal
- b The University of Queensland Diamantina Institute, Translational Research Institute , Brisbane , Australia
| | - Matthew J Sullivan
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| | - Mark A Schembri
- c School of Chemistry and Molecular Biosciences, and Australian Infectious Disease Research Centre , The University of Queensland , Brisbane , Australia
| | - Glen C Ulett
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| |
Collapse
|
17
|
Lin J, He K, Zhao G, Li C, Hu L, Zhu G, Niu Y, Hao G. Mincle inhibits neutrophils and macrophages apoptosis in A. fumigatus keratitis. Int Immunopharmacol 2017; 52:101-109. [DOI: 10.1016/j.intimp.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/30/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022]
|
18
|
St Leger AJ, Desai JV, Drummond RA, Kugadas A, Almaghrabi F, Silver P, Raychaudhuri K, Gadjeva M, Iwakura Y, Lionakis MS, Caspi RR. An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal γδ T Cells. Immunity 2017; 47:148-158.e5. [PMID: 28709803 DOI: 10.1016/j.immuni.2017.06.014] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/11/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
Abstract
Mucosal sites such as the intestine, oral cavity, nasopharynx, and vagina all have associated commensal flora. The surface of the eye is also a mucosal site, but proof of a living, resident ocular microbiome remains elusive. Here, we used a mouse model of ocular surface disease to reveal that commensals were present in the ocular mucosa and had functional immunological consequences. We isolated one such candidate commensal, Corynebacterium mastitidis, and showed that this organism elicited a commensal-specific interleukin-17 response from γδ T cells in the ocular mucosa that was central to local immunity. The commensal-specific response drove neutrophil recruitment and the release of antimicrobials into the tears and protected the eye from pathogenic Candida albicans or Pseudomonas aeruginosa infection. Our findings provide direct evidence that a resident commensal microbiome exists on the ocular surface and identify the cellular mechanisms underlying its effects on ocular immune homeostasis and host defense.
Collapse
Affiliation(s)
- Anthony J St Leger
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Jigar V Desai
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rebecca A Drummond
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Abirami Kugadas
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fatimah Almaghrabi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Phyllis Silver
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | | | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Institute for Medical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Zhao G, Zaidi TS, Bozkurt-Guzel C, Zaidi TH, Lederer JA, Priebe GP, Pier GB. Efficacy of Antibody to PNAG Against Keratitis Caused by Fungal Pathogens. Invest Ophthalmol Vis Sci 2017; 57:6797-6804. [PMID: 28002842 PMCID: PMC5215555 DOI: 10.1167/iovs.16-20358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Developing immunotherapies for fungal eye infections is a high priority. We analyzed fungal pathogens for expression of the surface polysaccharide, poly-N-acetyl glucosamine (PNAG), and used a mouse model of ocular keratitis caused by Aspergillus flavus, A. fumigatus, or Fusarium solani to determine if PNAG was an immunotherapy target and requirements for ancillary cellular and molecular immune effectors. Methods Enzyme-linked immunosorbent assay (ELISA) or immunofluorescence was used to detect PNAG on fungal cells. Keratitis was induced by scratching corneas of C57BL/6, IL-17R KO, RAG-1 KO, or IL-22 KO mice followed by inoculation with fungal pathogens. Goat antibodies to PNAG, a PNAG-specific human IgG1 monoclonal antibody, or control antibodies were injected either prophylactically plus therapeutically or therapeutically only, and corneal pathology and fungal levels determined in infected eyes at 24 or 48 hours after infection. Results All tested fungal species produced PNAG. Prophylactic or therapeutic treatment by intraperitoneal (IP) injection of antibody to PNAG combined with post-infection topical application of antibody, the latter also used for A. fumigatus, led to reduced fungal levels, corneal pathology, and cytokine expression. Topical administration only of the PNAG monoclonal antibodies (MAb) reduced fungal loads and corneal pathology. There was no antibody protection in IL-17R KO, RAG-1 KO, or IL-22 KO mice. Conclusions Poly-N-acetyl glucosamine is produced by clinically important fungal ocular pathogens. Antibody to PNAG demonstrated protection against Aspergillus and Fusarium keratitis, requiring T cells producing IL-17 and IL-22. These findings indicate the potential to prevent or treat fungal infections by vaccines and immunotherapeutics to PNAG.
Collapse
Affiliation(s)
- Ge Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Tanweer S Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Cagla Bozkurt-Guzel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Tauqeer H Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Gregory P Priebe
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States 3Division of Critical Care Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
20
|
Pinnock A, Shivshetty N, Roy S, Rimmer S, Douglas I, MacNeil S, Garg P. Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefes Arch Clin Exp Ophthalmol 2016; 255:333-342. [PMID: 27844206 PMCID: PMC5285415 DOI: 10.1007/s00417-016-3546-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In the study of microbial keratitis, in vivo animal models often require a large number of animals, and in vitro monolayer cell culture does not maintain the three-dimensional structure of the tissues or cell-to-cell communication of in vivo models. Here, we propose reproducible ex vivo models of single- and dual-infection keratitis as an alternative to in vivo and in vitro models. METHODS Excised rabbit and human corneoscleral rims maintained in organ culture were infected using 108 cells of Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans or Fusarium solani. The infection was introduced by wounding with a scalpel and exposing corneas to the microbial suspension or by intrastromal injection. Post-inoculation, corneas were maintained for 24 and 48 h at 37 °C. After incubation, corneas were either homogenised to determine colony-forming units (CFU)/cornea or processed for histological examination using routine staining methods. Single- and mixed-species infections were compared. RESULTS We observed a significant increase in CFU after 48 h compared to 24 h with S. aureus and P. aeruginosa. However, no such increase was observed in corneas infected with C. albicans or F. solani. The injection method yielded an approximately two- to 100-fold increase (p < 0.05) in the majority of organisms from infected corneas. Histology of the scalpel-wounded and injection models indicated extensive infiltration of P. aeruginosa throughout the entire cornea, with less infiltration observed for S. aureus, C. albicans and F. solani. The models also supported dual infections. CONCLUSIONS Both scalpel wounding and injection methods are suitable for inducing infection of ex vivo rabbit and human cornea models. These simple and reproducible models will be useful as an alternative to in vitro and in vivo models for investigating the detection and treatment of microbial keratitis, particularly when this might be due to two infective organisms.
Collapse
Affiliation(s)
| | | | - Sanhita Roy
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| | | | - Ian Douglas
- University of Sheffield, Sheffield, S10 2TA, UK
| | - Sheila MacNeil
- University of Sheffield, Sheffield, S10 2TA, UK.
- The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK.
| | - Prashant Garg
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| |
Collapse
|
21
|
Speeckaert R, Lambert J, Grine L, Van Gele M, De Schepper S, van Geel N. The many faces of interleukin-17 in inflammatory skin diseases. Br J Dermatol 2016; 175:892-901. [PMID: 27117954 DOI: 10.1111/bjd.14703] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 01/04/2023]
Abstract
Interleukin (IL)-17 is an emerging target for inflammatory skin disorders. Given the remarkable success of its therapeutic inhibition in psoriasis, the pathogenic role of this cytokine is being explored in other immune-mediated diseases. Interestingly, IL-17 is linked to particular skin conditions where its activation coincides with disease flares. The leading hypothesis for its contribution to proinflammatory signalling cascades is driving inflammasome activation. However, IL-17 stimulation also releases a range of noninflammasome-related cytokines from human skin. Furthermore, a role in cytotoxic responses and an important interplay with the microbiome is hypothesized. While treatment failure would be surprising in neutrophilic dermatoses, the picture might be more complex in lymphocyte-mediated conditions. Nonetheless, increasing insights into the pathogenesis suggest that beneficial responses are also probable in the latter conditions. Study of this pathway in the skin reveals some intriguing aspects of the IL-17-related immunological network.
Collapse
Affiliation(s)
- R Speeckaert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - J Lambert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - L Grine
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - M Van Gele
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - S De Schepper
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - N van Geel
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
22
|
Qin S, Qin L, Zhang C, Liu L, Sun W, Li N, Wu R, Wang X. p120-Catenin modulating nuclear factor-κB activation is partially RhoA/ROCKdependent in scratch injury. Wound Repair Regen 2016; 23:231-40. [PMID: 25693631 DOI: 10.1111/wrr.12270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/12/2015] [Indexed: 12/01/2022]
Abstract
p120-catenin (p120) is known as a cadherin-associated protein that participates in tumor metastasis and invasion, as well as an anti-inflammatory mediator. Recently, its anti-inflammatory role is drawing increasing attention, but the regulatory mechanisms are still unknown. Here, we report that p120 modulated inflammatory responses partially depends on RhoA/ROCK pathway in scratch-induced injury in human bronchial epithelial cells (BECs). For the first time, we found that p120 was significantly reduced in BECs after scratching, which could induce interleukin-8 (IL-8) production through nuclear factor-κB (NF-κB) activation accompanied with IκBα phosphorylation. Over-expression of p120 3A could inhibit NF-κB activation and IL-8 mRNA expression and protein synthesis after scratching, while p120 knockdown by small interfering RNA could promote NF-κB activation and IL-8 mRNA expression and protein synthesis after scratching. Furthermore, we found that RhoA was the binding partner of p120 in BECs. Although total RhoA and p120-binded RhoA remained unchanged, the RhoA activity was increased after scratching. Chemical blockade of RhoA/ROCK signaling (Y27632) inhibited scratch-induced nuclear translocation of NF-κB p65. Over-expression of p120 3A attenuated scratch-induced RhoA activation, whereas silence of p120 significantly elevated scratch-induced RhoA activation in BCEs. Conclusively, these results indicate an anti-inflammatory effect of p120 in bronchial epithelial cells through its modulation of NF-κB signaling depending on RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| | - Wenjia Sun
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| | - Naping Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| | - Renliang Wu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Pulmonary Disease of Ministry of Health of China, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
He S, Zhang H, Liu S, Liu H, Chen G, Xie Y, Zhang J, Sun S, Li Z, Wang L. γδ T cells regulate the expression of cytokines but not the manifestation of fungal keratitis. Exp Eye Res 2015; 135:93-101. [PMID: 25864785 DOI: 10.1016/j.exer.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/20/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022]
Abstract
As an important immunoregulatory cell type, the role of γδ T cells in fungal keratitis (FK) is unclear. We observed the distribution of γδ T cells in infected corneas in vivo by two-photon microscopy. The γδ T cells were depleted by neutralizing antibodies. The cytokine expression profile was obtained by protein arrays to determine the cytokines regulated by γδ T cells. ICAM-1, MIP-2 and IL-17A were evaluated by ELISA assays to confirm the role of γδ T cells in FK. We counted the number of neutrophils, evaluated the volume of fungal hyphae and analyzed the manifestation of the disease. The γδ T cells increased significantly at 36 h and 72 h post fungal infection (P < 0.05) and migrated from the limbus to the infection site. The neutralizing antibodies completely depleted the γδ T cells in 24 h. The depletion of γδ T cells led to up regulation of 25 cytokines and down regulation of 3 cytokines. ICAM-1, MIP-2 and IL-17A changed significantly because of the depletion of γδ T cells (P < 0.05). However, the number of neutrophils, volume of fungal hyphae and manifestation of the disease was not affected by the depletion of γδ T cells. Our results demonstrated that γδ T cells have a role in FK via regulation of some cytokines but did not affect the manifestation of this disease, suggesting that γδ T cells are not the key regulator cells in this disease.
Collapse
Affiliation(s)
- Siyu He
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Hongmin Zhang
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Susu Liu
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Hui Liu
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Guoming Chen
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Yanting Xie
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Shengtao Sun
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Ophthalmology Department of Henan Provincial People's Hospital, Ophthalmology Department of People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
| |
Collapse
|
24
|
Jones RGA, Martino A. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications. Crit Rev Biotechnol 2015; 36:506-20. [PMID: 25600465 DOI: 10.3109/07388551.2014.992388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic antibodies provide important tools in the "medicine chest" of today's clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma gangrenosum, antibiotic resistant bacterial infections or ulcerated wounds. Diseases confined to the gastrointestinal tract can be targeted directly by applying antibody via the injection-free peroral route. The gastrointestinal tract is unusual in that its natural immuno-tolerant nature ensures the long-term safety of repeatedly ingesting heterologous antiserum or antibody materials. Without the stringent regulatory, purity and clean room requirements of manufacturing parenteral (injectable) antibodies, production costs are minimal, with the potential for more direct low-cost targeting of gastrointestinal diseases, especially with those caused by problematic antibiotic resistant or toxigenic bacteria (e.g. Clostridium difficile, Helicobacter pylori), viruses (e.g. rotavirus, norovirus) or inflammatory bowel disease (e.g. ulcerative colitis, Crohn's disease). Use of the oral route has previously been hindered by excessive antibody digestion within the gastrointestinal tract; however, this limitation may be overcome by intelligently applying one or more strategies (i.e. decoy proteins, masking therapeutic antibody cleavage sites, pH modulation, enzyme inhibition or encapsulation). These aspects are additionally discussed in this review and novel insights also provided. With the development of new applications via local injections, topical and peroral routes, it is envisaged that an extended range of ailments will increasingly fall within the clinical scope of therapeutic antibodies further expanding this market.
Collapse
Affiliation(s)
| | - Angela Martino
- a Department of Chemistry , University of Warwick , Coventry , UK
| |
Collapse
|
25
|
Suryawanshi A, Cao Z, Sampson JF, Panjwani N. IL-17A-mediated protection against Acanthamoeba keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:650-63. [PMID: 25505284 PMCID: PMC4282964 DOI: 10.4049/jimmunol.1302707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acanthamoeba keratitis (AK) is a very painful and vision-impairing infection of the cornea that is difficult to treat. Although past studies have indicated a critical role of neutrophils and macrophages in AK, the relative contribution of the proinflammatory cytokine, IL-17A, that is essential for migration, activation, and function of these cells into the cornea is poorly defined. Moreover, the role of the adaptive immune response, particularly the contribution of CD4(+) T cell subsets, Th17 and regulatory T cells , in AK is yet to be understood. In this report, using a mouse corneal intrastromal injection-induced AK model, we show that Acanthamoeba infection induces a strong CD4(+) T effector and regulatory T cell response in the cornea and local draining lymph nodes. We also demonstrate that corneal Acanthamoeba infection induces IL-17A expression and that IL-17A is critical for host protection against severe AK pathology. Accordingly, IL-17A neutralization in Acanthamoeba-infected wild-type mice or Acanthamoeba infection of mice lacking IL-17A resulted in a significantly increased corneal AK pathology, increased migration of inflammatory cells at the site of inflammation, and a significant increase in the effector CD4(+) T cell response in draining lymph nodes. Thus, in sharp contrast with other corneal infections such as herpes and Pseudomonas aeruginosa keratitis where IL-17A exacerbates corneal pathology and inflammation, the findings presented in this article suggest that IL-17A production after Acanthamoeba infection plays an important role in host protection against invading parasites.
Collapse
Affiliation(s)
- Amol Suryawanshi
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and
| | - Zhiyi Cao
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and
| | - James F Sampson
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and
| | - Noorjahan Panjwani
- New England Eye Center, Boston, MA 02111; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111; and Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
26
|
Li C, McClellan SA, Barrett R, Hazlett LD. Interleukin 17 regulates Mer tyrosine kinase-positive cells in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2014; 55:6886-900. [PMID: 25298414 DOI: 10.1167/iovs.14-14522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine if IL-17 regulates Mer tyrosine kinase-positive (MerTK+) cells in Pseudomonas aeruginosa keratitis. METHODS Interleukin 17 was tested in normal and infected cornea of susceptible C57BL/6 and resistant BALB/c mice. The latter were treated with recombinant mouse (rm) IL-17; both groups were treated with IL-17 neutralizing antibody. Mice were infected, and clinical score, PCR, ELISA, and myeloperoxidase (MPO) assays tested expression of proinflammatory and anti-inflammatory mediators and polymorphonuclear neutrophilic leukocyte (PMN) infiltrate. Fas and Fas ligand (FasL) protein levels were assessed in both mouse strains, while MerTK+ cells were examined by immunostaining and cell sorting before and after IL-17 neutralization. RESULTS The IL-17 mRNA and protein were higher in C57BL/6 versus BALB/c cornea after infection. The rmIL-17 treatment of BALB/c mice modified proinflammatory and anti-inflammatory mediators, but clinical score and MPO assay revealed no differences. However, only BALB/c mice treated with IL-17 neutralizing antibody showed increased disease, macrophage inflammatory protein (MIP) 2, and MPO levels. Fas and FasL protein levels, elevated earlier in BALB/c versus C57BL/6 mice, correlated with significantly more MerTK+ cells in BALB/c cornea at 3 days after infection. Neutralization of IL-17 in C57BL/6 mice elevated MerTK+ cells, while similar treatment of BALB/c mice significantly decreased them. CONCLUSIONS These data provide evidence that IL-17 expression is higher in C57BL/6 versus BALB/c cornea after infection and that the latter group has more MerTK+ cells. Exogenous rmIL-17 failed to shift the disease response in resistant mice, but its neutralization resulted in worsened disease and reduced MerTK+ cells. Neutralization of IL-17 in C57BL/6 mice increased MerTK+ cells but did not dramatically shift the disease response.
Collapse
Affiliation(s)
- Cui Li
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sharon A McClellan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ronald Barrett
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Linda D Hazlett
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
27
|
Zaidi T, Zaidi T, Cywes-Bentley C, Lu R, Priebe GP, Pier GB. Microbiota-driven immune cellular maturation is essential for antibody-mediated adaptive immunity to Staphylococcus aureus infection in the eye. Infect Immun 2014; 82:3483-91. [PMID: 24914214 PMCID: PMC4136232 DOI: 10.1128/iai.01951-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/29/2014] [Indexed: 11/20/2022] Open
Abstract
As an immune-privileged site, the eye, and particularly the outer corneal surface, lacks resident mature immune effector cells. Physical barriers and innate mediators are the best-described effectors of immunity in the cornea. When the barriers are breached, infection can result in rapid tissue destruction, leading to loss of visual acuity and frank blindness. To determine the cellular and molecular components needed for effective adaptive immunity on the corneal surface, we investigated which immune system effectors were required for protection against Staphylococcus aureus corneal infections in mice, which are a serious cause of human eye infections. Both systemically injected and topically applied antibodies to the conserved cell surface polysaccharide poly-N-acetylglucosamine (PNAG) were effective at mediating reductions in corneal pathology and bacterial levels. Additional host factors impacting protection included intercellular adhesion molecule 1 (ICAM-1)-dependent polymorphonuclear leukocyte (PMN) recruitment, functional CD4(+) T cells, signaling via the interleukin-17 (IL-17) receptor, and IL-22 production. In germfree mice, there was no protective efficacy of antibody to PNAG due to the lack of LY6G(+) inflammatory cell coeffector recruitment to the cornea. Protection was manifest after 3 weeks of exposure to conventional mice and acquisition of a resident microbiota. We conclude that in the anterior eye, ICAM-1-mediated PMN recruitment to the infected cornea along with endogenous microbiota-matured CD4(+) T cells producing both IL-17 and IL-22 is required for antibody to PNAG to protect against S. aureus infection.
Collapse
Affiliation(s)
- Tanweer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roger Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory P Priebe
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Divisions of Critical Care Medicine (Department of Anesthesiology, Perioperative and Pain Medicine) and Infectious Diseases (Department of Medicine), Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines 2014; 13:507-19. [PMID: 24575895 DOI: 10.1586/14760584.2014.890053] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the recognition of Pseudomonas aeruginosa as an opportunistic pathogen, no vaccine against this bacteria has come to market. This review describes the current state-of-the-art in vaccinology for this bacterium. This includes a discussion of those at risk for infection, the types of vaccines and the approaches for empirical and targeted antigen selection under development, as well as a perspective on where the field should go. In addition, the challenges in developing a vaccine for those individuals at risk are discussed.
Collapse
|
29
|
Suryawanshi A, Cao Z, Thitiprasert T, Zaidi TS, Panjwani N. Galectin-1-mediated suppression of Pseudomonas aeruginosa-induced corneal immunopathology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:6397-409. [PMID: 23686486 PMCID: PMC3689592 DOI: 10.4049/jimmunol.1203501] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Corneal infection with Pseudomonas aeruginosa leads to a severe immunoinflammatory lesion, often causing vision impairment and blindness. Although past studies have indicated a critical role for CD4(+) T cells, particularly Th1 cells, in corneal immunopathology, the relative contribution of recently discovered Th17 and regulatory T cells is undefined. In this study, we demonstrate that after corneal P. aeruginosa infection, both Th1 and Th17 cells infiltrate the cornea with increased representation of Th17 cells. In addition to Th1 and Th17 cells, regulatory T cells also migrate into the cornea during early as well as late stages of corneal pathology. Moreover, using galectin-1 (Gal-1), an immunomodulatory carbohydrate-binding molecule, we investigated whether shifting the balance among various CD4(+) T cell subsets can modulate P. aeruginosa-induced corneal immunopathology. We demonstrate in this study that local recombinant Gal-1 (rGal-1) treatment by subconjunctival injections significantly diminishes P. aeruginosa-mediated corneal inflammation through multiple mechanisms. Specifically, in our study, rGal-1 treatment significantly diminished corneal infiltration of total CD45(+) T cells, neutrophils, and CD4(+) T cells. Furthermore, rGal-1 treatment significantly reduced proinflammatory Th17 cell response in the cornea as well as local draining lymph nodes. Also, rGal-1 therapy promoted anti-inflammatory Th2 and IL-10 response in secondary lymphoid organs. Collectively, our results indicate that corneal P. aeruginosa infection induces a strong Th17-mediated corneal pathology, and treatment with endogenously derived protein such as Gal-1 may be of therapeutic value for the management of bacterial keratitis, a prevalent cause of vision loss and blindness in humans worldwide.
Collapse
Affiliation(s)
- Amol Suryawanshi
- New England Eye Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111
| | - Zhiyi Cao
- New England Eye Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111
| | - Thananya Thitiprasert
- New England Eye Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111
| | - Tanveer S. Zaidi
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Noorjahan Panjwani
- New England Eye Center and Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
30
|
Kumar P, Chen K, Kolls JK. Th17 cell based vaccines in mucosal immunity. Curr Opin Immunol 2013; 25:373-80. [PMID: 23669353 DOI: 10.1016/j.coi.2013.03.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 12/18/2022]
Abstract
Vaccination is proven to be effective in controlling many infections including small pox, influenza and hepatitis, but strain-specific factors may limit vaccine efficacy. All of these vaccines work through the generation of neutralizing antibodies but for some pathogens there may be roles for serotype-independent immunity. Recently several groups using murine vaccine models have shown that induced T helper cell responses including Th17 responses have shown the potential for CD4+ T-cell dependent vaccine responses. Th17 mediated protective responses involve the recruitment of neutrophils, release of anti-microbial peptides and IL-17-driven Th1 immunity. These effector mechanisms provide immunity against a range of pathogens including the recently described antibiotic-resistant metallo-beta-lactamase 1 Klebsiella pneumoniae. Continued elucidation of the mechanism of Th17 responses and identification of effective adjuvants for inducing robust non pathogenic Th17 responses may lead to successful Th17 based vaccines. Here we summarize the recent advances in understanding the role of Th17 in vaccine induced immunity. We also discuss the current status and future challenges in Th17-based mucosal vaccine development.
Collapse
Affiliation(s)
- Pawan Kumar
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|