1
|
Zhu S, Lalani AI, Jin J, Sant’Angelo D, Covey LR, Liu K, Young HA, Ostrand-Rosenberg S, Xie P. The adaptor protein TRAF3 is an immune checkpoint that inhibits myeloid-derived suppressor cell expansion. Front Immunol 2023; 14:1167924. [PMID: 37207205 PMCID: PMC10189059 DOI: 10.3389/fimmu.2023.1167924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Almin I. Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Derek Sant’Angelo
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, United States
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, The University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Ping Xie,
| |
Collapse
|
2
|
Sepúlveda M, Burgos JI, Ciocci Pardo A, González Arbelaez L, Mosca S, Vila Petroff M. CaMKII-dependent ryanodine receptor phosphorylation mediates sepsis-induced cardiomyocyte apoptosis. J Cell Mol Med 2021; 24:9627-9637. [PMID: 33460250 PMCID: PMC7520277 DOI: 10.1111/jcmm.15470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 11/27/2022] Open
Abstract
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis‐induced apoptosis. Wild‐type (WT) CASP mice hearts showed an increase in apoptosis respect to WT‐Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3‐I) were protected against sepsis‐induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT‐CASP. To examine whether CaMKII‐dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation‐dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT‐CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene‐treated mice. We conclude that in sepsis, CaMKII‐dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.
Collapse
Affiliation(s)
- Marisa Sepúlveda
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luisa González Arbelaez
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Beck TC, Beck KR, Holloway CB, Hemings RA, Dix TA, Norris RA. The C-C Chemokine Receptor Type 4 Is an Immunomodulatory Target of Hydroxychloroquine. Front Pharmacol 2020; 11:1253. [PMID: 32973504 PMCID: PMC7482581 DOI: 10.3389/fphar.2020.01253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) in China, reported to the World Health Organization on December 31, 2019, has led to a large global pandemic and is a major public health issue. As a result, there are more than 200 clinical trials of COVID-19 treatments or vaccines that are either ongoing or recruiting patients. One potential therapy that has garnered international attention is hydroxychloroquine; a potent immunomodulatory agent FDA-approved for the treatment of numerous inflammatory and autoimmune conditions, including malaria, lupus, and rheumatoid arthritis. Hydroxychloroquine has demonstrated promise in vitro and is currently under investigation in clinical trials for the treatment of COVID-19. Despite an abundance of empirical data, the mechanism(s) involved in the immunomodulatory activity of hydroxychloroquine have not been characterized. Using the unbiased chemical similarity ensemble approach (SEA), we identified C-C chemokine receptor type 4 (CCR4) as an immunomodulatory target of hydroxychloroquine. The crystal structure of CCR4 was selected for molecular docking studies using the SwissDock modeling software. In silico, hydroxychloroquine interacts with Thr-189 within the CCR4 active site, presumably blocking endogenous ligand binding. However, the CCR4 antagonists compound 18a and K777 outperformed hydroxychloroquine in silico, demonstrating energetically favorable binding characteristics. Hydroxychloroquine may subject COVID-19 patients to QT-prolongation, increasing the risk of sudden cardiac death. The FDA-approved CCR4 antagonist mogalizumab is not known to increase the risk of QT prolongation and may serve as a viable alternative to hydroxychloroquine. Results from this report introduce additional FDA-approved drugs that warrant investigation for therapeutic use in the treatment of COVID-19.
Collapse
Affiliation(s)
- Tyler C. Beck
- Dix Laboratory, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States,Norris Laboratory, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,College of Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Tyler C. Beck, ; Russell A. Norris,
| | - Kyle R. Beck
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Calvin B. Holloway
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - Richard A. Hemings
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas A. Dix
- Dix Laboratory, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Russell A. Norris
- Norris Laboratory, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Tyler C. Beck, ; Russell A. Norris,
| |
Collapse
|
4
|
The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity. Int J Mol Sci 2017; 18:ijms18112306. [PMID: 29099057 PMCID: PMC5713275 DOI: 10.3390/ijms18112306] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). It affects more than two million people worldwide, mainly young adults, and may lead to progressive neurological disability. Chemokines and their receptors have been shown to play critical roles in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a murine disease model induced by active immunization with myelin proteins or transfer of encephalitogenic CD4+ T cells that recapitulates clinical and neuropathological features of MS. Chemokine ligand-receptor interactions orchestrate leukocyte trafficking and influence multiple pathophysiological cellular processes, including antigen presentation and cytokine production by dendritic cells (DCs). The C-C class chemokines 17 (CCL17) and 22 (CCL22) and their C-C chemokine receptor 4 (CCR4) have been shown to play an important role in homeostasis and inflammatory responses. Here, we provide an overview of the involvement of CCR4 and its ligands in CNS autoimmunity. We review key clinical studies of MS together with experimental studies in animals that have demonstrated functional roles of CCR4, CCL17, and CCL22 in EAE pathogenesis. Finally, we discuss the therapeutic potential of newly developed CCR4 antagonists and a humanized anti-CCR4 antibody for treatment of MS.
Collapse
|
5
|
Nascimento DC, Melo PH, Piñeros AR, Ferreira RG, Colón DF, Donate PB, Castanheira FV, Gozzi A, Czaikoski PG, Niedbala W, Borges MC, Zamboni DS, Liew FY, Cunha FQ, Alves-Filho JC. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun 2017; 8:14919. [PMID: 28374774 PMCID: PMC5382289 DOI: 10.1038/ncomms14919] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
Patients who survive sepsis can develop long-term immune dysfunction, with expansion of the regulatory T (Treg) cell population. However, how Treg cells proliferate in these patients is not clear. Here we show that IL-33 has a major function in the induction of this immunosuppression. Mice deficient in ST2 (IL-33R) develop attenuated immunosuppression in cases that survive sepsis, whereas treatment of naive wild-type mice with IL-33 induces immunosuppression. IL-33, released during tissue injury in sepsis, activates type 2 innate lymphoid cells, which promote polarization of M2 macrophages, thereby enhancing expansion of the Treg cell population via IL-10. Moreover, sepsis-surviving patients have more Treg cells, IL-33 and IL-10 in their peripheral blood. Our study suggests that targeting IL-33 may be an effective treatment for sepsis-induced immunosuppression. Patients who survive sepsis are at increased risk of infection owing to long-term immunosuppression that is associated with an increase in Treg cell numbers. Here the authors show expansion of the Treg cell population in sepsis mice is driven by IL-33-induced ILC2 activation of IL-10 production by macrophages.
Collapse
Affiliation(s)
- Daniele C Nascimento
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Paulo H Melo
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Annie R Piñeros
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Raphael G Ferreira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - David F Colón
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Paula B Donate
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Fernanda V Castanheira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Aline Gozzi
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Paula G Czaikoski
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Wanda Niedbala
- Department of Immunology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marcos C Borges
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Dario S Zamboni
- Departments of Cell Biology and Microbial Pathogenesis, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Foo Y Liew
- Department of Immunology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, China
| | - Fernando Q Cunha
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Jose C Alves-Filho
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
6
|
Schmidt AI, Kühlbrey C, Lauch R, Wolff-Vorbeck G, Chikhladze S, Hopt UT, Wittel UA. The predominance of a naive T helper cell subset in the immune response of experimental acute pancreatitis. Pancreatology 2017; 17:209-218. [PMID: 28258935 DOI: 10.1016/j.pan.2017.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/10/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In necrotizing acute pancreatitis (NAP), systemic inflammatory response syndrome (SIRS) and the compensatory anti-inflammatory response syndrome (CARS) decide overall outcome and mortality. In patients, low lymphocyte counts were found, but T-helper cells seemed to conversely increase. Our aim was to further categorize T-helper cells within the context of NAP induced SIRS and CARS. METHODS NAP was induced by injection of sodium-taurocholate into the common bile duct of male BALB/c mice; sham treated animals received saline infusion. The animals were sacrificed at 6, 12, 24 and 48 h later. Lymphocytes from blood, liver and spleen were isolated and examined by flow cytometry. Staining was performed for CD4, CD8, CD19, CD45RB, CD25, CD69, and CD152. CD4+ cells were sorted for their CD45RB expression and sought for gene regulation associated to TH1/TH2 cells by quantitative RT-PCR. RESULTS In NAP, CD4+ was solely increased in all compartments. CD8+ remained without substantial alterations. CD45RB showed significant expression in RBhigh in T-helper cells, confirmed by the CD45RBhigh/low ratio (Liver, 24 h: NAP 2.2, SHAM 0.6; p < 0.001). CD45RBhigh and -low cells were not associated to patterns of TH1/TH2 expression. In NAP, CCR4 expression was significantly decreased within RBhigh cells (fold change: 0.04, p < 0.05), while TLR6 showed significant overexpression (fold change: 2.36, p < 0.05). CONCLUSION T-helper cells increase in NAP, leaning towards CD45RBhigh expression. They resemble naive T-cells, in which NAP leads to expression profiles associated with an innate immune response. This suggests new findings in immunological pathomechanisms of NAP.
Collapse
Affiliation(s)
- Andrea I Schmidt
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Christian Kühlbrey
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Robert Lauch
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Guido Wolff-Vorbeck
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Sophia Chikhladze
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Ulrich T Hopt
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Uwe A Wittel
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Molinaro R, Pecli C, Guilherme RF, Alves-Filho JC, Cunha FQ, Canetti C, Kunkel SL, Bozza MT, Benjamim CF. CCR4 Controls the Suppressive Effects of Regulatory T Cells on Early and Late Events during Severe Sepsis. PLoS One 2015. [PMID: 26197455 PMCID: PMC4511514 DOI: 10.1371/journal.pone.0133227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sepsis is a deadly disease characterized by an overwhelming release of inflammatory mediators and the activation of different types of cells. This altered state of cell activation, termed leukocyte reprogramming, contributes to patient outcome. However, the understanding of the process underlying sepsis and the role of regulatory T cells (Tregs) in sepsis remains to be elucidated. In this study, we investigated the role of CCR4, the CCL17/CCL22 chemokine receptor, in the innate and acquired immune responses during severe sepsis and the role of Tregs in effecting the outcome. In contrast with wild-type (WT) mice subjected to cecal ligation and puncture (CLP) sepsis, CCR4-deficient (CCR4-/-) septic mice presented an increased survival rate, significant neutrophil migration toward the infection site, a low bacterial count in the peritoneum, and reduced lung inflammation and serum cytokine levels. Thus, a better early host response may favor an adequate long-term response. Consequently, the CCR4-/- septic mice were not susceptible to secondary fungal infection, in contrast with the WT septic mice. Furthermore, Tregs cells from the CCR4-/- septic mice showed reduced suppressive effects on neutrophil migration (both in vivo and in vitro), lymphocyte proliferation and ROS production from activated neutrophils, in contrast with what was observed for Tregs from the WT septic mice. These data show that CCR4 is involved in immunosuppression after severe sepsis and suggest that CCR4+ Tregs negatively modulate the short and long-term immune responses.
Collapse
Affiliation(s)
- Raphael Molinaro
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cyntia Pecli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafael F. Guilherme
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Carlos Alves-Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Q. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Claudio Canetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - Marcelo T. Bozza
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia F. Benjamim
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
8
|
Jiang J, Miyata M, Chan C, Ngoh SY, Liew WC, Saju JM, Ng KS, Wong FS, Lee YS, Chang SF, Orbán L. Differential transcriptomic response in the spleen and head kidney following vaccination and infection of Asian seabass with Streptococcus iniae. PLoS One 2014; 9:e99128. [PMID: 24992587 PMCID: PMC4081116 DOI: 10.1371/journal.pone.0099128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Vaccination is an important strategy in the protection of aquaculture species from major diseases. However, we still do not have a good understanding of the mechanisms underlying vaccine-induced disease resistance. This is further complicated by the presence of several lymphoid organs that play different roles when mounting an immune response. In this study, we attempt to elucidate some of these mechanisms using a microarray-based approach. Asian seabass (Lates calcarifer) were vaccinated against Streptococcus iniae and the transcriptomic changes within the spleen and head kidney at one and seven days post-vaccination were profiled. We subsequently challenged the seabass at three weeks post-vaccination with live S. iniae and similarly profiled the transcriptomes of the two organs after the challenge. We found that vaccination induced an early, but transient transcriptomic change in the spleens and a delayed response in the head kidneys, which became more similar to one another compared to un-vaccinated ones. When challenged with the pathogen, the spleen, but not the head kidneys, responded transcriptomically at 25-29 hours post-challenge. A unique set of genes, in particular those involved in the activation of NF-κB signaling, was up-regulated in the vaccinated spleens upon pathogen challenge but not in the un-vaccinated spleens. A semi-quantitative PCR detection of S. iniae using metagenomic DNA extracted from the water containing the seabass also revealed that vaccination resulted in reduction of pathogen shedding. This result indicated that vaccination not only led to a successful immune defense against the infection, but also reduced the chances for horizontal transmission of the pathogen. In conclusion, we have provided a transcriptomic analysis of how the teleost spleen and head kidneys responded to vaccination and subsequent infection. The different responses from the two organs are suggestive of their unique roles in establishing a vaccine-induced disease resistance.
Collapse
Affiliation(s)
- Junhui Jiang
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Agri-Food and Veterinary Authority of Singapore, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Masato Miyata
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Candy Chan
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Si Yan Ngoh
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Jolly M. Saju
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | - Kah Sing Ng
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Fong Sian Wong
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Yeng Sheng Lee
- MSD Animal Health Innovation, Singapore, Republic of Singapore
| | - Siow Foong Chang
- MSD Animal Health Innovation, Singapore, Republic of Singapore
- * E-mail: (SFC); (LO)
| | - László Orbán
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
- Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
- Centre for Comparative Genomics, Murdoch University, Murdoch, Australia
- * E-mail: (SFC); (LO)
| |
Collapse
|
9
|
Guabiraba R, Ryffel B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 2014; 141:143-56. [PMID: 24182427 PMCID: PMC3904235 DOI: 10.1111/imm.12188] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Dengue viruses (DENV), a group of four serologically distinct but related flaviviruses, are responsible for one of the most important emerging viral diseases. This mosquito-borne disease has a great impact in tropical and subtropical areas of the world in terms of illness, mortality and economic costs, mainly due to the lack of approved vaccine or antiviral drugs. Infections with one of the four serotypes of DENV (DENV-1-4) result in symptoms ranging from an acute, self-limiting febrile illness, dengue fever, to severe dengue haemorrhagic fever or dengue shock syndrome. We reviewed the existing mouse models of infection, including the DENV-2-adapted strain P23085. The role of CC chemokines, interleukin-17 (IL-17), IL-22 and invariant natural killer T cells in mediating the exacerbation of disease in immune-competent mice is highlighted. Investigations in both immune-deficient and immune-competent mouse models of DENV infection may help to identify key host–pathogen factors and devise novel therapies to restrain the systemic and local inflammatory responses associated with severe DENV infection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
| | - Bernhard Ryffel
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
- IIDMM, UCTCape Town, South Africa
- Artimmune SASOrléans, France
| |
Collapse
|
10
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
11
|
Yamanishi Y, Takahashi M, Izawa K, Isobe M, Ito S, Tsuchiya A, Maehara A, Kaitani A, Uchida T, Togami K, Enomoto Y, Nakahara F, Oki T, Kajikawa M, Kurihara H, Kitamura T, Kitaura J. A Soluble Form of LMIR5/CD300b Amplifies Lipopolysaccharide-Induced Lethal Inflammation in Sepsis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1773-9. [DOI: 10.4049/jimmunol.1201139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
When host defense goes awry: Modeling sepsis-induced immunosuppression. ACTA ACUST UNITED AC 2012; 9:e33-e38. [PMID: 24052802 DOI: 10.1016/j.ddmod.2011.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis is associated with an initial hyperinflammatory state; however, therapeutic trials targeting the inflammatory response have yielded disappointing results. It is now appreciated that septic patients often undergo a period of relative immunosuppression, rendering them susceptible to secondary infections. Interest in this phenomenon has led to the development of animal models to study the immune dysfunction of sepsis. In this review, we analyze the available models of sepsis-induced immunosuppression.
Collapse
|
13
|
Guabiraba R, Marques RE, Besnard AG, Fagundes CT, Souza DG, Ryffel B, Teixeira MM. Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental dengue infection in mice. PLoS One 2010; 5:e15680. [PMID: 21206747 PMCID: PMC3012079 DOI: 10.1371/journal.pone.0015680] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1-/- mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2-/- mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4-/- mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Université d'Orléans and CNRS, UMR 6218, Molecular Immunology and Embryology, Orléans, France
| | - Rafael Elias Marques
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne-Gaëlle Besnard
- Université d'Orléans and CNRS, UMR 6218, Molecular Immunology and Embryology, Orléans, France
| | - Caio T. Fagundes
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G. Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- Université d'Orléans and CNRS, UMR 6218, Molecular Immunology and Embryology, Orléans, France
| | - Mauro M. Teixeira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
14
|
Traeger T, Koerner P, Kessler W, Cziupka K, Diedrich S, Busemann A, Heidecke CD, Maier S. Colon ascendens stent peritonitis (CASP)--a standardized model for polymicrobial abdominal sepsis. J Vis Exp 2010:2299. [PMID: 21206468 PMCID: PMC3159662 DOI: 10.3791/2299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sepsis remains a persistent problem on intensive care units all over the world. Understanding the complex mechanisms of sepsis is the precondition for establishing new therapeutic approaches in this field. Therefore, animal models are required that are able to closely mimic the human disease and also sufficiently deal with scientific questions. The Colon Ascendens Stent Peritonitis (CASP) is a highly standardized model for polymicrobial abdominal sepsis in rodents. In this model, a small stent is surgically inserted into the ascending colon of mice or rats leading to a continuous leakage of intestinal bacteria into the peritoneal cavity. The procedure results in peritonitis, systemic bacteraemia, organ infection by gut bacteria, and systemic but also local release of several pro- and anti-inflammatory cytokines. The lethality of CASP can be controlled by the diameter of the inserted stent. A variant of this model, the so-called CASP with intervention (CASPI), raises opportunity to remove the septic focus by a second operation according to common procedures in clinical practice. CASP is an easily learnable and highly reproducible model that closely mimics the clinical course of abdominal sepsis. It leads way to study on questions in several scientific fields e.g. immunology, infectiology, or surgery.
Collapse
|
15
|
Koerner P, Traeger T, Mehmcke H, Cziupka K, Kessler W, Busemann A, Diedrich S, Hartmann G, Heidecke CD, Maier S. Stimulation of TLR7 prior to polymicrobial sepsis improves the immune control of the inflammatory response in adult mice. Inflamm Res 2010; 60:271-9. [DOI: 10.1007/s00011-010-0265-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/21/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022] Open
|
16
|
Kupffer cell depletion reduces hepatic inflammation and apoptosis but decreases survival in abdominal sepsis. Eur J Gastroenterol Hepatol 2010; 22:1039-49. [PMID: 20300005 DOI: 10.1097/meg.0b013e32833847db] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE During abdominal sepsis, the activation of hepatic Kupffer cells (KC) and its consequences are of central interest. This study evaluates the impact of selective KC depletion on hepatic microcirculation, cytokine release, and systemic alterations in the colon ascendens stent peritonitis (CASP), a model of polymicrobial abdominal sepsis. METHODS For KC depletion clodronate liposomes were injected 24 h before CASP surgery in female C57BL/6N mice. Three and 12 h after CASP, in-vivo fluorescence microscopy of the liver was performed. Analysis of hepatocellular apoptosis was conducted by immunohistochemistry. In addition, levels of tumor necrosis factor (TNF), IL-6, and IL-10 in the liver, lungs, spleen, and plasma were determined, and bacteriology and survival analysis were performed. RESULTS CASP led to significant sinusoidal perfusion failure, increased leukocyte recruitment, hepatocellular apoptosis and increased levels of TNF, IL-6, and IL-10 in the liver and plasma. KC depletion before CASP significantly reduced leukocyte recruitment to the liver and hepatocellular apoptosis. IL-10 secretion decreased dramatically in the liver and plasma of KC-depleted septic mice. In contrast, TNF levels were clearly elevated after clodronate treatment. In the lung and spleen, a compensatory upregulation of IL-10 could be detected after KC depletion. Clodronate treatment resulted in a significant reduction in survival. CONCLUSION The results indicate that KC depletion is locally protective in polymicrobial abdominal sepsis, as it reduces hepatic inflammation and apoptosis. These effects could be observed in the presence of clearly elevated TNF levels. However, the lack of IL-10 in KC-depleted mice resulted in a detrimental systemic proinflammation.
Collapse
|