1
|
Del'Arco AE, Argolo DS, Guillemin G, Costa MDFD, Costa SL, Pinheiro AM. Neurological Infection, Kynurenine Pathway, and Parasitic Infection by Neospora caninum. Front Immunol 2022; 12:714248. [PMID: 35154065 PMCID: PMC8826404 DOI: 10.3389/fimmu.2021.714248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022] Open
Abstract
Neuroinflammation is one of the most frequently studied topics of neurosciences as it is a common feature in almost all neurological disorders. Although the primary function of neuroinflammation is to protect the nervous system from an insult, the complex and sequential response of activated glial cells can lead to neurological damage. Depending on the type of insults and the time post-insult, the inflammatory response can be neuroprotective, neurotoxic, or, depending on the glial cell types, both. There are multiple pathways activated and many bioactive intermediates are released during neuroinflammation. One of the most common one is the kynurenine pathway, catabolizing tryptophan, which is involved in immune regulation, neuroprotection, and neurotoxicity. Different models have been used to study the kynurenine pathway metabolites to understand their involvements in the development and maintenance of the inflammatory processes triggered by infections. Among them, the parasitic infection Neospora caninum could be used as a relevant model to study the role of the kynurenine pathway in the neuroinflammatory response and the subset of cells involved.
Collapse
Affiliation(s)
- Ana Elisa Del'Arco
- Laboratory of Biochemistry and Veterinary Immunology, Center of Agrarian, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas, Brazil
| | - Deivison Silva Argolo
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Bahia, Brazil
| | - Gilles Guillemin
- Neuroinflammation Group, Macquarie Medicine School, Macquarie University, Sydney, NSW, Australia
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Bahia, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), Bahia, Brazil
| | - Alexandre Moraes Pinheiro
- Laboratory of Biochemistry and Veterinary Immunology, Center of Agrarian, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas, Brazil
| |
Collapse
|
2
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Fereig RM, Nishikawa Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens 2020; 9:E384. [PMID: 32429367 PMCID: PMC7281608 DOI: 10.3390/pathogens9050384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
: Neospora caninum is an intracellular protozoan parasite affecting numerous animal species. It induces significant economic losses because of abortion and neonatal abnormalities in cattle. In case of infection, the parasite secretes numerous arsenals to establish a successful infection in the host cell. In the same context but for a different purpose, the host resorts to different strategies to eliminate the invading parasite. During this battle, numerous key factors from both parasite and host sides are produced and interact for the maintaining and vanishing of the infection, respectively. Although several reviews have highlighted the role of different compartments of the immune system against N. caninum infection, each one of them has mostly targeted specific points related to the immune component and animal host. Thus, in the current review, we will focus on effector molecules derived from the host cell or the parasite using a comprehensive survey method from previous reports. According to our knowledge, this is the first review that highlights and discusses immune response at the host cell-parasite molecular interface against N. caninum infection in different susceptible hosts.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
| |
Collapse
|
4
|
Carratalá JV, Cano-Garrido O, Sánchez J, Membrado C, Pérez E, Conchillo-Solé O, Daura X, Sánchez-Chardi A, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N. Aggregation-prone peptides modulate activity of bovine interferon gamma released from naturally occurring protein nanoparticles. N Biotechnol 2020; 57:11-19. [PMID: 32028049 DOI: 10.1016/j.nbt.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 12/28/2022]
Abstract
Efficient protocols for the production of recombinant proteins are indispensable for the development of the biopharmaceutical sector. Accumulation of recombinant proteins in naturally-occurring protein aggregates is detrimental to biopharmaceutical development. In recent years, the view of protein aggregates has changed with the recognition that they are a valuable source of functional recombinant proteins. In this study, bovine interferon-gamma (rBoIFN-γ) was engineered to enhance the formation of protein aggregates, also known as protein nanoparticles (NPs), by the addition of aggregation-prone peptides (APPs) in the generally recognized as safe (GRAS) bacterial Lactococcus lactis expression system. The L6K2, HALRU and CYOB peptides were selected to assess their intrinsic aggregation capability to nucleate protein aggregation. These APPs enhanced the tendency of the resulting protein to aggregate at the expense of total protein yield. However, fine physico-chemical characterization of the resulting intracellular protein NPs, the protein released from them and the protein purified from the soluble cell fraction indicated that the compactability of protein conformations was directly related to the biological activity of variants of IFN-γ, used here as a model protein with therapeutic potential. APPs enhanced the aggregation tendency of fused rBoIFN-γ while increasing compactability of protein species. Biological activity of rBoIFN-γ was favored in more compacted conformations. Naturally-occurring protein aggregates can be produced in GRAS microorganisms as protein depots of releasable active protein. The addition of APPs to enhance the aggregation tendency has a positive impact in overall compactability and functionality of resulting protein conformers.
Collapse
Affiliation(s)
- José Vicente Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Olivia Cano-Garrido
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Julieta Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Cristina Membrado
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Eudald Pérez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Xavier Daura
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain and Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Barros PDSC, Mota CM, Miranda VDS, Ferreira FB, Ramos ELP, Santana SS, Costa LF, Marques Pajuaba ACA, Roberto Mineo J, Mineo TWP. Inducible Nitric Oxide Synthase is required for parasite restriction and inflammatory modulation during Neospora caninum infection. Vet Parasitol 2019; 276:108990. [PMID: 31775103 DOI: 10.1016/j.vetpar.2019.108990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/06/2023]
Abstract
Neospora caninum infection is an important cause of neuromuscular disease in dogs and abortion in cattle, leading to significant economic losses in beef and dairy industries. The protective immunity against apicomplexan parasites, specifically Toxoplasma gondii and N. caninum, is typically achieved by inducing an IL-12-driven Th1 immune response. IL-12 stimulates IFN-γ production, which activates Inducible Nitric Oxide Synthase (iNOS) and promotes consequent Nitric Oxide (NO) synthesis, classically described as one of the main effector mechanisms for parasite elimination. Here, we aimed to evaluate the role played by iNOS during N. caninum infection. Our results show that N. caninum infection in C57BL/6 wild type (WT) mice induce NO production in vivo and in vitro. In agreement, iNOS deficient mice, as well as WT mice treated with iNOS inhibitor aminoguanidine, succumbed during acute infection with a dose lethal to 50 % of the WT mice, and presented significant increase in parasite load when submitted to sub-lethal infection protocols. Interestingly, the lack of control of parasite proliferation observed in iNOS-/- mice was associated with notable CNS inflammation and increased production of the main systemic proinflammatory cytokines (IL-12, IFN-γ, IL-6, TNF and IL-17A). Taken together, our findings show that iNOS plays an important role in restricting N. caninum replication, while also modulates the inflammatory process induced by the infection.
Collapse
Affiliation(s)
- Patrício da Silva Cardoso Barros
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Caroline Martins Mota
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Vanessa Dos Santos Miranda
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Flávia Batista Ferreira
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Eliézer Lucas Pires Ramos
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Silas Silva Santana
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Lourenço Faria Costa
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Ana Cláudia Arantes Marques Pajuaba
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - José Roberto Mineo
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório De Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Departamento De Imunologia, Instituto De Ciências Biomédicas, Universidade Federal De Uberlândia, Av. Pará, 1720 - Bloco 4C, Campus Umuarama - 38.400-902, Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
Jesus LB, Santos AB, Jesus EEV, Santos RGD, Grangeiro MS, Bispo-da-Silva A, Arruda MR, Argolo DS, Pinheiro AM, El-Bachá RS, Costa SL, Costa MFD. IDO, COX and iNOS have an important role in the proliferation of Neospora caninum in neuron/glia co-cultures. Vet Parasitol 2019; 266:96-102. [PMID: 30736955 DOI: 10.1016/j.vetpar.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/23/2022]
Abstract
Central nervous system (CNS) is the main site for encystment of Neospora caninum in different animal species. In this tissue, glial cells (astrocytes and microglia) modulate responses to aggression in order to preserve homeostasis and neuronal function. Previous data showed that when primary cultures of glial cells are infected with N. caninum, they develop gliosis and the immune response is characterized by the release of TNF and IL-10, followed by the control of parasite proliferation. In order to elucidate this control, three enzymatic systems involved in parasite-versus-host interactions were observed on a model of neuron/glia co/cultures obtained from rat brains. Indoleamine 2,3-dioxygenase (IDO), induced nitric oxide synthase (iNOS) responsible for the catabolism of tryptophan and arginine, respectively, and cycloxigenase (COX) were studied comparing their modulation by respective inhibitors with the number of tachyzoites or the immune response measured by the release of IL-10 and TNF. Cells were treated with the inhibitors of iNOS (1.5 mM L-NAME), IDO (1 mM 1-methyl tryptophan), COX-1 (1 μM indomethacin) and COX-2 (1 μM nimesulide) before infection with tachyzoites of N. caninum (1:1 cell: parasite). After 72 h of infection, immunocytochemistry showed astrogliosis and a significant increase in the number and length of neurites, compared with uninfected co-cultures, while an increase of IL-10 and TNF was verified. N. caninum did not change iNOS activity, but the inhibition of the basal levels of this enzyme stimulated parasite proliferation. Additionally, a significant increase of about 40% was verified in the IDO activity, whose inhibition caused 1.2-fold increase in parasitic growth. For COX-2 activity, infection of cultures stimulated a significant increase in release of PGE2 and its inhibition by nimesulide allowed the parasitic growth. These data indicate that iNOS, IDO and COX-2 control the proliferation of N. caninum in this in vitro model. On the other hand, the release of IL-10 by glia besides modulating the inflammation also allow the continuity of parasitism.
Collapse
Affiliation(s)
- L B Jesus
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - A B Santos
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - E E V Jesus
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - R G D Santos
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - M S Grangeiro
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - A Bispo-da-Silva
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - M R Arruda
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - D S Argolo
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil
| | - A M Pinheiro
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil; Centro de Ciências Agrárias Ambientais e Biológica, Universidade do Recôncavo da Bahia - URBA, R. Ruy Barbosa 710 Centro, CEP 44380-000, Cruz das Almas, Bahia, Brazil
| | - R S El-Bachá
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil; INCT de Neurociência Translacional (INNT)- CNPq, Brazil
| | - S L Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil; INCT de Neurociência Translacional (INNT)- CNPq, Brazil.
| | - M F D Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia - UFBA, Av. Reitor Miguel Calmon s/n, Vale do Canela, CEP 41100-100, Salvador, Bahia, Brazil; INCT de Neurociência Translacional (INNT)- CNPq, Brazil.
| |
Collapse
|
7
|
Characterization of the In Vitro Chlamydia pecorum Response to Gamma Interferon. Infect Immun 2018; 86:IAI.00714-17. [PMID: 29358337 DOI: 10.1128/iai.00714-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/14/2018] [Indexed: 12/12/2022] Open
Abstract
Chlamydia pecorum is an important intracellular bacterium that causes a range of diseases in animals, including a native Australian marsupial, the koala. In humans and animals, a gamma interferon (IFN-γ)-mediated immune response is important for the control of intracellular bacteria. The present study tested the hypotheses that C. pecorum can escape IFN-γ-mediated depletion of host cell tryptophan pools. In doing so, we demonstrated that, unlike Chlamydia trachomatis, C. pecorum is completely resistant to IFN-γ in human epithelial cells. While the growth of C. pecorum was inhibited in tryptophan-deficient medium, it could be restored by the addition of kynurenine, anthranilic acid, and indole, metabolites that could be exploited by the gene products of the C. pecorum tryptophan biosynthesis operon. We also found that expression of trp genes was detectable only when C. pecorum was grown in tryptophan-free medium, with gene repression occurring in response to the addition of kynurenine, anthranilic acid, and indole. When grown in bovine kidney epithelial cells, bovine IFN-γ also failed to restrict the growth of C. pecorum, while C. trachomatis was inhibited, suggesting that C. pecorum could use the same mechanisms to evade the immune response in vivo in its natural host. Highlighting the different mechanisms triggered by IFN-γ, however, both species failed to grow in murine McCoy cells treated with murine IFN-γ. This work confirms previous hypotheses about the potential survival of C. pecorum after IFN-γ-mediated host cell tryptophan depletion and raises questions about the immune pathways used by the natural hosts of C. pecorum to control the widespread pathogen.
Collapse
|
8
|
First Characterization of the Neospora caninum Dense Granule Protein GRA9. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6746437. [PMID: 29259983 PMCID: PMC5702412 DOI: 10.1155/2017/6746437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/28/2017] [Indexed: 11/17/2022]
Abstract
The obligate intracellular apicomplexan parasite Neospora caninum (N. caninum) is closely related to Toxoplasma gondii (T. gondii). The dense granules, which are present in all apicomplexan parasites, are important secretory organelles. Dense granule (GRA) proteins are released into the parasitophorous vacuole (PV) following host cell invasion and are known to play important roles in the maintenance of the host-parasite relationship and in the acquisition of nutrients. Here, we provide a detailed characterization of the N. caninum dense granule protein NcGRA9. The in silico genomic organization and key protein characteristics are described. Immunofluorescence-based localization studies revealed that NcGRA9 is located in the dense granules and is released into the interior of the PV following host cell invasion. Immunogold-electron microscopy confirmed the dense granule localization and showed that NcGRA9 is associated with the intravacuolar network. In addition, NcGRA9 is found in the "excreted secreted antigen" (ESA) fraction of N. caninum. Furthermore, by analysing the distribution of truncated versions of NcGRA9, we provide evidence that the C-terminal region of this protein is essential for the targeting of NcGRA9 into the dense granules of N. caninum, and the truncated proteins show reduced secretion.
Collapse
|
9
|
Abstract
IDO1 (indoleamine 2,3-dioxygenase 1) is a member of a unique class of mammalian haem dioxygenases that catalyse the oxidative catabolism of the least-abundant essential amino acid, L-Trp (L-tryptophan), along the kynurenine pathway. Significant increases in knowledge have been recently gained with respect to understanding the fundamental biochemistry of IDO1 including its catalytic reaction mechanism, the scope of enzyme reactions it catalyses, the biochemical mechanisms controlling IDO1 expression and enzyme activity, and the discovery of enzyme inhibitors. Major advances in understanding the roles of IDO1 in physiology and disease have also been realised. IDO1 is recognised as a prominent immune regulatory enzyme capable of modulating immune cell activation status and phenotype via several molecular mechanisms including enzyme-dependent deprivation of L-Trp and its conversion into the aryl hydrocarbon receptor ligand kynurenine and other bioactive kynurenine pathway metabolites, or non-enzymatic cell signalling actions involving tyrosine phosphorylation of IDO1. Through these different modes of biochemical signalling, IDO1 regulates certain physiological functions (e.g. pregnancy) and modulates the pathogenesis and severity of diverse conditions including chronic inflammation, infectious disease, allergic and autoimmune disorders, transplantation, neuropathology and cancer. In the present review, we detail the current understanding of IDO1’s catalytic actions and the biochemical mechanisms regulating IDO1 expression and activity. We also discuss the biological functions of IDO1 with a focus on the enzyme's immune-modulatory function, its medical implications in diverse pathological settings and its utility as a therapeutic target.
Collapse
|
10
|
Credille BC, Woolums AR, Overton MW, Hurley DJ, Giguère S. Expression of inflammation-associated genes in circulating leukocytes and activity of indoleamine-2,3-dioxygenase in dairy cattle with acute puerperal metritis and bacteremia. Res Vet Sci 2015; 101:6-10. [PMID: 26267081 DOI: 10.1016/j.rvsc.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate whether expression of genes associated with inflammation and activity of indoleamine-2,3-dioxygenase (IDO) correlated with disease status and prevalence of bacteremia in post-partum dairy cattle with and without acute puerperal metritis (APM). PROCEDURES Blood was collected from cattle with APM and control cattle matched by parity and days in milk. Leukocytes were isolated and expression of 6 genes was quantified. Activity of IDO was measured in serum with higher performance liquid chromatography (HPLC). RESULTS The relative expression of IL-1β in cattle with APM was significantly lower than that in controls. IDO activity was not significantly different between bacteremic and non-bacteremic cattle CONCLUSIONS AND CLINICAL RELEVANCE The expression of IL-1β was lower in cattle with APM. The lower levels of IL-1β expression in PBMCs of cattle with APM suggest impaired inflammatory responses and may contribute to the development of the disease in this population of animals.
Collapse
Affiliation(s)
- Brent C Credille
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States.
| | - Amelia R Woolums
- Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Michael W Overton
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Steeve Giguère
- Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
11
|
Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol 2014; 5:603. [PMID: 25505468 PMCID: PMC4244692 DOI: 10.3389/fimmu.2014.00603] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/10/2014] [Indexed: 02/04/2023] Open
Abstract
The classical view of the Th1/Th2 paradigm posits that the pathogen nature, infectious cycle, and persistence represent key parameters controlling the choice of effector mechanisms operating during an immune response. Thus, efficient Th1 responses are triggered by replicating intracellular pathogens, while Th2 responses would control helminth infection and promote tissue repair during the resolution phase of an infectious event. However, this vision does not account for a growing body of data describing how pathogens exploit the polarization of the host immune response to their own benefit. Recently, the study of macrophages has illustrated a novel aspect of this arm race between pathogens and the immune system, and the central role of macrophages in homeostasis, repair and defense of all tissues is now fully appreciated. Like T lymphocytes, macrophages differentiate into distinct effectors including classically (M1) and alternatively (M2) activated macrophages. Interestingly, in addition to represent immune effectors, M1/M2 cells have been shown to represent potential reservoir cells to a wide range of intracellular pathogens. Subversion of macrophage cell metabolism by microbes appears as a recently uncovered immune escape strategy. Upon infection, several microbial agents have been shown to activate host metabolic pathways leading to the production of nutrients necessary to their long-term persistence in host. The purpose of this review is to summarize and discuss the strategies employed by pathogens to manipulate macrophage differentiation, and in particular their basic cell metabolism, to favor their own growth while avoiding immune control.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Faculty of Sciences, Université Libre de Bruxelles , Gosselies , Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Faculty of Sciences, Université Libre de Bruxelles , Gosselies , Belgium
| |
Collapse
|
12
|
De Jesus EEV, Santos ABD, Ribeiro CSO, Pinheiro AM, Freire SM, El-Bachá RS, Costa SL, de Fatima Dias Costa M. Role of IFN-γ and LPS on neuron/glial co-cultures infected by Neospora caninum. Front Cell Neurosci 2014; 8:340. [PMID: 25386119 PMCID: PMC4209861 DOI: 10.3389/fncel.2014.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/02/2014] [Indexed: 12/03/2022] Open
Abstract
Neospora caninum causes cattle abortion and neurological symptoms in dogs. Although infection is usually asymptomatic, classical neurological symptoms of neosporosis may be associated with encephalitis. This parasite can grow in brain endothelial cells without markedly damages, but it can modulate the cellular environment to promote its survival in the brain. In previous studies, we described that IFN-γ decreased the parasite proliferation and down regulated nitric oxide (NO) production in astrocyte/microglia cultures. However, it remains unclear how glial cells respond to N. caninum in the presence of neurons. Therefore, we evaluated the effect of 300 IU/mL IFN-γ or 1.0 mg/mL of LPS on infected rat neuron/glial co-cultures. After 72 h of infection, LPS did not affect the mitochondrial dehydrogenase activity. However, IFN-γ decreased this parameter by 15.5 and 12.0% in uninfected and infected cells, respectively. The number of tachyzoites decreased 54.1 and 44.3% in cells stimulated with IFN-γ and LPS, respectively. Infection or LPS treatment did not change NO production. On the other hand, IFN-γ induced increased nitrite release in 55.7%, but the infection reverted this induction. IL-10 levels increased only in infected cultures (treated or not), meanwhile PGE2 release was improved in IFN-γ/infected or LPS/infected cells. Although IFN-γ significantly reduced the neurite length in uninfected cultures (42.64%; p < 0.001), this inflammatory cytokine reverted the impairment of neurite outgrowth induced by the infection (81.39%). The results suggest a neuroprotective potential response of glia to N. caninum infection under IFN-γ stimulus. This observation contributes to understand the immune mediated mechanisms of neosporosis in central nervous system (CNS).
Collapse
Affiliation(s)
- Erica Etelvina Viana De Jesus
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Alex Barbosa Dos Santos
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Catia Suse Oliveira Ribeiro
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Alexandre Moraes Pinheiro
- Laboratório de Bioquímica e Imunologia Veterinária, Centro de Ciências Agrárias Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia Cruz das Almas, Brazil
| | - Songeli Menezes Freire
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Ramon Santos El-Bachá
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Silvia Lima Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| | - Maria de Fatima Dias Costa
- Laboratório de Neuroquímica e Biologia Celular, Instituto de Ciências da Saúde, Universidade Federal da Bahia-UFBA Salvador, Brazil
| |
Collapse
|
13
|
Spekker K, Leineweber M, Degrandi D, Ince V, Brunder S, Schmidt SK, Stuhlsatz S, Howard JC, Schares G, Degistirici O, Meisel R, Sorg RV, Seissler J, Hemphill A, Pfeffer K, Däubener W. Antimicrobial effects of murine mesenchymal stromal cells directed against Toxoplasma gondii and Neospora caninum: role of immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). Med Microbiol Immunol 2012; 202:197-206. [PMID: 23269418 DOI: 10.1007/s00430-012-0281-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022]
Abstract
Mesenchymal stromal cells (MSCs) have a multilineage differentiation potential and provide immunosuppressive and antimicrobial functions. Murine as well as human MSCs restrict the proliferation of T cells. However, species-specific differences in the underlying molecular mechanisms have been described. Here, we analyzed the antiparasitic effector mechanisms active in murine MSCs. Murine MSCs, in contrast to human MSCs, could not restrict the growth of a highly virulent strain of Toxoplasma gondii (BK) after stimulation with IFN-γ. However, the growth of a type II strain of T. gondii (ME49) was strongly inhibited by IFN-γ-activated murine MSCs. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Further analysis showed that IFN-γ-activated mMSCs also inhibit the growth of Neospora caninum, a parasite belonging to the apicomplexan group as well. Detailed studies with murine IFN-γ-activated MSC indicated an involvement in IRGs like Irga6, Irgb6 and Irgd in the inhibition of N. caninum. Additional data showed that, furthermore, GBPs like mGBP1 and mGBP2 could have played a role in the anti-N. caninum effect of murine MSCs. These data underline that MSCs, in addition to their regenerative and immunosuppressive activity, function as antiparasitic effector cells as well. However, IRGs are not present in the human genome, indicating a species-specific difference in anti-T. gondii and anti-N. caninum effect between human and murine MSCs.
Collapse
Affiliation(s)
- K Spekker
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Universitätsstrasse 1 Geb. 22.21, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Antimicrobial effects of murine mesenchymal stromal cells directed against Toxoplasma gondii and Neospora caninum: role of immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). Med Microbiol Immunol 2012. [PMID: 23269418 DOI: 10.1007/s00430-012-0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesenchymal stromal cells (MSCs) have a multilineage differentiation potential and provide immunosuppressive and antimicrobial functions. Murine as well as human MSCs restrict the proliferation of T cells. However, species-specific differences in the underlying molecular mechanisms have been described. Here, we analyzed the antiparasitic effector mechanisms active in murine MSCs. Murine MSCs, in contrast to human MSCs, could not restrict the growth of a highly virulent strain of Toxoplasma gondii (BK) after stimulation with IFN-γ. However, the growth of a type II strain of T. gondii (ME49) was strongly inhibited by IFN-γ-activated murine MSCs. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Further analysis showed that IFN-γ-activated mMSCs also inhibit the growth of Neospora caninum, a parasite belonging to the apicomplexan group as well. Detailed studies with murine IFN-γ-activated MSC indicated an involvement in IRGs like Irga6, Irgb6 and Irgd in the inhibition of N. caninum. Additional data showed that, furthermore, GBPs like mGBP1 and mGBP2 could have played a role in the anti-N. caninum effect of murine MSCs. These data underline that MSCs, in addition to their regenerative and immunosuppressive activity, function as antiparasitic effector cells as well. However, IRGs are not present in the human genome, indicating a species-specific difference in anti-T. gondii and anti-N. caninum effect between human and murine MSCs.
Collapse
|
15
|
Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts. JOURNAL OF INFLAMMATION-LONDON 2011; 8:25. [PMID: 21982155 PMCID: PMC3204223 DOI: 10.1186/1476-9255-8-25] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/08/2011] [Indexed: 11/14/2022]
Abstract
Background The kynurenine pathway (KP) is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP. Methods Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN)-γ 200 U/ml and/or tumor necrosis factor (TNF)-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA) were determined by HPLC. Results At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments. Conclusions All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease-related abnormalities in the kynurenine pathway of tryptophan degradation.
Collapse
|
16
|
Coers J, Gondek DC, Olive AJ, Rohlfing A, Taylor GA, Starnbach MN. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections. PLoS Pathog 2011; 7:e1001346. [PMID: 21731484 PMCID: PMC3121881 DOI: 10.1371/journal.ppat.1001346] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 05/22/2011] [Indexed: 10/26/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-γ (IFNγ) plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNγ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs), we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3((-/-)) mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3((-/-)) mice is dependent on an exacerbated CD4(+) T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4(+) T cells and prevents the establishment of a persistent infection in mice.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Dave C. Gondek
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Rohlfing
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory A. Taylor
- Departments of Medicine, Molecular Genetics and Microbiology, and Immunology and Center for the Study of Aging, Duke University, Durham, North Carolina, United States of America
- Geriatric Research and Education and Clinical Center, Veteran Affairs Medical Center, Durham, North Carolina, United States of America
| | - Michael N. Starnbach
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Carvalho JV, Alves CMOS, Cardoso MRD, Mota CM, Barbosa BF, Ferro EAV, Silva NM, Mineo TWP, Mineo JR, Silva DAO. Differential susceptibility of human trophoblastic (BeWo) and uterine cervical (HeLa) cells to Neospora caninum infection. Int J Parasitol 2010; 40:1629-37. [PMID: 20708622 DOI: 10.1016/j.ijpara.2010.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/18/2022]
Abstract
Neospora caninum is an apicomplexan parasite, closely related to Toxoplasma gondii, and causes abortion and congenital neosporosis in cattle worldwide. Trophoblast cells act in mechanisms of innate immune defense at the fetal-maternal interface and no data are available about the interaction of Neospora with human trophoblasts. Thus, this study aimed to verify the susceptibility of human trophoblastic (BeWo) compared with uterine cervical (HeLa) cell lines to N. caninum. BeWo and HeLa cells were infected with different parasite:cell ratios of N. caninum tachyzoites and analyzed at different times after infection for cell viability using thiazolyl blue tetrazole and lactate dehydrogenase assays. Both cell lines were also evaluated for cytokine production and parasite infection/replication assays when pre-treated or not with Neospora lysate antigen (NLA) or human recombinant IFN-γ. Cell viability was increased up to 48 h of infection in both types of cells, suggesting that infection could inhibit early cell death and/or induce cell proliferation. Neospora infection induced up-regulation of the macrophage migration inhibitory factor (MIF), mainly in HeLa cells, which was enhanced by cell pre-treatment by NLA or IFN-γ. Conversely, parasite infection induced down-regulation of the transforming growth factor (TGF-β), mostly in BeWo cells, which was decreased with NLA or IFN-γ pre-treatment. HeLa cells were more susceptible to Neospora infection than BeWo cells and IFN-γ pre-treatment resulted in reduced infection indices in both cell lines. Control of parasite growth was mediated by IFN-γ through an indoleamine-2,3-dioxygenase-dependent mechanism in HeLa cells alone. Based on these results, we concluded that BeWo and HeLa cells are readily infected by N. caninum, although presenting differences in susceptibility to infection, cytokine production and cell viability. Thus, these host cells can be considered in comparative approaches to understand strategies used by N. caninum to survive at the maternal-fetal interface.
Collapse
Affiliation(s)
- Julianne V Carvalho
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, 38400-902 Uberlândia, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baban B, Penberthy WT, Mozaffari MS. The potential role of indoleamine 2,3 dioxygenase (IDO) as a predictive and therapeutic target for diabetes treatment: a mythical truth. EPMA J 2010. [PMID: 23199040 PMCID: PMC3405305 DOI: 10.1007/s13167-010-0009-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which a T-cell-mediated reaction demolishes insulin-producing cells of pancreatic islets. Inadequacy of insulin therapy has motivated research focused on mechanisms by which autoimmune reactions can be suppressed. In recent years, the role of indoleamine 2,3 dioxygenase (IDO) in regulation of immune system has been extensively investigated. Initially, IDO was recognized as a host defense mechanism. However, recent studies have suggested an immunomodulatory role for IDO which may contribute to the induction of immune tolerance. In this review, we concentrate on the role of IDO in several pathologic conditions with a focus on T1D to rationalize our hypothesis regarding the potential for inclusion of IDO in certain therapeutic strategies aimed at early detection, treatment or ideally cure of chronic and autoimmune diseases such as T1D.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology, School of Dentistry, Medical College of Georgia Augusta, Georgia, 30912 USA
| | | | | |
Collapse
|