1
|
Current State of the Problem of Vaccine Development for Specific Prophylaxis of Plague. ПРОБЛЕМЫ ОСОБО ОПАСНЫХ ИНФЕКЦИЙ 2019. [DOI: 10.21055/0370-1069-2019-1-50-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emergence of large-scale plague outbreaks in Africa and South America countries in the modern period, characterized by high frequency of pneumonic plague development (including with lethal outcome) keeps up the interest of scientists to the matters of development and testing of means for specific prophylaxis of this particularly dangerous infectious disease. WHO workshop that was held in 2018 identified the general principles of optimization of design and testing of new-generation vaccines effectively protecting the population from plague infection. Application of the achievements of biological and medical sciences for outlining rational strategy for construction of immunobiological preparations led to a certain progress in the creation of not only sub-unit vaccines based on recombinant antigens, but also live and vector preparations on the platform of safe bacterial strains and replicating and non-replicating viruses in recent years. The review comprehensively considers the relevant trends in vaccine construction for plague prevention, describes advantages of the state-of-the art methodologies for their safety and efficiency enhancement.
Collapse
|
2
|
Kudriavtseva OM, Semakova AP, Mikshis NI, Popova PY, Kozhevnikov VA, Stepanov AV, Bugorkova SA. Immunological Efficacy and Safety of Synthesized CpG Oligodeoxynucleotides. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Gunawardana T, Ahmed KA, Goonewardene K, Popowich S, Kurukulasuriya S, Karunarathna R, Gupta A, Lockerbie B, Foldvari M, Tikoo SK, Willson P, Gomis S. Synthetic CpG-ODN rapidly enriches immune compartments in neonatal chicks to induce protective immunity against bacterial infections. Sci Rep 2019; 9:341. [PMID: 30674918 PMCID: PMC6344490 DOI: 10.1038/s41598-018-36588-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Oligodeoxynucleotides containing CpG motifs (CpG-ODN) induce innate immunity against bacterial infections. Despite recent advances, how CpG-ODN alone protects against bacterial infections remained elusive. Here, we report for the first time, to our knowledge, that CpG-ODN orchestrates anti-microbial protective immunity by inducing a rapid enrichment of various immune compartments in chickens. In this study, eighteen-day-old embryonated eggs were injected with either 50 µg of CpG-ODN or saline (~n = 90 per group). In the first experiment, four days after CpG-ODN treatment, chicks were challenged subcutaneously with a virulent strain of Escherichia coli (E. coli) and mortality was monitored for 8 days. We found significant protection, and reduced clinical scores in CpG-ODN treated chicks. To gain insights into mechanisms of protection induced by CpG-ODN, first we investigated cytokine expression kinetics elicited by CpG-ODN. The spleen and lung were collected from embryos or chicks (n = 3-4 per group) at 10 time points post-CpG-ODN inoculation. Multiplex gene analysis (interleukin (IL)-1, IL-4, IL-6, IL-10, IL-18, interferon (IFN)-γ, IFN-α, and lipopolysaccharide induced tumor necrosis factor (LITAF), revealed a significantly higher expression of pro-inflammatory cytokines following CpG-ODN treatment compared to the saline controls. In our study, LITAF stands out in the cytokine profiles of spleen and lungs, underscoring its role in CpG-ODN-induced protection. The third experiment was designed to examine the effects of CpG-ODN on immune cell populations in spleen, lungs, and thymus. Flow cytometry analysis was conducted at 24, 48 and 72 hrs (thymus only collected at 72 hr) after CpG-ODN administration to examine the changes in CD4+ and CD8+ T-cell subsets, monocyte/macrophage cell populations and their expression of maturation markers (CD40 and CD86). Flow cytometry data indicated a significant enrichment of macrophages, CD4+ and CD8+ T-cell subsets in both spleen and lungs of CpG-ODN treated embryos and chicks. Macrophages in spleen and lungs showed an upregulation of CD40 but not CD86, whereas thymocytes revealed significantly high CD4 and CD8 expression. Overall, the present study has demonstrated that CpG-ODN provides protection in neonatal chicks against E. coli infection not only by eliciting cytokine responses and stimulating immune cells but also through enriching immunological niches in spleen and lungs.
Collapse
Affiliation(s)
- Thushari Gunawardana
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Kalhari Goonewardene
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Shanika Kurukulasuriya
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ruwani Karunarathna
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ashish Gupta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Betty Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
4
|
Characterization of innate responses induced by in ovo administration of encapsulated and free forms of ligands of Toll-like receptor 4 and 21 in chicken embryos. Res Vet Sci 2017; 125:405-415. [PMID: 29126629 DOI: 10.1016/j.rvsc.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are a family of innate receptors that recognize pathogen-associated molecular patterns, including double-stranded RNA, CpG DNA and lipopolysaccharide (LPS). After interaction with their ligands, TLRs initiate innate responses that are manifested by activating cells and inducing expression of cytokines that help mediate adaptive immune responses. TLR ligands (TLR-Ls) have the potential to be used prophylactically (alone) or as vaccine adjuvants to promote host immunity. Encapsulating TLR-Ls in nanoparticles, such as Poly (d,l-lactic-co-glycolic acid), may prolong responses through sustained release of the ligands. PLGA nanoparticles protect encapsulated TLR-Ls from degradation and extend the half-life of these ligands by reducing their rapid removal from the body. In this study, encapsulated and free forms of LPS and CpG ODN were administered to embryonation day 18 (ED18) chicken embryos. Spleen, lungs and bursa of Fabricius were collected at 6, 18 and 48hour post-stimulation (hps) and cytokine gene expressions were evaluated using quantitative real-time PCR. Results indicate that both the free and encapsulated forms of LPS and CpG ODN induced innate immune responses in ED18 chicken embryos. Innate responses induced in embryos seem similar to those reported in mature chickens. Significant upregulation of cytokine genes generally occurred by 48hps. Further studies are needed to evaluate long term immunomodulatory effects of encapsulated TLR-Ls and their ability to mediate protection against pathogens of young chicks.
Collapse
|
5
|
Verma SK, Tuteja U. Plague Vaccine Development: Current Research and Future Trends. Front Immunol 2016; 7:602. [PMID: 28018363 PMCID: PMC5155008 DOI: 10.3389/fimmu.2016.00602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 02/05/2023] Open
Abstract
Plague is one of the world’s most lethal human diseases caused by Yersinia pestis, a Gram-negative bacterium. Despite overwhelming studies for many years worldwide, there is no safe and effective vaccine against this fatal disease. Inhalation of Y. pestis bacilli causes pneumonic plague, a fast growing and deadly dangerous disease. F1/LcrV-based vaccines failed to provide adequate protection in African green monkey model in spite of providing protection in mice and cynomolgus macaques. There is still no explanation for this inconsistent efficacy, and scientists leg behind to search reliable correlate assays for immune protection. These paucities are the main barriers to improve the effectiveness of plague vaccine. In the present scenario, one has to pay special attention to elicit strong cellular immune response in developing a next-generation vaccine against plague. Here, we review the scientific contributions and existing progress in developing subunit vaccines, the role of molecular adjuvants; DNA vaccines; live delivery platforms; and attenuated vaccines developed to counteract virulent strains of Y. pestis.
Collapse
Affiliation(s)
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment , Gwalior , India
| |
Collapse
|
6
|
Nishiguchi T, Ito I, Lee JO, Suzuki S, Suzuki F, Kobayashi M. Macrophage polarization and MRSA infection in burned mice. Immunol Cell Biol 2016; 95:198-206. [PMID: 27596946 DOI: 10.1038/icb.2016.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
Mortality associated with Staphylococcus aureus infection remains high during the sub-acute phase of burn injury. In this study, we aimed to improve antibacterial resistance of sub-acutely burned mice through macrophage polarization. Sepsis did not develop in mice at the sub-acute phase of 5% total body surface area (TBSA) burn after being infected with methicillin-resistant S. aureus (MRSA), and M1 macrophages (interleukin (IL)-10-IL-12+ inducible nitric oxide synthase+ Mφ) were isolated from these mice. In contrast, predominantly M2b macrophages (C-C motif chemokine ligand 1 (CCL1)+IL-10+IL-12- Mφ) were isolated from mice with >15% TBSA burn, and all of these mice died after the same MRSA infection. Comparing NOD scid gamma mice inoculated with Mφ with 25% TBSA burns, all mice treated with CCL1 antisense oligodeoxynucleotide (ODN) survived after MRSA infection, whereas all untreated mice given the same infection died within 4 days. CCL1 antisense ODN has been characterized as a specific polarizer of M2bMφ. M1Mφ were isolated from MRSA-infected mice with 25% TBSA burn after treatment with CCL1 antisense ODN, and these mice were shown to be resistant against a lethal dose of MRSA infection. M1Mφ were also isolated from 25% TBSA-burned mice infected with MRSA when the ODN was administered therapeutically, and subsequent sepsis was effectively controlled in these mice. These results indicate that the M2bMφ polarizer is beneficial for controlling MRSA infection in mice at the sub-acute phase of severe burn injury.
Collapse
Affiliation(s)
- Tomoki Nishiguchi
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Ichiaki Ito
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jong O Lee
- Shriners Hospitals for Children, Galveston, TX, USA
| | - Sumihiro Suzuki
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Fujio Suzuki
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Makiko Kobayashi
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA.,Shriners Hospitals for Children, Galveston, TX, USA
| |
Collapse
|
7
|
Ribes S, Meister T, Ott M, Redlich S, Janova H, Hanisch UK, Nessler S, Nau R. Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection. J Neuroinflammation 2014; 11:14. [PMID: 24456653 PMCID: PMC3906862 DOI: 10.1186/1742-2094-11-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/12/2014] [Indexed: 12/28/2022] Open
Abstract
Background Prophylaxis with unmethylated cytosine phosphate guanidine (CpG) oligodeoxynucleotides (ODN) protects against several systemic experimental infections. Escherichia coli is a major cause of Gram-negative neonatal bacterial meningitis and also causes meningitis and meningoencephalitis in older and immunocompromised patients. Methods Wild-type (wt) and Toll-like receptor 9 (TLR9)-deficient mice were rendered neutropenic by intraperitoneal administration of the anti-Ly-6G monoclonal antibody. Immunocompetent and neutropenic mice received intraperitoneal CpG ODN or vehicle 72 h prior to induction of E. coli K1 meningoencephalitis. Results Pre-treatment with CpG ODN significantly increased survival of neutropenic wt mice from 33% to 75% (P = 0.0003) but did not protect neutropenic TLR9-/- mice. The protective effect of CpG ODN was associated with an enhanced production of interleukin (IL)-12/IL-23p40 with sustained increased levels in serum and spleen at least for 17 days after conditioning compared to buffer-treated animals. CpG-treated neutropenic wt mice showed reduced bacterial concentrations and increased recruitment of Ly6ChighCCR2+ monocytes in brain and spleen 42 h after infection. The levels of macrophage inflammatory protein 1α (MIP-1α) and interferon gamma (IFN-γ) in spleen were higher 42 h after infection in CpG-treated compared to buffer-treated neutropenic animals. In immunocompetent mice, prophylaxis with CpG ODN did not significantly increase survival compared to the buffer group (60% vs. 45%, P = 0.2). Conclusions These findings suggest that systemic administration of CpG ODN may help to prevent bacterial CNS infections in immunocompromised individuals.
Collapse
Affiliation(s)
- Sandra Ribes
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, Yeager LA, Chopra AK, Rao VB. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog 2013; 9:e1003495. [PMID: 23853602 PMCID: PMC3708895 DOI: 10.1371/journal.ppat.1003495] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/28/2013] [Indexed: 12/17/2022] Open
Abstract
Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. Plague caused by Yersinia pestis is a deadly disease that wiped out one-third of Europe's population in the 14th century. The organism is listed by the CDC as Tier-1 biothreat agent, and currently, there is no FDA-approved vaccine against this pathogen. Stockpiling of an efficacious plague vaccine that could protect people against a potential bioterror attack has been a national priority. The current vaccines based on the capsular antigen (F1) and the low calcium response V antigen, are promising against both bubonic and pneumonic plague. However, the polymeric nature of F1 with its propensity to aggregate affects vaccine efficacy and generates varied immune responses in humans. We have addressed a series of concerns and generated mutants of F1 and V, which are completely soluble and produced in high yields. We then engineered the vaccine into a novel delivery platform using the bacteriophage T4 nanoparticle. The nanoparticle vaccines induced robust immunogenicity and provided 100% protection to mice and rats against pneumonic plague. These highly efficacious new generation plague vaccines are easily manufactured, and the potent T4 platform which can simultaneously incorporate antigens from other biothreat or emerging infectious agents provides a convenient way for mass vaccination of humans against multiple pathogens.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacteriophage T4/chemistry
- Bacteriophage T4/immunology
- Bacteriophage T4/metabolism
- Capsid/chemistry
- Capsid/immunology
- Capsid/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Female
- Mice
- Mice, Inbred BALB C
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Particle Size
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Plague/immunology
- Plague/microbiology
- Plague/prevention & control
- Plague/virology
- Plague Vaccine/chemistry
- Plague Vaccine/immunology
- Pore Forming Cytotoxic Proteins/chemistry
- Pore Forming Cytotoxic Proteins/genetics
- Pore Forming Cytotoxic Proteins/metabolism
- Protein Interaction Domains and Motifs
- Random Allocation
- Rats
- Rats, Inbred BN
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Vaccines, Virus-Like Particle/chemistry
- Vaccines, Virus-Like Particle/immunology
- Yersinia pestis/immunology
- Yersinia pestis/virology
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
| | - Michelle L. Kirtley
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christina J. van Lier
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jian Sha
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Linsey A. Yeager
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (AKC); (VBR)
| | - Venigalla B. Rao
- Department of Biology, The Catholic University of America, Washington, District of Columbia, United States of America
- * E-mail: (AKC); (VBR)
| |
Collapse
|
9
|
Mott TM, Johnston RK, Vijayakumar S, Estes DM, Motamedi M, Sbrana E, Endsley JJ, Torres AG. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques. Pathogens 2013; 2. [PMID: 24349761 PMCID: PMC3859531 DOI: 10.3390/pathogens2020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.
Collapse
Affiliation(s)
- Tiffany M Mott
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - R Katie Johnston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Sudhamathi Vijayakumar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - D Mark Estes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Elena Sbrana
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|