1
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Takahashi H, Morita M, Kamiya H, Nakamura-Miwa H, Shimuta K, Ohnishi M. Genetic characterization of clonal complex sequence type 2057 (cc2057) serogroup B Neisseria meningitidis strains unique to Japan and identification of a capsular-switched serogroup Y isolate cc2057. J Med Microbiol 2022; 71. [PMID: 35238737 DOI: 10.1099/jmm.0.001504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Only approximately 40 cases of invasive meningococcal diseases are reported annually in Japan, and the dominant strains are serogroup Y meningococci (MenY) followed by serogroup B meningococci (MenB). Within the last 10 years, Neisseria meningitidis strains belonging to clonal complex (cc)2057 have become dominant among Japanese MenB and have not been identified in countries other than Japan.Hypothesis/Gap Statement. The uniqueness of cc2057 N. meningitidis strains was considered to be epidemiologically of importance, and some genetic features could be hidden in the genome of cc2057 meningococci.Method. We investigated 22 cc2057 MenB and one cc2057 MenY using whole genome sequencing (WGS) and also predicted the potential coverage of 4CMenB and bivalent rLP2086 vaccines in silico.Results. cc2057 N. meningitidis strains were phylogenetically assigned to two clades. Three hypothetical genes homologous to those in Neisseria lactamica and sequences related to a new CRISPR Cas9 system were found only in the genome of cc2057 strains. Moreover, one cc2057 MenY strain was presumed to be capsular-switched at the capsule synthesis (cps) locus. The potential coverage of 4CMenB and rLP2086 for cc2057 MenB strains was estimated to be very low.Conclusion. To the best of our knowledge, this is the first study to provide genetic insights from epidemiologically unique N. meningitidis cc2057 strains isolated only in Japan, an island country.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruna Nakamura-Miwa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Shimuta
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Silva LA, Coronato B, Schlackman J, Marsh JW, Ezeonwuka C, Fernandes ACL, Souza VC, da Silva LS, de Amorim EFQ, Naveca FG, de Albuquerque BC, Amaral A, Souza ALS, Carvalho-Costa FA, Mustapha MM, Harrison LH, Barroso DE. Neisseria meningitidis disease-associated clones in Amazonas State, Brazil. Infect Dis (Lond) 2018; 50:697-704. [PMID: 29623748 DOI: 10.1080/23744235.2018.1459829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The aim of this study is to describe the molecular epidemiology of Neisseria meningitidis invasive disease before the introduction of serogroup C conjugate vaccine in Amazonas State in 2010. METHODS Meningococcal disease reported cases were investigated in Amazonas State during the period 2000-2010. N. meningitidis isolates (n = 196) recovered from patients were genotyped by multilocus sequence typing (MLST) and sequencing of porB, porA, fetA, fHbp and penA. Antimicrobial susceptibility was determined using E-test. RESULTS In the study period, 948 cases were reported; the incidence was 2.8 for the entire state and 4.8 per 100,000 in the capital of Manaus. Most meningococcal disease was caused by N. meningitidis belonging to ST-32 (72%; 141/196) or ST-103 (21%; 41/196) clonal complexes. Capsular switching (B→C) was suggested within clonal complex (cc) 32. There were 6 (3%; 6/196) strains with intermediate susceptibility to penicillin and a single strain was resistant to rifampicin. Since 2007, serogroup C strains belonging to the cc103 have predominated and case-fatality has increased. CONCLUSION We demonstrate a high rate of meningococcal disease in Amazonas State, where, like other parts of Brazil, serogroup C replaced serogroup B during 2000s. These data serve as a baseline to measure impact of serogroup C conjugate vaccine introduction in 2010. This study emphasizes the need for enhanced surveillance to monitor changes in meningococcal disease trends following the introduction of meningococcal vaccines.
Collapse
Affiliation(s)
- Luciete A Silva
- a Laboratory of Microbial Diversity of Importance to Health and Laboratory of Communicable Disease Ecology , Leônidas & Maria Deane Institute, FIOCRUZ , Manaus , Brazil
| | - Beatriz Coronato
- b Laboratory of Epidemiology and Molecular Systematics , Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil
| | - Jessica Schlackman
- c Infectious Diseases Epidemiology Research Unit , University of Pittsburgh School of Medicine and Graduate School of Public Health , Pittsburgh , PA , USA
| | - Jane W Marsh
- c Infectious Diseases Epidemiology Research Unit , University of Pittsburgh School of Medicine and Graduate School of Public Health , Pittsburgh , PA , USA
| | - Chinelo Ezeonwuka
- c Infectious Diseases Epidemiology Research Unit , University of Pittsburgh School of Medicine and Graduate School of Public Health , Pittsburgh , PA , USA
| | - Andréia C L Fernandes
- b Laboratory of Epidemiology and Molecular Systematics , Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil
| | - Victor C Souza
- a Laboratory of Microbial Diversity of Importance to Health and Laboratory of Communicable Disease Ecology , Leônidas & Maria Deane Institute, FIOCRUZ , Manaus , Brazil
| | - Lirna S da Silva
- a Laboratory of Microbial Diversity of Importance to Health and Laboratory of Communicable Disease Ecology , Leônidas & Maria Deane Institute, FIOCRUZ , Manaus , Brazil
| | - Elaine F Q de Amorim
- a Laboratory of Microbial Diversity of Importance to Health and Laboratory of Communicable Disease Ecology , Leônidas & Maria Deane Institute, FIOCRUZ , Manaus , Brazil
| | - Felipe G Naveca
- a Laboratory of Microbial Diversity of Importance to Health and Laboratory of Communicable Disease Ecology , Leônidas & Maria Deane Institute, FIOCRUZ , Manaus , Brazil
| | - Bernardino C de Albuquerque
- d Department of Epidemiological Surveillance and Central Laboratory , Foundation of Health Surveillance of Amazonas , Manaus , AM , Brazil
| | - Alcirene Amaral
- d Department of Epidemiological Surveillance and Central Laboratory , Foundation of Health Surveillance of Amazonas , Manaus , AM , Brazil
| | - Ana L S Souza
- d Department of Epidemiological Surveillance and Central Laboratory , Foundation of Health Surveillance of Amazonas , Manaus , AM , Brazil
| | - Filipe A Carvalho-Costa
- b Laboratory of Epidemiology and Molecular Systematics , Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil.,e Regional Technical Office, FIOCRUZ , Teresina , Brazil
| | - Mustapha M Mustapha
- c Infectious Diseases Epidemiology Research Unit , University of Pittsburgh School of Medicine and Graduate School of Public Health , Pittsburgh , PA , USA
| | - Lee H Harrison
- c Infectious Diseases Epidemiology Research Unit , University of Pittsburgh School of Medicine and Graduate School of Public Health , Pittsburgh , PA , USA
| | - David E Barroso
- b Laboratory of Epidemiology and Molecular Systematics , Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil
| |
Collapse
|
4
|
Li J, Shao Z, Liu G, Bai X, Borrow R, Chen M, Guo Q, Han Y, Li Y, Taha MK, Xu X, Xu X, Zheng H. Meningococcal disease and control in China: Findings and updates from the Global Meningococcal Initiative (GMI). J Infect 2018; 76:429-437. [PMID: 29406154 DOI: 10.1016/j.jinf.2018.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
The Global Meningococcal Initiative (GMI) is a global expert group, including scientists, clinicians and public health officials from a wide range of specialities. The goal of the GMI is to prevent meningococcal disease worldwide through education, research, and co-operation. The Chinese GMI roundtable meeting was held in June 2017. The GMI met with local experts to gain insight into the meningococcal disease burden in China and current prevention and vaccination strategies in place. China experienced five epidemics of serogroup A meningococcal disease (MenA) between 1938 and 1977, with peak incidence of 403/100,000 recorded in 1967. MenA incidence rates have significantly declined following the universal introduction of the MenA polysaccharide vaccine in China in the 1980s. Further, surveillance data indicates changing meningococcal epidemiology in China with the emergence of new clones of serogroup B from serogroup C clonal complex (cc) 4821 due to capsular switching, and the international spread of serogroup W cc11. The importance of carriage and herd protection for controlling meningococcal disease was highlighted with the view to introduce conjugate vaccines and serogroup B vaccines into the national immunization schedule. Improved disease surveillance and standardized laboratory techniques across and within provinces will ensure optimal epidemiological monitoring.
Collapse
Affiliation(s)
- Junhong Li
- National Immunisation Programme Department, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Gang Liu
- Department of Infectious Disease, Beijing Children's Hospital, Beijing, China.
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Min Chen
- Department of Microbiology, Center for Disease Control and Prevention, Shanghai, China.
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yue Han
- Department of Immunology, Center for Disease Control and Prevention, Liaoning, China.
| | - Yixing Li
- National Immunisation Programme Department, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Muhamed-Kheir Taha
- National Reference Centre for Meningococci, Institute Pasteur, Paris, France.
| | - Xihai Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, China.
| | - Xin Xu
- Department of Immunization Programme, Center for Disease Control and Prevention, Guangdong, China.
| | - Huizhen Zheng
- Department of Immunization Programme, Center for Disease Control and Prevention, Guangdong, China.
| |
Collapse
|
5
|
Ji X, Yao PP, Zhang LY, Li Y, Xu F, Mei LL, Zhu SR, Zhang YJ, Zhu HP, van der Veen S. Capsule switching of Neisseria meningitidis sequence type 7 serogroup A to serogroup X. J Infect 2017; 75:521-531. [PMID: 28916450 DOI: 10.1016/j.jinf.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The bacterial pathogen Neisseria meningitidis is able to escape the currently available capsule-based vaccines by undergoing capsule switching. In this study, we investigated whether capsule switching has occurred in a recently emerged sequence type (ST) 7 serogroup X isolate in China, for which currently no vaccine is available. METHODS To identify capsule switching breakpoints, the capsule locus and flanking regions of the ST-7 serogroup X isolate and three endemic ST-7 serogroup A isolates were sequenced and compared. To obtain further insight into capsule switching frequency and length of DNA fragments involved, capsule switching assays were performed using genomic DNA containing combinations of antibiotic selection markers at various locations in the capsule locus and flanking regions. RESULTS Sequence analyses showed that capsule switching has occurred and involved a 8450 bp serogroup X DNA fragment spanning the region from galE to ctrC. Capsule switching assays indicate that capsule switching occurs at a frequency of 6.3 × 10-6 per bacterium per μg of DNA and predominantly involved DNA fragments of about 8.1-9.6 kb in length. CONCLUSIONS Our results show that capsule switching in N. meningitidis occurs at high frequency and involves recombination in the flanking regions of the capsule biosynthesis genes.
Collapse
Affiliation(s)
- Xuemeng Ji
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ping-Ping Yao
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Le-Yi Zhang
- Wenzhou City Center for Disease Control and Prevention, China
| | - Yi Li
- Wenzhou City Center for Disease Control and Prevention, China
| | - Fang Xu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Ling-Ling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Shui-Rong Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Yan-Jun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Han-Ping Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Genetic Analysis of Neisseria meningitidis Sequence Type 7 Serogroup X Originating from Serogroup A. Infect Immun 2017; 85:IAI.01019-16. [PMID: 28320835 DOI: 10.1128/iai.01019-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/12/2017] [Indexed: 12/29/2022] Open
Abstract
Neisseria meningitidis causes meningococcal disease, often resulting in fulminant meningitis, sepsis, and death. Vaccination programs have been developed to prevent infection of this pathogen, but serogroup replacement is a problem. Capsular switching has been an important survival mechanism for N. meningitidis, allowing the organism to evolve in the present vaccine era. However, related mechanisms have not been completely elucidated. Genetic analysis of capsular switching between diverse serogroups would help further our understanding of this pathogen. In this study, we analyzed the genetic characteristics of the sequence type 7 (ST-7) serogroup X strain that was predicted to arise from ST-7 serogroup A at the genomic level. By comparing the genomic structures and sequences, ST-7 serogroup X was closest to ST-7 serogroup A, whereas eight probable recombination regions, including the capsular gene locus, were identified. This indicated that serogroup X originated from serogroup A by recombination leading to capsular switching. The recombination involved approximately 8,540 bp from the end of the ctrC gene to the middle of the galE gene. There were more recombination regions and strain-specific single-nucleotide polymorphisms in serogroup X than in serogroup A genomes. However, no specific gene was found for each serogroup except those in the capsule gene locus.
Collapse
|
7
|
Abstract
Neisseria meningitidis, a devastating pathogen exclusive to humans, expresses capsular polysaccharides that are the major meningococcal virulence determinants and the basis for successful meningococcal vaccines. With rare exceptions, the expression of capsule (serogroups A, B, C, W, X, Y) is required for systemic invasive meningococcal disease. Changes in capsule expression or structure (e.g. hypo- or hyper-encapsulation, capsule "switching", acetylation) can influence immunologic diagnostic assays or lead to immune escape. The loss or down-regulation of capsule is also critical in meningococcal biology facilitating meningococcal attachment, microcolony formation and the carriage state at human mucosal surfaces. Encapsulated meningococci contain a cps locus with promoters located in an intergenic region between the biosynthesis and the conserved capsule transport operons. The cps intergenic region is transcriptionally regulated (and thus the amount of capsule expressed) by IS element insertion, by a two-component system, MisR/MisS and through sequence changes that result in post-transcriptional RNA thermoregulation. Reversible on-off phase variation of capsule expression is controlled by slipped strand mispairing of homo-polymeric tracts and by precise insertion and excision of IS elements (e.g. IS1301) in the biosynthesis operon. Capsule structure can be altered by phase-variable expression of capsular polymer modification enzymes or "switched" through transformation and homologous recombination of different polymerases. Understanding the complex regulation of meningococcal capsule has important implications for meningococcal biology, pathogenesis, diagnostics, current and future vaccine development and vaccine strategies.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - Jennifer Thomas
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| | - David S Stephens
- a Department of Medicine , Emory University School of Medicine, Woodruff Health Sciences Center , Atlanta , GA , USA
| |
Collapse
|
8
|
Mustapha MM, Marsh JW, Krauland MG, Fernandez JO, de Lemos APS, Dunning Hotopp JC, Wang X, Mayer LW, Lawrence JG, Hiller NL, Harrison LH. Genomic Investigation Reveals Highly Conserved, Mosaic, Recombination Events Associated with Capsular Switching among Invasive Neisseria meningitidis Serogroup W Sequence Type (ST)-11 Strains. Genome Biol Evol 2016; 8:2065-75. [PMID: 27289093 PMCID: PMC4943193 DOI: 10.1093/gbe/evw122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally. We identified recombination breakpoints corresponding to two distinct recombination events within W cc11: A 8.4-kb recombinant region likely acquired from W cc22 including the sialic acid/glycosyl-transferase gene, csw resulted in a C→W change in capsular phenotype and a 13.7-kb recombinant segment likely acquired from Y cc23 lineage includes 4.5 kb of cps genes and 8.2 kb downstream of the cps cluster resulting in allelic changes in capsule translocation genes. A vast majority of W cc11 strains (497/524, 94.8%) retain both recombination events as evidenced by sharing identical or very closely related capsular allelic profiles. These data suggest that the W cc11 capsular switch involved two separate recombination events and that current global W cc11 meningococcal disease is caused by strains bearing this mosaic capsular switch.
Collapse
Affiliation(s)
| | - Jane W Marsh
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh
| | - Mary G Krauland
- Public Health Dynamics Laboratory, Graduate School of Public Health, University of Pittsburgh
| | - Jorge O Fernandez
- Molecular Genetics Laboratory, Public Health Institute of Chile, Santiago, Chile
| | | | - Julie C Dunning Hotopp
- The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Leonard W Mayer
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh
| |
Collapse
|
9
|
Carriage rates of Neisseria meningitidis serogroups: determination among freshmen conscripts before vaccination. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:203-209. [PMID: 27928488 PMCID: PMC5139924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Neisseria meningitidis is transmitted from person-to-person. Thus, close contact with a healthy carrier can facilitate the spread of the bacteria and lead to life-threatening meningococcal disease. The aim of this study was to identify oropharyngeal carriers of N. meningitidis in volunteers preparing for military service before vaccination. MATERIALS AND METHODS In a cross-sectional study, 226 volunteers entering military service were referred to the Shemiranat Health Center for meningococcal vaccination and assayed. Before vaccination, the participants underwent sampling of the throat using separate swabs. Thayer-Martin Agar medium and microbiological standard methods were used for culture and isolation of the organisms. The bacterial isolates were subjected to DNA extraction and polymerase chain reaction. The obtained data were descriptively analyzed. RESULTS Out of the 226 (100%) young volunteers, only 18 (8%) yielded Gram-negative diplococci. The results showed the presence of N. meningitidis (carriage rate: 8%) in their oropharyngeal regions. The isolated serogroups were C, A, Y, W-135, and X with frequencies of 50, 22.2, 16.6, 5.5, and 5.5, respectively. DISCUSSION This study showed that the carriage rate in young volunteers for military service is around 8% before vaccination. Although the rates for serogroups A and C were dominant, the existence of serogroups Y and W indicate the necessary revision of the A/C vaccine. More research is needed to determine serogroup diversity and decrease the risk of meningococcal disease in individual groups.
Collapse
|
10
|
Zhu B, Xu Z, Du P, Xu L, Sun X, Gao Y, Shao Z. Sequence Type 4821 Clonal Complex Serogroup B Neisseria meningitidis in China, 1978-2013. Emerg Infect Dis 2015; 21:925-32. [PMID: 25989189 PMCID: PMC4451889 DOI: 10.3201/eid2106.140687] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serogroup B Neisseria meningitidis strains belonging to sequence type 4821 clonal complex (CC4821), a hyperinvasive lineage first identified for serogroup C in 2003, have been increasingly isolated in China. We characterized the outer membrane protein genes of 48 serogroup B and 214 serogroup C strains belonging to CC4821 and analyzed the genomic sequences of 22 strains. Four serogroup B strains had porin A (i.e., PorA), PorB, and ferric enterobactin transport (i.e., FetA) genotypes identical to those for serogroup C. Phylogenetic analysis of the genomic sequences showed that the 22 CC4821 strains from patients and healthy carriers were unevenly clustered into 2 closely related groups; each group contained serogroup B and C strains. Serogroup B strains appeared variable at the capsule locus, and several recombination events had occurred at uncertain breakpoints. These findings suggest that CC4821 serogroup C N. meningitidis is the probable origin of highly pathogenic CC4821 serogroup B strains.
Collapse
|
11
|
Xu Z, Du P, Zhu B, Xu L, Wang H, Gao Y, Zhou H, Zhang W, Chen C, Shao Z. Phylogenetic study of clonal complex (CC)198 capsule null locus (cnl) genomes: A distinctive group within the species Neisseria meningitidis. INFECTION GENETICS AND EVOLUTION 2015; 34:372-7. [PMID: 26171575 DOI: 10.1016/j.meegid.2015.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Capsule null locus (cnl) strains, one type of specific unencapsulated Neisseria spp., only have regions D and E of the capsule gene cluster which encodes the genes for capsule biosynthesis, modification, and transportation. Compared with encapsulated strains, regions A and C of cnl strains have been replaced by 113 or 114 bp conserved non-coding sequences. Cnl strains include multiple clonal complexes (CC). According to previous studies, CC198 is the major clonal lineage in both cnl patients and healthy cnl carriers. We hypothesized that CC198 possesses different genome characteristics compared with other cnl strains. In this study, we obtained the draft genomes of two CC198 strains from healthy carriers. Using 75071 single nucleotide polymorphisms located in 1163 core genes, we constructed the phylogenetic relationships between a batch of representative Neisseria meningitidis genomes. CC198 and CC1136 clustered together, but apart from other N. meningitidis strains including CC53. We also aligned the sequences of genes located in regions D and E of the capsule gene locus from encapsulated and unencapsulated strains. A number of possible recombination events were identified in the galE and tex genes between different serogroups of encapsulated N. meningitidis and CC53 strains, especially in tex. In contrast, there is almost no recombination in N. meningitidis CC198 strains. These results showed that CC198 belongs to a phylogenetically distinct group within the species N. meningitidis, which may be directly derived from the cnl-type ancestor of N. meningitidis. The encapsulated strains may acquire other necessary genes for capsule formation by horizontal transfer.
Collapse
Affiliation(s)
- Zheng Xu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Pengcheng Du
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Bingqing Zhu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li Xu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Haiyin Wang
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yuan Gao
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wen Zhang
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chen Chen
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China.
| |
Collapse
|
12
|
Kristiansen PA, Ba AK, Ouédraogo AS, Sanou I, Ouédraogo R, Sangaré L, Diomandé F, Kandolo D, Saga IM, Misegades L, Clark TA, Préziosi MP, Caugant DA. Persistent low carriage of serogroup A Neisseria meningitidis two years after mass vaccination with the meningococcal conjugate vaccine, MenAfriVac. BMC Infect Dis 2014; 14:663. [PMID: 25472422 PMCID: PMC4267149 DOI: 10.1186/s12879-014-0663-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The conjugate vaccine against serogroup A Neisseria meningitidis (NmA), MenAfriVac, is currently being introduced throughout the African meningitis belt. In repeated multicentre cross-sectional studies in Burkina Faso we demonstrated a significant effect of vaccination on NmA carriage for one year following mass vaccination in 2010. A new multicentre carriage study was performed in October-November 2012, two years after MenAfriVac mass vaccination. METHODS Oropharyngeal samples were collected and analysed for presence of N. meningitidis (Nm) from a representative selection of 1-29-year-olds in three districts in Burkina Faso using the same procedures as in previous years. Characterization of Nm isolates included serogrouping, multilocus sequence typing, and porA and fetA sequencing. A small sample of invasive isolates collected during the epidemic season of 2012 through the national surveillance system were also analysed. RESULTS From a total of 4964 oropharyngeal samples, overall meningococcal carriage prevalence was 7.86%. NmA prevalence was 0.02% (1 carrier), significantly lower (OR, 0.05, P = 0.005, 95% CI, 0.006-0.403) than pre-vaccination prevalence (0.39%). The single NmA isolate was sequence type (ST)-7, P1.20,9;F3-1, a clone last identified in Burkina Faso in 2003. Nm serogroup W (NmW) dominated with a carriage prevalence of 6.85%, representing 87.2% of the isolates. Of 161 NmW isolates characterized by molecular techniques, 94% belonged to the ST-11 clonal complex and 6% to the ST-175 complex. Nm serogroup X (NmX) was carried by 0.60% of the participants and ST-181 accounted for 97% of the NmX isolates. Carriage prevalence of serogroup Y and non-groupable Nm was 0.20% and 0.18%, respectively. Among the 20 isolates recovered from meningitis cases, NmW dominated (70%), followed by NmX (25%). ST-2859, the only ST with a serogroup A capsule found in Burkina Faso since 2004, was not found with another capsule, neither among carriage nor invasive isolates. CONCLUSIONS The significant reduction of NmA carriage still persisted two years following MenAfriVac vaccination, and no cases of NmA meningitis were recorded. High carriage prevalence of NmW ST-11 was consistent with the many cases of NmW meningitis in the epidemic season of 2012 and the high proportion of NmW ST-11 among the characterized invasive isolates.
Collapse
Affiliation(s)
- Paul A Kristiansen
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | - Absatou Ky Ba
- Laboratoire National de Santé Public, Ouagadougou, Burkina Faso.
| | | | - Idrissa Sanou
- Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso.
- Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso.
| | - Rasmata Ouédraogo
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso.
| | - Lassana Sangaré
- Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso.
| | - Fabien Diomandé
- WHO Inter Country Support Team, Ouagadougou, Burkina Faso.
- Centers for Disease Control and Prevention, Atlanta, USA.
| | - Denis Kandolo
- WHO Inter Country Support Team, Ouagadougou, Burkina Faso.
| | - Inger Marie Saga
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | - Lara Misegades
- Centers for Disease Control and Prevention, Atlanta, USA.
| | - Thomas A Clark
- Centers for Disease Control and Prevention, Atlanta, USA.
| | - Marie-Pierre Préziosi
- Meningitis Vaccine Project, Ferney, France.
- WHO Initiative for Vaccine Research, Geneva, Switzerland.
| | - Dominique A Caugant
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
13
|
Zhu B, Fan Y, Xu Z, Xu L, Du P, Gao Y, Shao Z. Genetic diversity and clonal characteristics of ciprofloxacin-resistant meningococcal strains in China. J Med Microbiol 2014; 63:1411-1418. [PMID: 25082942 DOI: 10.1099/jmm.0.078600-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of the present study was to identify the clonal characteristics and gyrA gene diversity of ciprofloxacin-resistant meningococcal strains in China. One hundred and forty-one ciprofloxacin-resistant and 103 ciprofloxacin-susceptible meningococcal strains were selected for multilocus sequence typing. Of these, 54 ciprofloxacin-resistant and 42 ciprofloxacin-susceptible strains were selected for gyrA gene sequencing. Of the three clonal complexes prevalent in China, serogroup A of ST-5 complex (CC5) and serogroup C/B strains of CC4821 had a high proportion of ciprofloxacin resistance, whereas CC11 serogroup W strains were all susceptible. Nucleotide and amino acid sequences of the gyrA gene among ciprofloxacin-resistant strains showed more diversity than those among ciprofloxacin-susceptible strains. All ciprofloxacin-resistant strains had a T91I mutation and the ciprofloxacin-susceptible strains had no T91I mutation. Phylogenetic analysis showed that the gyrA gene sequences of CC4821 serogroup B/C strains, CC11 serogroup W, CC1 serogroup A, ciprofloxacin-susceptible CC5 serogroup A and reference strains had high similarity. By contrast, the ciprofloxacin-resistant CC5 serogroup A strains had a highly conserved gyrA gene sequence which was different (94.8% similarity) from that in the above strains. The results of our investigation showed that the high proportion of ciprofloxacin resistance in Neisseria meningitidis is associated with certain sequence types (STs) or clonal complexes (CCs). The prevalence of certain CCs with a high proportion of ciprofloxacin resistance can facilitate the spread of ciprofloxacin resistance.
Collapse
Affiliation(s)
- Bingqing Zhu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yaochun Fan
- Inner Mongolia Autonomous Region Center for Disease Control and Prevention, Huhehaote, PR China
| | - Zheng Xu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Li Xu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Pengcheng Du
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yuan Gao
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhujun Shao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China.,National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|
14
|
Cooper B, DeTora L, Stoddard J. Menveo®: a novel quadrivalent meningococcal CRM197conjugate vaccine against serogroups A, C, W-135 and Y. Expert Rev Vaccines 2014; 10:21-33. [DOI: 10.1586/erv.10.147] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
SUN X, ZHOU H, XU L, YANG H, GAO Y, ZHU B, SHAO Z. Prevalence and genetic diversity of two adhesion-related genes, pilE and nadA, in Neisseria meningitidis in China. Epidemiol Infect 2013; 141:2163-72. [PMID: 23290624 PMCID: PMC9152637 DOI: 10.1017/s0950268812002944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/23/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022] Open
Abstract
The main Neisseria meningitidis adhesion molecules, type IV pili (Tfp) and Neisseria adhesion A (NadA), play important roles in the pathogenesis of invasive meningococcal disease. PilE is the major Tfp subunit. In this study, the prevalence and genetic diversity of pilE and nadA were investigated in the prevalent serogroups and clonal complexes (CC) of N. meningitidis isolated in China. All serogroup A strains belonging to CC1 and CC5 and all CC11 serogroup W135 strains were clustered into class II PilE clades. All serogroup C and most of serogroup B isolates except CC8 and ST5642 were class I PilE clades. Class II pilE sequences were highly conserved. All isolates belonging to class I PilE isolates were nadA negative. However, nadA-positive strains were exclusively found in CC5 and CC11 isolates (class II PilE). This study showed that PilE and NadA may be related to epidemic or endemic meningococcal disease.
Collapse
Affiliation(s)
- X. SUN
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - H. ZHOU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - L. XU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - H. YANG
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Y. GAO
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - B. ZHU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Z. SHAO
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
16
|
Kristiansen PA, Ba AK, Sanou I, Ouédraogo AS, Ouédraogo R, Sangaré L, Diomandé F, Kandolo D, Thomas JD, Clark TA, Laforce M, Caugant DA. Phenotypic and genotypic characterization of meningococcal carriage and disease isolates in Burkina Faso after mass vaccination with a serogroup a conjugate vaccine. BMC Infect Dis 2013; 13:363. [PMID: 23914778 PMCID: PMC3750508 DOI: 10.1186/1471-2334-13-363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background The conjugate vaccine against serogroup A Neisseria meningitidis (NmA), MenAfriVac, was first introduced in mass vaccination campaigns of the 1-29-year-olds in Burkina Faso in 2010. The aim of this study was to genetically characterize meningococcal isolates circulating in Burkina Faso before and up to 13 months after MenAfriVac mass vaccination. Methods A total of 1,659 meningococcal carriage isolates were collected in a repeated cross-sectional carriage study of the 1-29-year-olds in three districts of Burkina Faso in 2010 and 2011, before and up to 13 months after mass vaccination. Forty-two invasive isolates were collected through the national surveillance in Burkina Faso in the same period. All the invasive isolates and 817 carriage isolates were characterized by serogroup, multilocus sequence typing and porA-fetA sequencing. Results Seven serogroup A isolates were identified, six in 2010, before vaccination (4 from carriers and 2 from patients), and one in 2011 from an unvaccinated patient; all were assigned to sequence type (ST)-2859 of the ST-5 clonal complex. No NmA carriage isolate and no ST-2859 isolate with another capsule were identified after vaccination. Serogroup X carriage and disease prevalence increased before vaccine introduction, due to the expansion of ST-181, which comprised 48.5% of all the characterized carriage isolates. The hypervirulent serogroup W ST-11 clone that was responsible for most of meningococcal disease in 2011 and 2012 was not observed in 2010; it appeared during the epidemic season of 2011, when it represented 40.6% of the serogroup W carriage isolates. Conclusions Successive clonal waves of ST-181 and ST-11 may explain the changing epidemiology in Burkina Faso after the virtual disappearance of NmA disease and carriage. No ST-2859 strain of any serogroup was found after vaccination, suggesting that capsule switching of ST-2859 did not occur, at least not during the first 13 months after vaccination.
Collapse
|
17
|
Outer membrane vesicles (OMV) production of Neisseria meningitidis serogroup B in batch process. Vaccine 2012; 30:6064-9. [DOI: 10.1016/j.vaccine.2012.07.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/15/2012] [Accepted: 07/22/2012] [Indexed: 11/22/2022]
|
18
|
Abstract
Containment strategies for outbreaks of invasive Neisseria meningitidis disease are informed by serogroup assays that characterize the polysaccharide capsule. We sought to uncover the genomic basis of conflicting serogroup assay results for an isolate (M16917) from a patient with acute meningococcal disease. To this end, we characterized the complete genome sequence of the M16917 isolate and performed a variety of comparative sequence analyses against N. meningitidis reference genome sequences of known serogroups. Multilocus sequence typing and whole-genome sequence comparison revealed that M16917 is a member of the ST-11 sequence group, which is most often associated with serogroup C. However, sequence similarity comparisons and phylogenetic analysis showed that the serogroup diagnostic capsule polymerase gene (synD) of M16917 belongs to serogroup B. These results suggest that a capsule-switching event occurred based on homologous recombination at or around the capsule locus of M16917. Detailed analysis of this locus uncovered the locations of recombination breakpoints in the M16917 genome sequence, which led to the introduction of an ∼2-kb serogroup B sequence cassette into the serogroup C genomic background. Since there is no currently available vaccine for serogroup B strains of N. meningitidis, this kind capsule-switching event could have public health relevance as a vaccine escape mutant.
Collapse
|
19
|
Hao W, Ma JH, Warren K, Tsang RSW, Low DE, Jamieson FB, Alexander DC. Extensive genomic variation within clonal complexes of Neisseria meningitidis. Genome Biol Evol 2011; 3:1406-18. [PMID: 22084315 PMCID: PMC3242501 DOI: 10.1093/gbe/evr119] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meningococcal disease is a widely distributed complex disease affecting all age categories. It can cause severe meningitis and septicemia, especially in unvaccinated infants and young children. The causative agent, Neisseria meningitidis (Nm), can be phenotypically and genetically differentiated into serogroups and sequence types (STs) and has a highly dynamic population structure. To obtain a deeper understanding of the epidemiology of Nm, we sequenced seven Nm genomes. Large-scale genomic analysis was conducted with these 7 Nm genomes, 27 additional Nm genomes from GenBank, and 4 other Neisseria genomes. We observed extensive homologous recombination in all gene functional categories among different Nm genomes. Homologous recombination is so frequent that it has resulted in numerous chimeric open reading frames, including genes in the capsule biosynthesis cluster and loci targeted by commercial vaccines. Our results reveal that, despite widespread use, evolutionary relationships inferred from the standard seven-gene multilocus sequence typing (MLST) method could not predict virulence gene content or strain phenotype. In fact, up to 28% of the virulence-associated genes could differ between strains of identical STs. Consistent with previous studies, we found that allelic recombination is also associated with alterations in antibiotic susceptibility. Overall, these findings emphasize the extensive genomic plasticity of Nm and the limitations of standard molecular methods to quantify this genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Weilong Hao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Distribution of serogroups and sequence types in disease-associated and carrier strains of Neisseria meningitidis isolated in China between 2003 and 2008. Epidemiol Infect 2011; 140:1296-303. [PMID: 21929839 DOI: 10.1017/s0950268811001865] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the unpredictability of Neisseria meningitidis outbreaks and the increased prevalence of serogroup C strains following the introduction of serogroup A-based vaccines, we conducted an analysis of serogroups and sequence types (STs) in disease-associated and carrier N. meningitidis isolates that have emerged in China since 2003. We used multilocus sequence-typing techniques to investigate 371 N. meningitidis strains isolated from patients with meningitis and healthy carriers. Two lineages were identified in serogroup A and C isolates, genotyped as the ST5 complex and ST4821 complex, respectively. Both clonal complexes were found throughout China, although ST4821 was more concentrated in the eastern region of the country. The ST5 complex has been persistent in China since the late 1980s and has since spread across the entire country. Isolates belonging to the ST4821 complex have been a dominant lineage since 2003.
Collapse
|