1
|
Xiong K, Deng L, Li Z, Gong H, Chen J, Huang M, Rao X, Cong Y. A TonB dependent transporter YncD of Salmonella enterica Serovar Typhi possesses vaccine potential. World J Microbiol Biotechnol 2024; 40:131. [PMID: 38470539 DOI: 10.1007/s11274-024-03937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Multiple TonB dependent transporters (TBDTs) contribute to bacterial virulence due to the importance roles that their substrates play in bacterial growth, and possess vaccine potential. A putative TBDT, YncD, had been identified as one of in vivo induced antigens during human infection of typhoid fever, and is required for the pathogenicity of Salmonella enterica Serovar Typhi. The present study was aimed to determine the function and immunogenicity of YncD. Homologous recombination method was used to construct an yncD-deletion mutant and cirA-iroN-fepA-deletion mutant from the wild-type S. Typhi Ty2. The growth of mutants and the wild-type strain were assessed in iron-deficient medium, as well as in human macrophage cells. Recombinant YncD protein was expressed and purified using Ni-NTA affinity chromatography and anion exchange. A mouse model was then used to evaluate the immunogenicity and protection efficacy of the recombinant YncD. Antibody levels, serum bactericidal efficiency, passive immune protection, opsonophagocysis were assayed to analyse the immunoprotection mechanism of the recombinant YncD. Our results showed that YncD is associated with the iron-uptake of S. Typhi. The yncD-deletion mutant displayed impaired growth in iron-deficient medium, comparable to that the cirA-iroN-fepA-deletion mutant did. The mutation of yncD markedly decreased bacterial growth within human macrophage cells. Moreover, subcutaneous immunization of mice with recombinant YncD elicited high levels of specific anti-YncD IgG, IgG1 and IgG2a, which protected the immunized mice against the intraperitoneal challenge of S. Typhi, and decreased bacterial burdens in the livers and spleens of the infected mice. Passive immunization using the immunized sera also efficiently protected the mice from the challenge of S. Typhi. Moreover, the immunized sera enhanced in vitro bactericidal activity of complement, and opsonophagocytosis. Our results showed that YncD displays a role in the iron-uptake of S. Typhi and possesses immunogenicity.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Luxin Deng
- Department of Blood Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan province, 646000, China
| | - Zhan Li
- Department of Blood Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan province, 646000, China
| | - Haiyan Gong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Jie Chen
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Mintao Huang
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqiong, 400038, China.
| | - Yanguang Cong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China.
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China.
| |
Collapse
|
2
|
Yu Y, Singh H, Tsitrin T, Bekele S, Lin YH, Sikorski P, Moncera KJ, Torralba MG, Morrow L, Wolcott R, Nelson KE, Pieper R. Urethral Catheter Biofilms Reveal Plasticity in Bacterial Composition and Metabolism and Withstand Host Immune Defenses in Hypoxic Environment. Front Med (Lausanne) 2021; 8:667462. [PMID: 34249966 PMCID: PMC8260951 DOI: 10.3389/fmed.2021.667462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
Biofilms composed of multiple microorganisms colonize the surfaces of indwelling urethral catheters that are used serially by neurogenic bladder patients and cause chronic infections. Well-adapted pathogens in this niche are Escherichia coli, Proteus, and Enterococcus spp., species that cycle through adhesion and multilayered cell growth, trigger host immune responses, are starved off nutrients, and then disperse. Viable microbial foci retained in the urinary tract recolonize catheter surfaces. The molecular adaptations of bacteria in catheter biofilms (CBs) are not well-understood, promising new insights into this pathology based on host and microbial meta-omics analyses from clinical specimens. We examined catheters from nine neurogenic bladder patients longitudinally over up to 6 months. Taxonomic analyses from 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics revealed that 95% of all catheter and corresponding urinary pellet (UP) samples contained bacteria. CB biomasses were dominated by Enterobacteriaceae spp. and often accompanied by lactic acid and anaerobic bacteria. Systemic antibiotic drug treatments of patients resulted in either transient or lasting microbial community perturbations. Neutrophil effector proteins were abundant not only in UP but also CB samples, indicating their penetration of biofilm surfaces. In the context of one patient who advanced to a kidney infection, Proteus mirabilis proteomic data suggested a combination of factors associated with this disease complication: CB biomasses were high; the bacteria produced urease alkalinizing the pH and triggering urinary salt deposition on luminal catheter surfaces; P. mirabilis utilized energy-producing respiratory systems more than in CBs from other patients. The NADH:quinone oxidoreductase II (Nqr), a Na+ translocating enzyme not operating as a proton pump, and the nitrate reductase A (Nar) equipped the pathogen with electron transport chains promoting growth under hypoxic conditions. Both P. mirabilis and E. coli featured repertoires of transition metal ion acquisition systems in response to human host-mediated iron and zinc sequestration. We discovered a new drug target, the Nqr respiratory system, whose deactivation may compromise P. mirabilis growth in a basic pH milieu. Animal models would not allow such molecular-level insights into polymicrobial biofilm metabolism and interactions because the complexity cannot be replicated.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, Rockville, MD, United States
| | | | | | | | - Yi-Han Lin
- J. Craig Venter Institute, Rockville, MD, United States
| | | | | | | | - Lisa Morrow
- Southwest Regional Wound Care Center, Lubbock, TX, United States
| | - Randall Wolcott
- Southwest Regional Wound Care Center, Lubbock, TX, United States
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, MD, United States
- J. Craig Venter Institute, La Jolla, CA, United States
| | | |
Collapse
|
3
|
Yuan F, Huang Z, Yang T, Wang G, Li P, Yang B, Li J. Pathogenesis of Proteus mirabilis in Catheter-Associated Urinary Tract Infections. Urol Int 2021; 105:354-361. [PMID: 33691318 DOI: 10.1159/000514097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/26/2020] [Indexed: 11/19/2022]
Abstract
Proteus mirabilis (PM) is a Gram-negative rod-shaped bacterium and widely exists in the natural environment, and it is most noted for its swarming motility and urease activity. PM is the main pathogen causing complicated urinary tract infections (UTIs), especially catheter-associated urinary tract infections. Clinically, PM can form a crystalline biofilm on the outer surface and inner cavity of the urethral indwelling catheter owing to its ureolytic biomineralization. This leads to catheter encrustation and blockage and, in most cases, is accompanied by urine retention and ascending UTI, causing cystitis, pyelonephritis, and the development of bladder or kidney stones, or even fatal complications such as septicemia and endotoxic shock. In this review, we discuss how PM is mediated by a catheter into the urethra, bladder, and then rose to the kidney causing UTI and the main virulence factors associated with different stages of infection, including flagella, pili or adhesins, urease, hemolysin, metal intake, and immune escape, encompassing both historical perspectives and current advances.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ziye Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bowei Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiongming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China,
| |
Collapse
|
4
|
Wang J, Xiong K, Pan Q, He W, Cong Y. Application of TonB-Dependent Transporters in Vaccine Development of Gram-Negative Bacteria. Front Cell Infect Microbiol 2021; 10:589115. [PMID: 33585268 PMCID: PMC7873555 DOI: 10.3389/fcimb.2020.589115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Multiple scarce nutrients, such as iron and nickel, are essential for bacterial growth. Gram-negative bacteria secrete chelators to bind these nutrients from the environment competitively. The transport of the resulting complexes into bacterial cells is mediated by TonB-dependent transporters (TBDTs) located at the outer membrane in Gram-negative bacteria. The characteristics of TBDTs, including surface exposure, protective immunogenicity, wide distribution, inducible expression in vivo, and essential roles in pathogenicity, make them excellent candidates for vaccine development. The possible application of a large number of TBDTs in immune control of the corresponding pathogens has been recently investigated. This paper summarizes the latest progresses and current major issues in the application.
Collapse
Affiliation(s)
- Jia Wang
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Kun Xiong
- Department of Cold Environmental Medicine, Institute of High Altitude Military Medicine, Army Medical University, Chongqiong, China
| | - Qu Pan
- Department of Microbiology, Chengdu Medical College, Chengdu, China
| | - Weifeng He
- Department of Burn, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanguang Cong
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China.,Precision Medicine Center, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Vaccination to Protect Against Proteus mirabilis Challenge Utilizing the Ascending Model of Urinary Tract Infection. Methods Mol Biol 2019. [PMID: 31309507 DOI: 10.1007/978-1-4939-9601-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteus mirabilis is a major cause of complicated urinary tract infections (UTIs). P. mirabilis' urease activity hydrolyzes urea and raises urine pH levels, which can catalyze bladder and kidney stone formation. This urolithiasis leads to harder-to-treat infections, possible urinary blockage, and subsequent septicemia. Development of a mucosal vaccine against P. mirabilis urinary tract infections is critical to protect against this potentially deadly infection process. Here, we describe the methodology necessary to produce a vaccine candidate conjugated to cholera toxin, administer the vaccine via the intranasal route, and test efficacy in a murine transurethral P. mirabilis infection model.
Collapse
|
6
|
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
|
7
|
Choubini E, Habibi M, Khorshidi A, Ghasemi A, Asadi Karam MR, Bouzari S. A novel multi-peptide subunit vaccine admixed with AddaVax adjuvant produces significant immunogenicity and protection against Proteus mirabilis urinary tract infection in mice model. Mol Immunol 2018. [PMID: 29525454 DOI: 10.1016/j.molimm.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteus mirabilis is a common pathogen in urinary tract infections (UTIs). There is no vaccine against P. mirabilis, thus a novel multi-peptide vaccine of MrpA, UcaA and Pta factors of P. mirabilis we designed and a mice model was used to evaluate its efficacy in combination with AddaVax adjuvant. According to the bioinformatics studies, 7 fragments of MrpA (31-75, 112-146), UcaA (68-117, 132-156) and Pta (210-265, 340-400, 496-570) with B and T cell epitope regions were selected for fusion construction. Mice subcutaneously vaccinated with the fusion MrpA.Pta.UcaA induced a significant increase in serum and mucosal IgG and IgA responses. The fusion also showed a significant induction in cellular responses (Th1 and Th2). The addition of AddaVax to fusion and the mixture of MrpA, UcaA, and Pta (MUP) improved the humoral and cellular responses, especially the IgG2a and IFN-γ (Th1 responses) levels. Fusion with and without AddaVax and MUP + AddaVax could maintain significant humoral responses until 6 months after the first vaccine dose. All vaccine combinations with and without adjuvant showed high effectiveness in the protection of the bladder and kidney against experimental UTI; this could be attributed to the significant humoral and cellular responses. The present study suggests that the AddaVax-based vaccine formulations especially the fusion Pta.MrpA.UcaA admixed with AddaVax as potential vaccine candidates for protection against P. mirabilis. Furthermore, AddaVax could be considered as an effective adjuvant in designing other vaccines against UTI pathogens.
Collapse
Affiliation(s)
- Ehsan Choubini
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Ahmad Khorshidi
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ghasemi
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| |
Collapse
|
8
|
Armbruster CE, Forsyth-DeOrnellas V, Johnson AO, Smith SN, Zhao L, Wu W, Mobley HLT. Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog 2017; 13:e1006434. [PMID: 28614382 PMCID: PMC5484520 DOI: 10.1371/journal.ppat.1006434] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/26/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (CAUTIs), which are often polymicrobial. Numerous prior studies have uncovered virulence factors for P. mirabilis pathogenicity in a murine model of ascending UTI, but little is known concerning pathogenesis during CAUTI or polymicrobial infection. In this study, we utilized five pools of 10,000 transposon mutants each and transposon insertion-site sequencing (Tn-Seq) to identify the full arsenal of P. mirabilis HI4320 fitness factors for single-species versus polymicrobial CAUTI with Providencia stuartii BE2467. 436 genes in the input pools lacked transposon insertions and were therefore concluded to be essential for P. mirabilis growth in rich medium. 629 genes were identified as P. mirabilis fitness factors during single-species CAUTI. Tn-Seq from coinfection with P. stuartii revealed 217/629 (35%) of the same genes as identified by single-species Tn-Seq, and 1353 additional factors that specifically contribute to colonization during coinfection. Mutants were constructed in eight genes of interest to validate the initial screen: 7/8 (88%) mutants exhibited the expected phenotypes for single-species CAUTI, and 3/3 (100%) validated the expected phenotypes for polymicrobial CAUTI. This approach provided validation of numerous previously described P. mirabilis fitness determinants from an ascending model of UTI, the discovery of novel fitness determinants specifically for CAUTI, and a stringent assessment of how polymicrobial infection influences fitness requirements. For instance, we describe a requirement for branched-chain amino acid biosynthesis by P. mirabilis during coinfection due to high-affinity import of leucine by P. stuartii. Further investigation of genes and pathways that provide a competitive advantage during both single-species and polymicrobial CAUTI will likely provide robust targets for therapeutic intervention to reduce P. mirabilis CAUTI incidence and severity. Proteus mirabilis is a common cause of single-species and polymicrobial catheter-associated urinary tract infections (CAUTIs). Prior studies have uncovered P. mirabilis virulence factors for single-species ascending UTI, but little is known concerning pathogenesis during CAUTI or polymicrobial infection. Using transposon insertion-site sequencing (Tn-Seq), we performed a global assessment of P. mirabilis fitness factors for CAUTI while simultaneously determining how coinfection with another CAUTI pathogen, Providencia stuartii, alters P. mirabilis fitness requirements. This approach provides six important contributions to the field: 1) the first global estimation of P. mirabilis genes essential for growth, 2) validation of a role for known P. mirabilis fitness factors during CAUTI, 3) identification of novel fitness factors, 4) identification of core fitness factors for both single-species and polymicrobial CAUTI, 5) identification of single-species fitness factors that are complemented during polymicrobial infection, and 6) identification of factors that only provide a competitive advantage during polymicrobial infection. We further demonstrate that the CAUTI model can be used to examine the interplay between fitness requirements of both species during coinfection. Investigation of fitness requirements for other pathogens during single-species and polymicrobial CAUTI will elucidate complex interactions that contribute to disease severity and uncover conserved targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail: (CEA); (HLTM)
| | - Valerie Forsyth-DeOrnellas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Weisheng Wu
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (CEA); (HLTM)
| |
Collapse
|
9
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
10
|
Subashchandrabose S, Mobley HLT. Back to the metal age: battle for metals at the host-pathogen interface during urinary tract infection. Metallomics 2016; 7:935-42. [PMID: 25677827 DOI: 10.1039/c4mt00329b] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Urinary tract infection (UTI) represents one of the most common bacterial infections in humans and uropathogenic E. coli (UPEC) is the major causative agent of UTI in people. Research on UPEC and other bacterial pathogens causing UTI has now identified the critical role of metal transport systems in the pathogenesis of UTI. Here we review the major effectors of metal transport in bacteria and host proteins that impair metal acquisition by bacterial pathogens. In particular, we describe the studies that identified iron, zinc and nickel import and copper export as key virulence and fitness determinants during UTI. Various metal transport systems and mechanisms that govern the expression of metal transport systems are also presented here. Specific examples from UPEC and other uropathogens, when available, are presented to depict the battle for metals at the host-pathogen interface during UTI.
Collapse
|
11
|
Quero S, Párraga-Niño N, García-Núñez M, Sabrià M. [Proteomics in infectious diseases]. Enferm Infecc Microbiol Clin 2015; 34:253-60. [PMID: 25583331 DOI: 10.1016/j.eimc.2014.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 11/27/2022]
Abstract
Infectious diseases have a high incidence in the population, causing a major impact on global health. In vitro culture of microorganisms is the first technique applied for infection diagnosis which is laborious and time consuming. In recent decades, efforts have been focused on the applicability of "Omics" sciences, highlighting the progress provided by proteomic techniques in the field of infectious diseases. This review describes the management, processing and analysis of biological samples for proteomic research.
Collapse
Affiliation(s)
- Sara Quero
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España
| | - Noemí Párraga-Niño
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España.
| | - Marian García-Núñez
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España
| | - Miquel Sabrià
- Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España; Unitat de Malalties Infeccioses, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| |
Collapse
|
12
|
Habibi M, Asadi Karam MR, Shokrgozar MA, Oloomi M, Jafari A, Bouzari S. Intranasal immunization with fusion protein MrpH·FimH and MPL adjuvant confers protection against urinary tract infections caused by uropathogenic Escherichia coli and Proteus mirabilis. Mol Immunol 2015; 64:285-94. [PMID: 25562574 DOI: 10.1016/j.molimm.2014.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/25/2023]
Abstract
Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) and Proteus mirabilis are among the most common infections in the world. Currently there are no vaccines available to confer protection against UTI in humans. In this study, the immune responses and protection of FimH of UPEC with MrpH antigen of P. mirabilis in different vaccine formulations with and without MPL adjuvant were assessed. Mice intranasally immunized with the novel fusion protein MrpH·FimH induced a significant increase in IgG and IgA in serum, nasal wash, vaginal wash, and urine samples. Mice immunized with fusion MrpH·FimH also showed a significant boost in cellular immunity. Addition of MPL as the adjuvant enhanced FimH and MrpH specific humoral and cellular responses in both systemic and mucosal samples. Vaccination with MrpH·FimH alone or in combination with MPL showed the highest efficiency in clearing bladder and kidney infections in mice challenged with UPEC and P. mirabilis. These findings may indicate that the protection observed correlates with the systemic, mucosal and cellular immune responses induced by vaccination with these preparations. Our data suggest MrpH·FimH fusion protein with or without MPL as adjuvant could be potential vaccine candidates for elimination of UPEC and P. mirabilis. These data altogether are promising and these formulations are good candidates for elimination of UPEC and P. mirabilis.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | | | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Anis Jafari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|
13
|
Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 2013; 9:643. [PMID: 23385483 PMCID: PMC3588905 DOI: 10.1038/msb.2012.76] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/08/2012] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli cells were evolved over 500 generations and profiled in four abiotic stressors to observe several cases of emerging cross-stress behavior whereby adaptation to one stressful environment provided fitness advantage when exposed to a second stressor. ![]()
Cross-stress dependencies were found to be ubiquitous, highly interconnected and can emerge within short timeframes. Several targets were implicated in adaptation and cross-stress protection, including genes related to iron transport and flagella. Adaptation in a first stress can lead to higher fitness to a second stress when compared with cells adapted only in the latter environment. Adaptation to any specific stress and the growth media was found to be generally independent.
Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during evolutionary adaptation and what the genetic basis of acquired stress resistance is. To address these questions, we evolved Escherichia coli cells over 500 generations in five environments that include four abiotic stressors. Through growth profiling and competition assays, we identified several cases of positive and negative cross-stress behavior that span all strain–stress combinations. Resequencing the genomes of the evolved strains resulted in the identification of several mutations and gene amplifications, whose fitness effect was further assessed by mutation reversal and competition assays. Transcriptional profiling of all strains under a specific stress, NaCl-induced osmotic stress, and integration with resequencing data further elucidated the regulatory responses and genes that are involved in this phenomenon. Our results suggest that cross-stress dependencies are ubiquitous, highly interconnected, and can emerge within short timeframes. The high adaptive potential that we observed argues that bacterial populations occupy a genotypic space that enables a high phenotypic plasticity during adaptation in fluctuating environments.
Collapse
|
14
|
An ultrastructural study, effects of Proteus vulgaris OX19 on the rabbit spleen cells. Micron 2013; 44:133-6. [DOI: 10.1016/j.micron.2012.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 11/23/2022]
|
15
|
Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 2012; 10:743-54. [PMID: 23042564 DOI: 10.1038/nrmicro2890] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteus mirabilis, named for the Greek god who changed shape to avoid capture, has fascinated microbiologists for more than a century with its unique swarming differentiation, Dienes line formation and potent urease activity. Transcriptome profiling during both host infection and swarming motility, coupled with the availability of the complete genome sequence for P. mirabilis, has revealed the occurrence of interbacterial competition and killing through a type VI secretion system, and the reciprocal regulation of adhesion and motility, as well as the intimate connections between metabolism, swarming and virulence. This Review addresses some of the unique and recently described aspects of P. mirabilis biology and pathogenesis, and emphasizes the potential role of this bacterium in single-species and polymicrobial urinary tract infections.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Medical Science Building II, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
16
|
D'Alessandro B, Lery LMS, Krüger WMA, Lima A, Piccini C, Zunino P. Proteomic analysis of Proteus mirabilis outer membrane proteins reveals differential expression in vivo vs. in vitro conditions. ACTA ACUST UNITED AC 2011; 63:174-82. [DOI: 10.1111/j.1574-695x.2011.00839.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruno D'Alessandro
- Departamento de Microbiología; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo; Uruguay
| | - Leticia M. S. Lery
- Unidade Multidisciplinar de Genômica; Instituto de Biofísica Carlos Chagas Filho; Centro de Ciencias da Saúde - Bloco G Lab; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - Wanda M. A. Krüger
- Unidade Multidisciplinar de Genômica; Instituto de Biofísica Carlos Chagas Filho; Centro de Ciencias da Saúde - Bloco G Lab; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas; Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable; Montevideo; Uruguay
| | - Claudia Piccini
- Departamento de Microbiología; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo; Uruguay
| | - Pablo Zunino
- Departamento de Microbiología; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo; Uruguay
| |
Collapse
|
17
|
Cash P. Investigating pathogen biology at the level of the proteome. Proteomics 2011; 11:3190-202. [DOI: 10.1002/pmic.201100029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 11/12/2022]
|
18
|
Self-transmissibility of the integrative and conjugative element ICEPm1 between clinical isolates requires a functional integrase, relaxase, and type IV secretion system. J Bacteriol 2011; 193:4104-12. [PMID: 21665966 DOI: 10.1128/jb.05119-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrative and conjugative elements (ICEs), which are chromosomal mobile elements, can conjugatively transfer between bacteria. Recently, we identified a genomic island of Proteus mirabilis, a common agent of catheter-associated urinary tract infection (UTI), that possesses all the properties consistent with an ICE. This element, designated ICEPm1, is highly conserved in other causative agents of UTI, suggesting its mobility. We demonstrate that ICEPm1 can actively excise from the chromosome in a clonal population of bacteria and that this excision is integrase dependent. Although in P. mirabilis HI4320, ICEPm1 is annotated as integrated into the phenylalanine tRNA gene pheV, we show that ICEPm1 can integrate into either pheV or pheU. We determined that ICEPm1 transfers at a frequency of 1.35 × 10(-5) transconjugants/donor to ICEPm1-deficient P. mirabilis using plate mating assays with clinical isolates. Insertional inactivation of a putative integrase gene on ICEPm1 decreased transfer frequencies of ICEPm1 to below the limit of detection. Mutation of the relaxase of ICEPm1 also eliminates transfer and demonstrates that this element is indeed self-transmissible and not transferred in trans, as are some mobilizable genomic islands. Together, these findings clearly demonstrate that ICEPm1 can actively excise from the chromosome in an integrase-dependent manner, dynamically integrate into both phenylalanine tRNA genes, and transfer into clinical strains using its own conjugation machinery.
Collapse
|
19
|
Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 2011; 79:2619-31. [PMID: 21505083 DOI: 10.1128/iai.05152-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In this study, microarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7 days postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across nine microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded mannose-resistant Proteus-like (MR/P) fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism enzymes, and a portion of the tricarboxylic acid (TCA) cycle enzymes. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo, while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract.
Collapse
|
20
|
In Vivo Studies of Clostridium perfringens in Mouse Gas Gangrene Model. Curr Microbiol 2010; 62:999-1008. [DOI: 10.1007/s00284-010-9821-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
21
|
Adhesion, invasion, and agglutination mediated by two trimeric autotransporters in the human uropathogen Proteus mirabilis. Infect Immun 2010; 78:4882-94. [PMID: 20805336 DOI: 10.1128/iai.00718-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fimbriae of the human uropathogen Proteus mirabilis are the only characterized surface proteins that contribute to its virulence by mediating adhesion and invasion of the uroepithelia. PMI2122 (AipA) and PMI2575 (TaaP) are annotated in the genome of strain HI4320 as trimeric autotransporters with "adhesin-like" and "agglutinating adhesin-like" properties, respectively. The C-terminal 62 amino acids (aa) in AipA and 76 aa in TaaP are homologous to the translocator domains of YadA from Yersinia enterocolitica and Hia from Haemophilus influenzae. Comparative protein modeling using the Hia three-dimensional structure as a template predicted that each of these domains would contain four antiparallel beta sheets and that they formed homotrimers. Recombinant AipA and TaaP were seen as ∼28 kDa and ∼78 kDa, respectively, in Escherichia coli, and each also formed high-molecular-weight homotrimers, thus supporting this model. E. coli synthesizing AipA or TaaP bound to extracellular matrix proteins with a 10- to 60-fold-higher level of affinity than the control strain. Inactivation of aipA in P. mirabilis strains significantly (P < 0.01) reduced the mutants' ability to adhere to or invade HEK293 cell monolayers, and the functions were restored upon complementation. A 51-aa-long invasin region in the AipA passenger domain was required for this function. E. coli expressing TaaP mediated autoagglutination, and a taaP mutant of P. mirabilis showed significantly (P < 0.05) more reduced aggregation than HI4320. Gly-247 in AipA and Gly-708 in TaaP were indispensable for trimerization and activity. AipA and TaaP individually offered advantages to P. mirabilis in a murine model. This is the first report characterizing trimeric autotransporters in P. mirabilis as afimbrial surface adhesins and autoagglutinins.
Collapse
|
22
|
Abstract
The urinary tract is a common site of bacterial infections; nearly half of all women experience at least one urinary tract infection (UTI) during their lifetime. These infections are classified based on the condition of the host. Uncomplicated infections affect otherwise healthy individuals and are most commonly caused by uropathogenic Escherichia coli, whereas complicated infections affect patients with underlying difficulties, such as a urinary tract abnormality or catheterization, and are commonly caused by species such as Proteus mirabilis. Virulence and fitness factors produced by both pathogens include fimbriae, toxins, flagella, iron acquisition systems, and proteins that function in immune evasion. Additional factors that contribute to infection include the formation of intracellular bacterial communities by E. coli and the production of urease by P. mirabilis, which can result in urinary stone formation. Innate immune responses are induced or mediated by pattern recognition receptors, antimicrobial peptides, and neutrophils. The adaptive immune response to UTI is less well understood. Host factors TLR4 and CXCR1 are implicated in disease outcome and susceptibility, respectively. Low levels of TLR4 are associated with asymptomatic bacteriuria while low levels of CXCR1 are associated with increased incidence of acute pyelonephritis. Current research is focused on the identification of additional virulence factors and therapeutic or prophylactic targets that might be used in the generation of vaccines against both uropathogens.
Collapse
|
23
|
Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun 2010; 78:2823-33. [PMID: 20385754 DOI: 10.1128/iai.01220-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis, a Gram-negative bacterium, represents a common cause of complicated urinary tract infections in catheterized patients or those with functional or anatomical abnormalities of the urinary tract. ZnuB, the membrane component of the high-affinity zinc (Zn(2+)) transport system ZnuACB, was previously shown to be recognized by sera from infected mice. Since this system has been shown to contribute to virulence in other pathogens, its role in Proteus mirabilis was investigated by constructing a strain with an insertionally interrupted copy of znuC. The znuC::Kan mutant was more sensitive to zinc limitation than the wild type, was outcompeted by the wild type in minimal medium, displayed reduced swimming and swarming motility, and produced less flaA transcript and flagellin protein. The production of flagellin and swarming motility were restored by complementation with znuCB in trans. Swarming motility was also restored by the addition of Zn(2+) to the agar prior to inoculation; the addition of Fe(2+) to the agar also partially restored the swarming motility of the znuC::Kan strain, but the addition of Co(2+), Cu(2+), or Ni(2+) did not. ZnuC contributes to but is not required for virulence in the urinary tract; the znuC::Kan strain was outcompeted by the wild type during a cochallenge experiment but was able to colonize mice to levels similar to the wild-type level during independent challenge. Since we demonstrated a role for ZnuC in zinc transport, we hypothesize that there is limited zinc present in the urinary tract and P. mirabilis must scavenge this ion to colonize and persist in the host.
Collapse
|
24
|
Yoder-Himes DR, Konstantinidis KT, Tiedje JM. Identification of potential therapeutic targets for Burkholderia cenocepacia by comparative transcriptomics. PLoS One 2010; 5:e8724. [PMID: 20090946 PMCID: PMC2806911 DOI: 10.1371/journal.pone.0008724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/14/2009] [Indexed: 11/25/2022] Open
Abstract
Background Burkholderia cenocepacia is an endemic soil dweller and emerging opportunistic pathogen in patients with cystic fibrosis (CF). The identification of virulence factors and potential therapeutic targets has been hampered by the genomic diversity within the species as many factors are not shared among the pathogenic members of the species. Methodology/Principal Findings In this study, global identification of putative virulence factors was performed by analyzing the transcriptome of two related strains of B. cenocepacia (one clinical, one environmental) under conditions mimicking cystic fibrosis sputum versus soil. Soil is a natural reservoir for this species; hence, genes induced under CF conditions relative to soil may represent adaptations that have occurred in clinical strains. Under CF conditions, several genes encoding proteins thought to be involved in virulence were induced and many new ones were identified. Our analysis, in combination with previous studies, reveals 458 strain-specific genes, 126 clinical-isolate-specific, and at least four species-specific genes that are induced under CF conditions. The chromosomal distribution of the induced genes was disproportionate to the size of the chromosome as genes expressed under soil conditions by both strains were more frequent on the second chromosome and those differentially regulated between strains were more frequent on the third chromosome. Conservation of these induced genes was established using the 11 available Bcc genome sequences to indicate whether potential therapeutic targets would be species-wide. Conclusions/Significance Comparative transcriptomics is a useful way to identify new potential virulence factors and therapeutic targets for pathogenic bacteria. We identified eight genes induced under CF conditions that were also conserved in the Bcc and may constitute particularly attractive therapeutic targets due to their signal sequence, predicted cellular location, and homology to known therapeutic targets.
Collapse
Affiliation(s)
- Deborah R. Yoder-Himes
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
25
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
26
|
Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun 2009; 77:4887-94. [PMID: 19687197 DOI: 10.1128/iai.00705-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pathogenicity islands (PAIs) are a specific group of genomic islands that contribute to genomic variability and virulence of bacterial pathogens. Using a strain-specific comparative genomic hybridization array, we report the identification of a 94-kb PAI, designated ICEPm1, that is common to Proteus mirabilis, Providencia stuartii, and Morganella morganii. These organisms are highly prevalent etiologic agents of catheter-associated urinary tract infections (caUTI), the most common hospital acquired infection. ICEPm1 carries virulence factors that are important for colonization of the urinary tract, including a known toxin (Proteus toxic agglutinin) and the high pathogenicity island of Yersinia spp. In addition, this PAI shares homology and gene organization similar to the PAIs of other bacterial pathogens, several of which have been classified as mobile integrative and conjugative elements (ICEs). Isolates from this study were cultured from patients with caUTI and show identical sequence similarity at three loci within ICEPm1, suggesting its transfer between bacterial genera. Screening for the presence of ICEPm1 among P. mirabilis colonizing isolates showed that ICEPm1 is more prevalent in urine isolates compared to P. mirabilis strains isolated from other body sites (P<0.0001), further suggesting that it contributes to niche specificity and is positively selected for in the urinary tract.
Collapse
|
27
|
Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect Immun 2008; 77:632-41. [PMID: 19029299 DOI: 10.1128/iai.01050-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complicated urinary tract infections (UTI) caused by Proteus mirabilis are associated with severe pathology in the bladder and kidney. To investigate the roles of two established cytotoxins, the HpmA hemolysin, a secreted cytotoxin, and proteus toxic agglutinin (Pta), a surface-associated cytotoxin, mutant analysis was used in conjunction with a mouse model of ascending UTI. Inactivation of pta, but not inactivation of hpmA, resulted in significant decreases in the bacterial loads of the mutant in kidneys (P < 0.01) and spleens (P < 0.05) compared to the bacterial loads of the wild type; the 50% infective dose (ID(50)) of an isogenic pta mutant or hpmA pta double mutant was 100-fold higher (5 x 10(8) CFU) than the ID(50) of parent strain HI4320 (5 x 10(6) CFU). Colonization by the parent strain caused severe cystitis and interstitial nephritis as determined by histopathological examination. Mice infected with the same bacterial load of the hpmA pta double mutant showed significantly reduced pathology (P < 0.01), suggesting that the additive effect of these two cytotoxins is critical during Proteus infection. Since Pta is surface associated and important for the persistence of P. mirabilis in the host, it was selected as a vaccine candidate. Mice intranasally vaccinated with a site-directed (indicated by an asterisk) (S366A) mutant purified intact toxin (Pta*) or the passenger domain Pta-alpha*, each independently conjugated with cholera toxin (CT), had significantly lower bacterial counts in their kidneys ( P = 0.001) and spleens (P = 0.002) than mice that received CT alone. The serum immunoglobulin G levels correlated with protection (P = 0.03). This is the first report describing the in vivo cytotoxicity and antigenicity of an autotransporter in P. mirabilis and its use in vaccine development.
Collapse
|