1
|
Ren S, Lu Y, Zhang G, Xie K, Chen D, Cai X, Ye M. Integration of Graph Neural Networks and multi-omics analysis identify the predictive factor and key gene for immunotherapy response and prognosis of bladder cancer. J Transl Med 2024; 22:1141. [PMID: 39716185 DOI: 10.1186/s12967-024-05976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
OBJECTIVE The evaluation of the efficacy of immunotherapy is of great value for the clinical treatment of bladder cancer. Graph Neural Networks (GNNs), pathway analysis and multi-omics analysis have shown great potential in the field of cancer diagnosis and treatment. METHODS A GNNs model was constructed to predict the immunotherapy response and identify key pathways. Based on the genes of key pathways, bioinformatic methods were used to generate a simple linear scoring model, namely responseScore. The intrinsic mechanism of responseScore was explored from the perspectives of multi-omics analysis. The relationship between each gene involved in responseScore and prognosis was also explored. Transfection experiments with human bladder cancer cells were used to investigate the biological effects of PSMB9 gene. RESULTS The final GNNs model had an AUC of 0.785 on the training set and an AUC of 0.839 on the validation set. R-HSA-69620 and others were identified as key pathways. ResponseScore had a good performance in predicted the immunotherapy response and prognosis. Analysis results from genetic variation, pathways and tumor microenvironment, showed that responseScore was significantly associated with immune cell infiltration and anti-tumor immunity. The results of single-cell analysis showed that responseScore was closely related to the functional state of natural killer cells. Compared with the PCDH-NC group, cell migration and proliferation were significantly inhibited while cell apoptosis increased in the PCDH-PSMB9 group. CONCLUSION The GNNs predictive model and responseScore constructed in this study can reflect the immunotherapy response and prognosis of bladder cancer patients. ResponseScore can also reflect features such as tumor microenvironment, antitumor immunity, and natural killer cell function status in bladder cancer. PSMB9 was identified as a significant gene for prognosis. High expression of PSMB9 can inhibit bladder cancer cell migration and proliferation while increasing cell apoptosis.
Collapse
Affiliation(s)
- Shuai Ren
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yongjian Lu
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Guangping Zhang
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Ke Xie
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Danni Chen
- Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Xiangna Cai
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Maodong Ye
- Medical Cosmetic Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
2
|
Huy TXN, Nguyen TT, Salad SA, Aguilar CNT, Reyes AWB, Arayan LT, Min W, Lee HJ, Hop HT, Kim S. Hypertonic Saline Induces Host Protective Immune Responses against Brucella abortus Infection in Mice. J Microbiol Biotechnol 2024; 34:2192-2200. [PMID: 39403730 PMCID: PMC11637827 DOI: 10.4014/jmb.2407.07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024]
Abstract
Hypertonic saline (HTS) resuscitation can enhance immune responses against various pathogens, however, the effect of HTS on brucellosis is yet to be defined. In this study, we found that HTS inhibited Brucella infection in mice by augmenting Th1 immunity. HTS treatment enhanced the serum cytokines production and the expression of nitric oxide synthase (NOS2) and nuclear factor kappa B (NF-ĸB) p50 and p65, crucial anti-Brucella effectors in splenocytes. In addition, HTS treatment also inhibited the phosphorylation of MAPK signaling, accompanied by the down-regulation of the autophagy marker LC3B-II. Due to directing an appropriate immune response, HTS treatment substantially decreased bacterial burden in spleen and liver tissues. In summary, corroborating previous studies showing the antimicrobial effects of HTS, our findings indicate that HTS treatment triggers a protective immune response against Brucella infection. Additionally, these results provide promising evidence of the immunomodulatory role of HTS in controlling bacterial infections.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, HUTECH University, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Said Abdi Salad
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ched Nicole Turbela Aguilar
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna, 4031, Philippines
| | | | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Huynh Tan Hop
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
3
|
Song J, Liu Y, Yin Y, Wang H, Zhang X, Li Y, Zhao X, Zhang G, Meng X, Jin Y, Lu D, Yin Y. PTIR1 acts as an isoform of DDX58 and promotes tumor immune resistance through activation of UCHL5. Cell Rep 2023; 42:113388. [PMID: 37934668 DOI: 10.1016/j.celrep.2023.113388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Cancer evades host immune surveillance by virtue of poor immunogenicity. Here, we report an immune suppressor, designated as PTIR1, that acts as a promotor of tumor immune resistance. PTIR1 is selectively induced in human cancers via alternative splicing of DDX58 (RIG-I), and its induction is closely related to poor outcome in patients with cancer. Through blocking the recruitment of leukocytes, PTIR1 facilitates cancer immune escape and tumor-intrinsic resistance to immunotherapeutic treatments. Unlike RIG-I, PTIR1 is capable of binding to the C terminus of UCHL5 and activates its ubiquitinating function, which in turn inhibits immunoproteasome activity and limits neoantigen processing and presentation, consequently blocking T cell recognition and attack against cancer. Moreover, we find that the adenosine deaminase ADAR1 induces A-to-I RNA editing on DDX58 transcript, thus triggering PTIR1 production. Collectively, our data uncover the immunosuppressive role of PTIR1 in tumorigenesis and propose that ADAR1-PTIR1-UCHL5 signaling is a potential cancer immunotherapeutic target.
Collapse
Affiliation(s)
- Jia Song
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yue Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Hui Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xin Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yang Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiangyan Meng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China.
| |
Collapse
|
4
|
Pascual DW, Goodwin ZI, Bhagyaraj E, Hoffman C, Yang X. Activation of mucosal immunity as a novel therapeutic strategy for combating brucellosis. Front Microbiol 2022; 13:1018165. [PMID: 36620020 PMCID: PMC9814167 DOI: 10.3389/fmicb.2022.1018165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.
Collapse
|
5
|
Simvastatin Inhibits Brucella abortus Invasion into RAW 264.7 Cells through Suppression of the Mevalonate Pathway and Promotes Host Immunity during Infection in a Mouse Model. Int J Mol Sci 2022; 23:ijms23158337. [PMID: 35955474 PMCID: PMC9368445 DOI: 10.3390/ijms23158337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase and has been found to have protective effects against several bacterial infections. In this study, we investigate the effects of simvastatin treatment on RAW 264.7 macrophage cells and ICR mice against Brucella (B.) abortus infections. The invasion assay revealed that simvastatin inhibited the Brucella invasion into macrophage cells by blocking the mevalonic pathway. The treatment of simvastatin enhanced the trafficking of Toll-like receptor 4 in membrane lipid raft microdomains, accompanied by the increased phosphorylation of its downstream signaling pathways, including JAK2 and MAPKs, upon =Brucella infection. Notably, the suppressive effect of simvastatin treatment on Brucella invasion was not dependent on the reduction of cholesterol synthesis but probably on the decline of farnesyl pyrophosphate and geranylgeranyl pyrophosphate synthesis. In addition to a direct brucellacidal ability, simvastatin administration showed increased cytokine TNF-α and differentiation of CD8+ T cells, accompanied by reduced bacterial survival in spleens of ICR mice. These data suggested the involvement of the mevalonate pathway in the phagocytosis of B. abortus into RAW 264.7 macrophage cells and the regulation of simvastatin on the host immune system against Brucella infections. Therefore, simvastatin is a potential candidate for studying alternative therapy against animal brucellosis.
Collapse
|
6
|
Leister H, Krause FF, Mahdavi R, Steinhoff U, Visekruna A. The Role of Immunoproteasomes in Tumor-Immune Cell Interactions in Melanoma and Colon Cancer. Arch Immunol Ther Exp (Warsz) 2022; 70:5. [PMID: 35064840 PMCID: PMC8783903 DOI: 10.1007/s00005-022-00644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
The participation of proteasomes in vital cellular and metabolic processes that are involved in tumor growth has made this protease complex an attractive target for cancer treatment. In contrast to ubiquitously available constitutive proteasome, the increased enzymatic activity of immunoproteasome is associated with tumor-infiltrating immune cells, such as antigen-presenting cells and T lymphocytes. In various tumors, an effective anti-tumor immunity is provided through generation of tumor-associated antigens by proteasomes, contributing crucially to cancer eradication by T lymphocytes. The knowledge regarding the role of immunoproteasomes in the communication between tumor cells and infiltrating immune cells is limited. Novel data suggest that the involvement of immunoproteasomes in tumorigenesis is more complex than previously thought. In the intestine, in which diverse signals from commensal bacteria and food can contribute to the onset of chronic inflammation and inflammation-driven cancer, immunoproteasomes exert tumorigenic properties by modulating the expression of pro-inflammatory factors. In contrast, in melanoma and non-small cell lung cancer, the immunoproteasome acts against cancer development by promoting an effective anti-tumor immunity. In this review, we highlight the potential of immunoproteasomes to either contribute to inflammatory signaling and tumor development, or to support anti-cancer immunity. Further, we discuss novel therapeutic options for cancer treatments that are associated with modulating the activity of immunoproteasomes in the tumor microenvironment.
Collapse
Affiliation(s)
- Hanna Leister
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Felix F Krause
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Rouzbeh Mahdavi
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
7
|
The Function of Immunoproteasomes-An Immunologists' Perspective. Cells 2021; 10:cells10123360. [PMID: 34943869 PMCID: PMC8699091 DOI: 10.3390/cells10123360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023] Open
Abstract
Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.
Collapse
|
8
|
Tilocca B, Soggiu A, Greco V, Sacchini F, Garofolo G, Paci V, Bonizzi L, Urbani A, Tittarelli M, Roncada P. Comparative proteomics of Brucella melitensis is a useful toolbox for developing prophylactic interventions in a One-Health context. One Health 2021; 13:100253. [PMID: 33997237 PMCID: PMC8100217 DOI: 10.1016/j.onehlt.2021.100253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Brucellosis caused by Brucella melitensis is a zoonosis frequently reported in the Mediterranean and Middle-East regions and responsible for important economic losses and reduced animal welfare. To date, current strategies applied to control or eradicate the disease relies on diagnostic tests that suffer from limited specificity in non-vaccinated animals; while prophylactic measures, when applied, use a live attenuated bacterial strain characterized by residual virulence on adult pregnant animals and difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Proteomics has a potential in tackling issues of One-Health concern; here, we employed label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, a reference strain representative of B. melitensis field strains. Comparative proteomics profiling underlines common and diverging traits between the two strains. Common features suggest the potential biochemical routes responsible for the residual virulence of the vaccinal strain, whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostic capable of discriminating the vaccinated from infected animals. The data presented in this study are openly available in PRIDE data repository at https://www.ebi.ac.uk/pride/, reference number PXD022472.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Alessio Soggiu
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Valentina Paci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Luigi Bonizzi
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Centro di Referenza Nazionale per le brucellosi animali, Via Campo Boario 1, 64100 Teramo, Italy
| | - Paola Roncada
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
French T, Israel N, Düsedau HP, Tersteegen A, Steffen J, Cammann C, Topfstedt E, Dieterich D, Schüler T, Seifert U, Dunay IR. The Immunoproteasome Subunits LMP2, LMP7 and MECL-1 Are Crucial Along the Induction of Cerebral Toxoplasmosis. Front Immunol 2021; 12:619465. [PMID: 33968021 PMCID: PMC8099150 DOI: 10.3389/fimmu.2021.619465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 11/28/2022] Open
Abstract
Cell survival and function critically relies on the fine-tuned balance of protein synthesis and degradation. In the steady state, the standard proteasome is sufficient to maintain this proteostasis. However, upon inflammation, the sharp increase in protein production requires additional mechanisms to limit protein-associated cellular stress. Under inflammatory conditions and the release of interferons, the immunoproteasome (IP) is induced to support protein processing and recycling. In antigen-presenting cells constitutively expressing IPs, inflammation-related mechanisms contribute to the formation of MHC class I/II-peptide complexes, which are required for the induction of T cell responses. The control of Toxoplasma gondii infection relies on Interferon-γ (IFNγ)-related T cell responses. Whether and how the IP affects the course of anti-parasitic T cell responses along the infection as well as inflammation of the central nervous system is still unknown. To answer this question we used triple knockout (TKO) mice lacking the 3 catalytic subunits of the immunoproteasome (β1i/LMP2, β2i/MECL-1 and β5i/LMP7). Here we show that the numbers of dendritic cells, monocytes and CD8+ T cells were reduced in Toxoplasma gondii-infected TKO mice. Furthermore, impaired IFNγ, TNF and iNOS production was accompanied by dysregulated chemokine expression and altered immune cell recruitment to the brain. T cell differentiation was altered, apoptosis rates of microglia and monocytes were elevated and STAT3 downstream signaling was diminished. Consequently, anti-parasitic immune responses were impaired in TKO mice leading to elevated T. gondii burden and prolonged neuroinflammation. In summary we provide evidence for a critical role of the IP subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 for the control of cerebral Toxoplasma gondii infection and subsequent neuroinflammation.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nicole Israel
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anne Tersteegen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Daniela Dieterich
- Institute of Pharmacology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
10
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
11
|
Wang Y, Yan K, Lin J, Liu Y, Wang J, Li X, Li X, Hua Z, Zheng Z, Shi J, Sun S, Bi J. CD8+ T Cell Co-Expressed Genes Correlate With Clinical Phenotype and Microenvironments of Urothelial Cancer. Front Oncol 2020; 10:553399. [PMID: 33330025 PMCID: PMC7713665 DOI: 10.3389/fonc.2020.553399] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose To identify immune-related co-expressed genes that promote CD8+ T cell infiltration in bladder cancer, and to explore the interactions among relevant genes in the tumor microenvironment. Method We obtained bladder cancer gene matrix and clinical information data from TCGA, GSE32894 and GSE48075. The “estimate” package was used to calculate tumor purity and immune score. The CIBERSORT algorithm was used to assess CD8+ T cell proportions. Weighted gene co-expression network analysis was used to identify the co-expression modules with CD8+ T cell proportions and bladder tumor purity. Subsequently, we performed correlation analysis among angiogenesis factors, angiogenesis inhibitors, immune inflammatory responses, and CD8+ T cell related genes in tumor microenvironment. Results A CD8+ T cell related co-expression network was identified. Eight co-expressed genes (PSMB8, PSMB9, PSMB10, PSME2, TAP1, IRF1, FBOX6, ETV7) were identified as CD8+ T cell-related genes that promoted infiltration of CD8+ T cells, and were enriched in the MHC class I tumor antigen presentation process. The proteins level encoded by these genes (PSMB10, PSMB9, PSMB8, TAP1, IRF1, and FBXO6) were lower in the high clinical grade patients, which suggested the clinical phenotype correlation both in mRNA and protein levels. These factors negatively correlated with angiogenesis factors and positively correlated with angiogenesis inhibitors. PD-1 and PD-L1 positively correlated with these genes which suggested PD-1 expression level positively correlated with the biological process composed by these co-expression genes. In the high expression group of these genes, inflammation and immune response were more intense, and the tumor purity was lower, suggesting that these genes were immune protective factors that improved the prognosis in patients with bladder cancer. Conclusion These co-expressed genes promote high levels of infiltration of CD8+ T cells in an immunoproteasome process involved in MHC class I molecules. The mechanism might provide new pathways for treatment of patients who are insensitive to PD-1 immunotherapy due to low degrees of CD8+ T cell infiltration.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Kexin Yan
- Department of Dermatology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Jiaxing Lin
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Jianfeng Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Xuejie Li
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Xinxin Li
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Zhixiong Hua
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Zhenhua Zheng
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Jianxiu Shi
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Siqing Sun
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Proteomic Analysis of Human Immune Responses to Live-Attenuated Tularemia Vaccine. Vaccines (Basel) 2020; 8:vaccines8030413. [PMID: 32722207 PMCID: PMC7564149 DOI: 10.3390/vaccines8030413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis (F. tularensis) is an intracellular pathogen that causes a potentially debilitating febrile illness known as tularemia. F. tularensis can be spread by aerosol transmission and cause fatal pneumonic tularemia. If untreated, mortality rates can be as high as 30%. To study the host responses to a live-attenuated tularemia vaccine, peripheral blood mononuclear cell (PBMC) samples were assayed from 10 subjects collected pre- and post-vaccination, using both the 2D-DIGE/MALDI-MS/MS and LC-MS/MS approaches. Protein expression related to antigen processing and presentation, inflammation (PPARγ nuclear receptor), phagocytosis, and gram-negative bacterial infection was enriched at Day 7 and/or Day 14. Protein candidates that could be used to predict human immune responses were identified by evaluating the correlation between proteome changes and humoral and cellular immune responses. Consistent with the proteomics data, parallel transcriptomics data showed that MHC class I and class II-related signals important for protein processing and antigen presentation were up-regulated, further confirming the proteomic results. These findings provide new biological insights that can be built upon in future clinical studies, using live attenuated strains as immunogens, including their potential use as surrogates of protection.
Collapse
|
13
|
KONG L, LU J, ZHU H, ZHANG J. [Research progress on selective immunoproteasome inhibitors]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:688-694. [PMID: 31955545 PMCID: PMC8800774 DOI: 10.3785/j.issn.1008-9292.2019.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Immunoproteasome is associated with various diseases such as hematologic malignancies, inflammatory, autoimmune and central nervous system diseases, and over expression of immunoproteasome is observed in all of these diseases. Immunoproteasome inhibitors can reduce the expression of immunoproteasome by inhibiting the production of related cell-inducing factors and the activity of T lymphocyte for treating related diseases. In order to achieve good efficacy and reduce the toxic effects, key for development of selective immunoproteasome inhibitors is the high selectivity and potent activity of the three active subunits of the proteasome. This review summarizes the structure and functions of immunoproteasome and the associated diseases. Besides, structure, activity and status of selective immunoproteasome inhibitors are also been highlighted.
Collapse
Affiliation(s)
| | | | | | - Jiankang ZHANG
- 张建康(1987-), 男, 博士, 讲师, 硕士生导师, 主要从事抗肿瘤药物研发工作, E-mail:
;
https://orcid.org/0000-0003-0365-7238
| |
Collapse
|
14
|
Xi J, Zhuang R, Kong L, He R, Zhu H, Zhang J. Immunoproteasome-selective inhibitors: An overview of recent developments as potential drugs for hematologic malignancies and autoimmune diseases. Eur J Med Chem 2019; 182:111646. [PMID: 31521028 DOI: 10.1016/j.ejmech.2019.111646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The immunoproteasome, a specialized form of proteasome, is mainly expressed in lymphocytes and monocytes of jawed vertebrates and responsible for the generation of antigenic peptides for cell-mediated immunity. Overexpression of immunoproteasome have been detected in a wide range of diseases including malignancies, autoimmune and inflammatory diseases. Following the successful approval of constitutive proteasome inhibitors bortezomib, carfilzomib and Ixazomib, and with the clarification of immunoproteasome crystal structure and functions, a variety of immunoproteasome inhibitors were discovered or rationally developed. Not only the inhibitory activities, the selectivities for immunoproteasome over constitutive proteasome are essential for the clinical potential of these analogues, which has been validated by the clinical evaluation of immunoproteasome-selective inhibitor KZR-616 for the treatment of systemic lupus erythematosus. In this review, structure, function as well as the current developments of various inhibitors against immunoproteasome are going to be summarized, which help to fully understand the target for drug discovery.
Collapse
Affiliation(s)
- Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
15
|
On the role of the immunoproteasome in transplant rejection. Immunogenetics 2018; 71:263-271. [PMID: 30220008 DOI: 10.1007/s00251-018-1084-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
The immunoproteasome is expressed in cells of hematopoietic origin and is induced during inflammation by IFN-γ. Targeting the immunoproteasome with selective inhibitors has been shown to be therapeutically effective in pre-clinical models for autoimmune diseases, colitis-associated cancer formation, and transplantation. Immunoproteasome inhibition prevents activation and proliferation of lymphocytes, lowers MHC class I cell surface expression, reduces the expression of cytokines of activated immune cells, and curtails T helper 1 and 17 cell differentiation. This might explain the in vivo efficacy of immunoproteasome inhibition in different pre-clinical disease models for autoimmunity, cancer, and transplantation. In this review, we summarize the effect of immunoproteasome inhibition in different animal models for transplantation.
Collapse
|