1
|
Makiuchi T, Saito-Nakano Y, Nozaki T. Evidence of γ-secretase complex involved in the regulation of intramembrane proteolysis in Entamoeba histolytica. Parasitol Int 2024; 103:102925. [PMID: 39048023 DOI: 10.1016/j.parint.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Presenilins (PSNs) are multifunctional membrane proteins involved in signal transduction, lysosomal acidification, and certain physiological processes related to mitochondria. The aspartic protease activity of PSN and the formation of a γ-secretase complex with other subunits such as nicastrin (NCT) are required for the biological functions. Although PSN is widely conserved in eukaryotes, most studies on PSN were conducted in metazoans. Homologous genes for PSN and NCT (EhPSN and EhNCT, respectively) are encoded in the genome of Entamoeba histolytica, however, their functions remain unknown. In this study, we showed that EhPSN and EhNCT form a complex on the cell membrane, demonstrating that the parasite possesses γ-secretase. The predicted structure of EhPSN was similar to the human homolog, demonstrated by the crystal structure, and phylogenetic analysis indicated good conservation between EhPSN and human PSN, supporting the premise that EhPSN functions as a subunit of γ-secretase. By contrast, EhNCT appears to have undergone remarkable structural changes during its evolution. Blue native-polyacrylamide gel electrophoresis combined with western blotting indicated that a 150-kDa single band contains both EhPSN (estimated molecular size: 47-kDa) and EhNCT (64-kDa), suggesting that the complex also contains other unknown components or post-translational modifications. Coimmunoprecipitation from amebic lysates also confirmed that EhPSN and EhNCT formed a complex. Indirect immunofluorescence analysis revealed that the complex localized to the plasma membrane. Moreover, EhPSN exhibited protease activity, which was suppressed by a γ-secretase inhibitor. This is the first report of a γ-secretase complex in protozoan parasites.
Collapse
Affiliation(s)
- Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Guo S, Liu D, Wan X, Guo D, Zheng M, Zheng W, Feng X. Ac-HSP20 regulates autophagy and promotes the encystation of Acanthamoeba castellanii by inhibiting the PI3K/AKT/mTOR signaling pathway. Parasit Vectors 2024; 17:347. [PMID: 39160562 PMCID: PMC11331602 DOI: 10.1186/s13071-024-06436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND The encystation of Acanthamoeba castellanii has important ecological and medical significance. Blocking encystation is the key to preventing transmission and curing infections caused by A. castellanii. The formation of autophagosomes is one of the most important changes that occur during the encystation of Acanthamoeba. Our previous studies have shown that the heat shock protein 20 of A. castellanii (Ac-HSP20) is involved in its encystation. This study aimed to determine the role and mechanism of Ac-HSP20 in regulating autophagy involved in the encystation of A. castellanii. METHODS Immunofluorescence assay, western blotting and transmission electron microscopy were used to analyze the dynamic changes in autophagy during the initiation and continuation of encystation. The knockdown of Ac-HSP20 was performed to clarify its regulation of encystation and autophagy and to elucidate the molecular mechanism by which Ac-HSP20 participates in autophagy to promote cyst maturation. RESULTS The encystation rates and autophagosomes were significantly decreased by treatment with the autophagy inhibitor 3-MA. The autophagy marker LC3B and autophagic lysosomes increased with the induced duration of encystation and reached the maximum at 48 h. The encystation rate, LC3B expression and autophagosomes decreased when Ac-HSP20 was knocked down by siRNA transfection. In addition, the expression levels of Ac-HSP20 and LC3B increased and the expressions of p-AKT and p-mTOR decreased after 48 h of encystation without knockdown. However, the expressions of p-AKT and p-mTOR increased while the expression of LC3B decreased under the knockdown of Ac-HSP20. Furthermore, the protein expression of LC3B increased when the PI3K/AKT/mTOR signaling pathway was inhibited but decreased when the pathway was activated. CONCLUSIONS The results demonstrated that autophagy is positively correlated with the encystation of A. castellanii, and Ac-HSP20 regulates autophagy to maintain the homeostasis of A. castellanii by inhibiting the PI3K /AKT /mTOR signaling pathway, thus promoting the maturation and stability of encystation.
Collapse
Affiliation(s)
- Siyao Guo
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
- Department of Clinical Laboratory, Jilin City Hospital of Chemical Industry, Jilin, China
| | - Di Liu
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Xi Wan
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Dingrui Guo
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Meiyu Zheng
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China
| | - Wenyu Zheng
- Department of Microsurgery, Jilin City Central Hospital, Jilin, China.
| | - Xianmin Feng
- Department of Pathogenic Biology, Jilin Medical University, Jilin, China.
| |
Collapse
|
3
|
Lê HG, Kang JM, Võ TC, Na BK. Kaempferol induces programmed cell death in Naegleria fowleri. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154994. [PMID: 37597363 DOI: 10.1016/j.phymed.2023.154994] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Naegleria fowleri is a brain-eating amoeba causing a fatal brain infection called primary amoebic meningoencephalitis (PAM). Despite its high mortality over 95%, effective therapeutic drug for PAM has not been developed yet. Therefore, development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated anti-amoebic effect of kaempferol (KPF) against N. fowleri and its underlying anti-amoebic molecular mechanisms. METHODS Anti-amoebic activity of KPF against N. fowleri trophozoites, as well as cytotoxicity of KPF in C6 glial cells and CHO-K1 cells were investigated. The programmed cell death mechanisms in KPF-treated N. fowleri were also analyzed by apoptosis-necrosis assay, mitochondrial dysfunction assay, TUNEL assay, RT-qPCR, and CYTO-ID assay. RESULTS KPF showed anti-amoebic activity against N. fowleri trophozoites with an IC50 of 29.28 ± 0.63 μM. However, it showed no significant cytotoxicity to mammalian cells. KPF induced significant morphological alterations of the amoebae, resulting in death. Signals associated with apoptosis were detected in the amoebae upon treatment with KPF. KPF induced an increase of intracellular reactive oxygen species level, loss of mitochondrial membrane potential, increases of expression levels of genes associated with mitochondria dysfunction, and reduction of ATP levels in the amoebae. Autophagic vacuole accumulations with increased expression levels of autophagy-related genes were also detected in KPF-treated amoebae. CONCLUSION KPF induces programmed cell death in N. fowleri trophozoites via apoptosis-like pathway and autophagy pathway. KPF could be used as a candidate of anti-amoebic drug or supplement compound in the process of developing or optimizing therapeutic drug for PAM.
Collapse
Affiliation(s)
- Hương Giang Lê
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University College of Medicine, Jinju 52727, Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea.
| |
Collapse
|
4
|
Das K, Nozaki T. Non-Vesicular Lipid Transport Machinery in Leishmania donovani: Functional Implications in Host-Parasite Interaction. Int J Mol Sci 2023; 24:10637. [PMID: 37445815 DOI: 10.3390/ijms241310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Eukaryotic cells have distinct membrane-enclosed organelles, each with a unique biochemical signature and specialized function. The unique identity of each organelle is greatly governed by the asymmetric distribution and regulated intracellular movement of two important biomolecules, lipids, and proteins. Non-vesicular lipid transport mediated by lipid-transfer proteins (LTPs) plays essential roles in intra-cellular lipid trafficking and cellular lipid homeostasis, while vesicular transport regulates protein trafficking. A comparative analysis of non-vesicular lipid transport machinery in protists could enhance our understanding of parasitism and basis of eukaryotic evolution. Leishmania donovani, the trypanosomatid parasite, greatly depends on receptor-ligand mediated signalling pathways for cellular differentiation, nutrient uptake, secretion of virulence factors, and pathogenesis. Lipids, despite being important signalling molecules, have intracellular transport mechanisms that are largely unexplored in L. donovani. We have identified a repertoire of sixteen (16) potential lipid transfer protein (LTP) homologs based on a domain-based search on TriTrypDB coupled with bioinformatics analyses, which signifies the presence of well-organized lipid transport machinery in this parasite. We emphasized here their evolutionary uniqueness and conservation and discussed their potential implications for parasite biology with regards to future therapeutic targets against visceral leishmaniasis.
Collapse
Affiliation(s)
- Koushik Das
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
6
|
Effects of autophagy inhibition by 3-methyladenine on encystation, morphology, and metabolites of Cryptocaryon irritans. Parasitol Res 2023; 122:509-517. [PMID: 36526927 DOI: 10.1007/s00436-022-07751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Encystment is crucial for defense and reproduction in Cryptocaryon irritans. Therefore, understanding the encystment-related events in the protomont stage can help prevent and control C. irritans. Autophagy promotes protozoan parasite encystation. However, 3MA can inhibit autophagy. In this study, the effects of autophagy inhibition on encystation, survival rate, ultrastructural features, and metabolomic profiles of C. irritans, were evaluated using protomonts treated with 3MA (20 mM). The treatment with 3MA for about 4 h significantly lowered survival and encystation rates of protomonts to about 86.44% and 76.08%, respectively. Microstructural observations showed that the 3MA-treated protomonts showed deformed cell membranes and the cytoplasmic content spill. Furthermore, observation of the ultrastructure of 3MA-treated protomonts showed the destruction of organelles (Golgi bodies and mucocyst) and a lack of autophagosomes. However, no abnormality was observed in the control experiments. Furthermore, the metabolic analysis revealed suppression of metabolites, such as lipids, amino acids, and carbohydrates. These results demonstrate that 3MA can inhibit autophagy in C. irritans, thus hindering encystation, suppressing the metabolism of metabolites, and altering morphological ultrastructure in these parasites.
Collapse
|
7
|
Bushra, Maha IF, Xie X, Yin F. Integration of transcriptomic and metabolomic profiling of encystation in Cryptocaryon irritans regulated by rapamycin. Vet Parasitol 2023; 314:109868. [PMID: 36603452 DOI: 10.1016/j.vetpar.2022.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Encystation in Cryptocaryon irritans is a fundamental process for environmental resistance and development. Autophagy participates in the encystation of ciliates, and rapamycin can induce autophagy in the cells. A set of genes and metabolites related to autophagy and encystation are highly elaborative. The existence of these genes and metabolites and their role are well characterized. However, little is known about their role in protozoans such as ciliates. The newly produced C. irritans protomonts were exposed to an optimal concentration of rapamycin (1400 nM), and the survival, encystation, microstructure/ultrastructure, transcriptomic and metabolomic profile in treated and control protomonts were investigated. The results showed that exposure of protomonts to rapamycin at 4 h significantly lowered the survival and encystation rates to 91.62 % and 98.44 % compared to the control group (100 %, p ≤ 0.05). Morphological alterations observed in light microscopy and transmission electron microscopy (TEM) demonstrated that the drug significantly changed cell symmetry by causing the formation of various autophagic vacuoles/vesicles. The transcriptome sequencing of rapamycin-treated protomont revealed that 2249 (1837 up-regulated and 977 down-regulated) differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 226 DEGs were successfully annotated in 21 pathways (p˂0.05), including most enriched pathways apoptosis and phagosome with 25 and 24 DEGs, respectively. Most unigenes were assigned to autophagy-related pathways; 24 DEGs were classified into phagosomes, and 15 DEGs were assigned to lysosome pathways. Cytoskeleton and cell progression-associated genes were down-regulated. Besides, cell death-inducing proteins were up-regulated. The metabolomic analysis revealed exposure to rapamycin treatment enhanced protomont metabolites, including L-Cysteine, which is related to autophagy. Rapamycin had influenced the gene and metabolites of protomont; activating autophagy with inhibition of mechanistic target of rapamycin, (mTOR). The process negatively influences protomont morphology, encystation, and survival. Further autophagy-related gene silencing can be investigated via genome sequencing of C. irritans to study encystation.
Collapse
Affiliation(s)
- Bushra
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China
| | - Ivon F Maha
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China
| | - Xiao Xie
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China.
| | - Fei Yin
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, PR China.
| |
Collapse
|
8
|
Nakada-Tsukui K, Watanabe N, Shibata K, Wahyuni R, Miyamoto E, Nozaki T. Proteomic analysis of Atg8-dependent recruitment of phagosomal proteins in the enteric protozoan parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:961645. [PMID: 36262186 PMCID: PMC9575557 DOI: 10.3389/fcimb.2022.961645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is one of the bulk degradation systems and is conserved throughout eukaryotes. In the enteric protozoan parasite Entamoeba histolytica, the causative agent of human amebiasis, Atg8 is not exclusively involved in autophagy per se but also in other membrane traffic-related pathways such as phagosome biogenesis. We previously reported that repression of atg8 gene expression by antisense small RNA-mediated transcriptional gene silencing (gs) resulted in growth retardation, delayed endocytosis, and reduced acidification of endosomes and phagosomes. In this study, to better understand the role of Atg8 in phagocytosis and trogocytosis, we conducted a comparative proteomic analysis of phagosomes isolated from wild type and atg8-gs strains. We found that 127 and 107 proteins were detected >1.5-fold less or more abundantly, respectively, in phagosomes isolated from the atg8-gs strain, compared to the control strain. Among 127 proteins whose abundance was reduced in phagosomes from atg8-gs, a panel of proteins related to fatty acid metabolism, phagocytosis, and endoplasmic reticulum (ER) homeostasis was identified. Various lysosomal hydrolases and their receptors also tend to be excluded from phagosomes by atg8-gs, reinforcing the notion that Atg8 is involved in phagosomal acidification and digestion. On the contrary, among 107 proteins whose abundance increased in phagosomes from atg8-gs strain, ribosome-related proteins and metabolite interconversion enzymes are enriched. We further investigated the localization of several representative proteins, including adenylyl cyclase-associated protein and plasma membrane calcium pump, both of which were demonstrated to be recruited to phagosomes and trogosomes via an Atg8-dependent mechanism. Taken together, our study has provided the basis of the phagosome proteome to further elucidate molecular events in the Atg8-dependent regulatory network of phagosome/trogosome biogenesis in E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Kumiko Nakada-Tsukui, ; Tomoyoshi Nozaki,
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Shibata
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ratna Wahyuni
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Miyamoto
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kumiko Nakada-Tsukui, ; Tomoyoshi Nozaki,
| |
Collapse
|
9
|
Boonhok R, Sangkanu S, Phumjan S, Jongboonjua R, Sangnopparat N, Kwankaew P, Tedasen A, Lim CL, Pereira MDL, Rahmatullah M, Wilairatana P, Wiart C, Dolma KG, Paul AK, Gupta M, Nissapatorn V. Curcumin effect on Acanthamoeba triangularis encystation under nutrient starvation. PeerJ 2022; 10:e13657. [PMID: 35811814 PMCID: PMC9261923 DOI: 10.7717/peerj.13657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level. Methods In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR. Results A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment. Conclusion Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suganya Phumjan
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Ramita Jongboonjua
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Nawarat Sangnopparat
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachathewee, Bangkok, Thailand
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| |
Collapse
|
10
|
Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI, Hong Y. Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:1-6. [PMID: 35247948 PMCID: PMC8898648 DOI: 10.3347/kjp.2022.60.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022]
Abstract
The encystation of Acanthamoeba leads to the development of metabolically inactive and dormant cysts from vegetative trophozoites under unfavorable conditions. These cysts are highly resistant to anti-Acanthamoeba drugs and biocides. Therefore, the inhibition of encystation would be more effective in treating Acanthamoeba infection. In our previous study, a sirtuin family protein—Acanthamoeba silent-information regulator 2-like protein (AcSir2)—was identified, and its expression was discovered to be critical for Acanthamoeba castellanii proliferation and encystation. In this study, to develop Acanthamoeba sirtuin inhibitors, we examine the effects of sirtinol, a sirtuin inhibitor, on trophozoite growth and encystation. Sirtinol inhibited A. castellanii trophozoites proliferation (IC50=61.24 μM). The encystation rate of cells treated with sirtinol significantly decreased to 39.8% (200 μM sirtinol) after 24 hr of incubation compared to controls. In AcSir2-overexpressing cells, the transcriptional level of cyst-specific cysteine protease (CSCP), an Acanthamoeba cysteine protease involved in the encysting process, was 11.6- and 88.6-fold higher at 48 and 72 hr after induction of encystation compared to control. However, sirtinol suppresses CSCP transcription, resulting that the undegraded organelles and large molecules remained in sirtinol-treated cells during encystation. These results indicated that sirtinol sufficiently inhibited trophozoite proliferation and encystation, and can be used to treat Acanthamoeba infections.
Collapse
Affiliation(s)
- So-Young Joo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Ja Moon Aung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447,
Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan 49201,
Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
- Corresponding author ()
| |
Collapse
|
11
|
Boonhok R, Sangkanu S, Norouzi R, Siyadatpanah A, Mirzaei F, Mitsuwan W, Charong N, Wisessombat S, Pereira MDL, Rahmatullah M, Wilairatana P, Wiart C, Tabo HA, Dolma KG, Nissapatorn V. Amoebicidal activity of Cassia angustifolia extract and its effect on Acanthamoeba triangularis autophagy-related gene expression at the transcriptional level. Parasitology 2021; 148:1074-1082. [PMID: 33966667 PMCID: PMC11010062 DOI: 10.1017/s0031182021000718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
Cassia angustifolia Vahl. plant is used for many therapeutic purposes, for example, in people with constipation, skin diseases, including helminthic and parasitic infections. In our study, we demonstrated an amoebicidal activity of C. angustifolia extract against Acanthamoeba triangularis trophozoite at a micromolar level. Scanning electron microscopy (SEM) images displayed morphological changes in the Acanthamoeba trophozoite, which included the formation of pores in cell membrane and the membrane rupture. In addition to the amoebicidal activity, effects of the extract on surviving trophozoites were observed, which included cyst formation and vacuolization by a microscope and transcriptional expression of Acanthamoeba autophagy in response to the stress by quantitative polymerase chain reaction. Our data showed that the surviving trophozoites were not transformed into cysts and the trophozoite number with enlarged vacuole was not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of AcATG genes was slightly changed. Interestingly, AcATG16 decreased significantly at 12 h post treatment, which may indicate a transcriptional regulation by the extract or a balance of intracellular signalling pathways in response to the stress, whereas AcATG3 and AcATG8b remained unchanged. Altogether, these data reveal the anti-Acanthamoeba activity of C. angustifolia extract and the autophagic response in the surviving trophozoites under the plant extract pressure, along with data on the formation of cysts. These represent a promising plant for future drug development. However, further isolation and purification of an active compound and cytotoxicity against human cells are needed, including a study on the autophagic response at the protein level.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz51664, Iran
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand9717853577, Iran
| | - Farzaneh Mirzaei
- Department Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd14188-15971, Iran
| | - Watcharapong Mitsuwan
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat80160, Thailand
- Akkhraratchakumari Veterinary College, and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Nurdina Charong
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro3810-193, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative Lalmatia, Dhaka1209, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok10400, Thailand
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor43500, Malaysia
| | - Hazel Anne Tabo
- Biological Sciences Department, College of Science and Computer Studies, De La Salle University-Dasmarinas, Cavite4115, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences (SMIMS), Gangtok, Sikkim737102, India
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat80160, Thailand
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat80160, Thailand
| |
Collapse
|
12
|
Boonhok R, Sangkanu S, Chuprom J, Srisuphanunt M, Norouzi R, Siyadatpanah A, Mirzaei F, Mitsuwan W, Wisessombat S, de Lourdes Pereira M, Rahmatullah M, Wilairatana P, Wiart C, Ling LC, Dolma KG, Nissapatorn V. Peganum harmala Extract Has Antiamoebic Activity to Acanthamoeba triangularis Trophozoites and Changes Expression of Autophagy-Related Genes. Pathogens 2021; 10:842. [PMID: 34357992 PMCID: PMC8308471 DOI: 10.3390/pathogens10070842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 02/03/2023] Open
Abstract
Peganum harmala, a well-known medicinal plant, has been used for several therapeutic purposes as it contains numerous pharmacological active compounds. Our study reported an anti-parasitic activity of P. harmala seed extract against Acanthamoeba triangularis. The stress induced by the extract on the surviving trophozoites for Acanthamoeba encystation and vacuolization was examined by microscopy, and transcriptional expression of Acanthamoeba autophagy-related genes was investigated by quantitative PCR. Our results showed that the surviving trophozoites were not transformed into cysts, and the number of trophozoites with enlarged vacuoles were not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of tested AcATG genes, i.e., ATG3, ATG8b, and ATG16, was at a basal level along the treatment. However, upregulation of AcATG16 at 24 h post treatment was observed, which may indicate an autophagic activity of this protein in response to the stress. Altogether, these data revealed the anti-Acanthamoeba activity of P. harmala extract and indicated the association of autophagy mRNA expression and cyst formation under the extract stress, representing a promising plant for future drug development. However, further identification of an active compound and a study of autophagy at the protein level are needed.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
| | - Suthinee Sangkanu
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.S.); (J.C.)
| | - Julalak Chuprom
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.S.); (J.C.)
| | - Mayuna Srisuphanunt
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Farzaneh Mirzaei
- Department Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 14188-15971, Iran;
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1209, Bangladesh;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor 43500, Malaysia;
| | - Lim Chooi Ling
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences (SMIMS), Sikkim 737102, India;
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.B.); (M.S.); (S.W.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand; (S.S.); (J.C.)
| |
Collapse
|
13
|
The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins. Cells 2021; 10:cells10051258. [PMID: 34069694 PMCID: PMC8161075 DOI: 10.3390/cells10051258] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs and the diversity of their functions in various lineages is an important challenge for understanding the evolutionary background of autophagy.
Collapse
|
14
|
Li C, Li Y, Zhuang M, Zhu B, Zhang W, Yan H, Zhang P, Li D, Yang J, Sun Y, Cui Q, Chen H, Jin P, Xia Z, Sun Y. Long noncoding RNA H19 act as a competing endogenous RNA of Let-7g to facilitate IEC-6 cell migration and proliferation via regulating EGF. J Cell Physiol 2021; 236:2881-2892. [PMID: 33230843 DOI: 10.1002/jcp.30061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Intestinal mucosal injury is one of the most significant complications of burns. In our previous study, it was found that autophagy could alleviate burn-induced intestinal injury, but the underlying mechanisms are still unclear. Irregular expression of long noncoding RNAs (lncRNAs) is present in many diseases, including burns. However, the relationship between lncRNAs and intestinal mucosal injury requires further elucidation. In this study, we established a burn mice model and detected the expression level of autophagy-related proteins. Then, H19 content after autophagy intervention was tested in vitro and in vivo. The interaction of H19 with Let-7g and that of Let-7g with epidermal growth factor (EGF) were verified by dual-luciferase reporter assays. We found that the expression of the autophagy-associated proteins LC3-II and Beclin-1 was raised in the intestinal tract of the burn mice model. Similarly, the transfection of H19 raised autophagy levels. H19 was elevated after autophagy intervention in vitro and in vivo. H19 overexpression was able to promote IEC-6 cell migration and proliferation. Let-7g was suppressed by the overexpression of H19 and the combination of Let-7g mimic was able to abolish the physiological effect of H19. Moreover, the suppression of Let-7g increased the expression of EGF protein, which heightened IEC-6 cell migration and proliferation. Besides this, dual-luciferase assays revealed that Let-7g was a direct target of H19 as well as the EGF gene. Taken together, autophagy-mediated H19 increases in mouse intestinal tract after severe burn and functions as a sponge to Let-7g to regulate EGF, which suggests that H19 serves as a potential therapeutic target and biomarker for intestinal mucosal injury after burns.
Collapse
Affiliation(s)
- Cuijie Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Ye Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Bo Zhu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Wenwen Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Hao Yan
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Pan Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Dan Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Juan Yang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Yuan Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Qingwei Cui
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Haijun Chen
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Matsuoka T. Early signaling pathways mediating dormant cyst formation in terrestrial unicellular eukaryote Colpoda. FEMS Microbiol Lett 2021; 368:6156630. [PMID: 33677557 DOI: 10.1093/femsle/fnab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
Dormant (resting) cyst formation (encystment) in unicellular eukaryotes is the process of a large-scale digestion of vegetative cell structures and reconstruction into the dormant form, which is performed by cell signaling pathways accompanied by up- or down-regulation of protein expression, and by posttranslational modification such as phosphorylation. In this review, the author describes the morphogenetic events during encystment of Colpoda and the early molecular events in the Ca2+/calmodulin-triggered signaling pathways for encystment, based mainly on our research results of the past 10 years; especially, the author discusses the role of c-AMP dependently phosphorylated proteins (ribosomal P0 protein, ribosomal S5 protein, Rieske iron-sulfur protein, actin and histone H4) and encystment-dependently upregulated (EF-1α-HSP60, actin-related protein) and downregulated proteins (ATP synthase β-chain). In addition, the roles of AMPK, a key molecule in the signaling pathways leading to Colpoda encystment, and differentially expressed genes and proteins during encystment of other ciliates are discussed.
Collapse
Affiliation(s)
- Tatsuomi Matsuoka
- Department of Biological Science, Faculty of Science and Technology, Kochi University, Akebono-cho 2-5-1, Kochi, Japan
| |
Collapse
|
16
|
Wu JH, Tung SY, Ho CC, Su LH, Gan SW, Liao JY, Cho CC, Lin BC, Chiu PW, Pan YJ, Kao YY, Liu YC, Sun CH. A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochim Biophys Acta Gen Subj 2021; 1865:129859. [PMID: 33581251 DOI: 10.1016/j.bbagen.2021.129859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs). METHODS We used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine. RESULTS Double staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture. CONCLUSIONS The MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes. GENERAL SIGNIFICANCE MLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Soo-Wah Gan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jo-Yu Liao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chao-Cheng Cho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Bo-Chi Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Jiao Pan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Yun Kao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Chen Liu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.
| |
Collapse
|
17
|
Ultra-structural analysis and morphological changes during the differentiation of trophozoite to cyst in Entamoeba invadens. Mol Biochem Parasitol 2021; 242:111363. [PMID: 33524469 DOI: 10.1016/j.molbiopara.2021.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022]
Abstract
Entamoeba histolytica, a pathogenic parasite, is the causative organism of amoebiasis and uses human colon to complete its life cycle. It destroys intestinal tissue leading to invasive disease. Since it does not form cyst in culture medium, a reptilian parasite Entamoeba invadens serves as the model system to study encystation. Detailed investigation on the mechanism of cyst formation, information on ultra-structural changes and cyst wall formation during encystation are still lacking in E. invadens. Here, we used electron microscopy to study the ultrastructural changes during cyst formation and showed that the increase in heterochromatin patches and deformation of nuclear shape were early events in encystation. These changes peaked at ∼20 h post induction, and normal nuclear morphology was restored by 72 h. Two types of cellular structures were visible by 16 h. One was densely stained and consisted of the cytoplasmic mass with clearly visible nucleus. The other consisted of membranous shells with large vacuoles and scant cytoplasm. The former structure developed into the mature cyst while the latter structure was lost after 20 h, This study of ultra-structural changes during encystation in E. invadens opens up the possibilities for further investigation into the mechanisms involved in this novel process.
Collapse
|
18
|
Karpiyevich M, Artavanis-Tsakonas K. Ubiquitin-Like Modifiers: Emerging Regulators of Protozoan Parasites. Biomolecules 2020; 10:E1403. [PMID: 33022940 PMCID: PMC7600729 DOI: 10.3390/biom10101403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Post-translational protein regulation allows for fine-tuning of cellular functions and involves a wide range of modifications, including ubiquitin and ubiquitin-like modifiers (Ubls). The dynamic balance of Ubl conjugation and removal shapes the fates of target substrates, in turn modulating various cellular processes. The mechanistic aspects of Ubl pathways and their biological roles have been largely established in yeast, plants, and mammalian cells. However, these modifiers may be utilised differently in highly specialised and divergent organisms, such as parasitic protozoa. In this review, we explore how these parasites employ Ubls, in particular SUMO, NEDD8, ATG8, ATG12, URM1, and UFM1, to regulate their unconventional cellular physiology. We discuss emerging data that provide evidence of Ubl-mediated regulation of unique parasite-specific processes, as well as the distinctive features of Ubl pathways in parasitic protozoa. We also highlight the potential to leverage these essential regulators and their cognate enzymatic machinery for development of therapeutics to protect against the diseases caused by protozoan parasites.
Collapse
|
19
|
Joo SY, Aung JM, Shin M, Moon EK, Kong HH, Goo YK, Chung DI, Hong Y. The role of the Acanthamoeba castellanii Sir2-like protein in the growth and encystation of Acanthamoeba. Parasit Vectors 2020; 13:368. [PMID: 32698828 PMCID: PMC7376869 DOI: 10.1186/s13071-020-04237-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The encystation of Acanthamoeba leads to the development of resilient cysts from vegetative trophozoites. This process is essential for the survival of parasites under unfavorable conditions. Previous studies have reported that, during the encystation of A. castellanii, the expression levels of encystation-related factors are upregulated. However, the regulatory mechanisms for their expression during the encystation process remains unknown. Proteins in the sirtuin family, which consists of nicotinamide adenine dinucleotide-dependent deacetylases, are known to play an important role in various cellular functions. In the present study, we identified the Acanthamoeba silent-information regulator 2-like protein (AcSir2) and examined its role in the growth and encystation of Acanthamoeba. METHODS We obtained the full-length sequence for AcSir2 using reverse-transcription polymerase chain reaction. In Acanthamoeba transfectants that constitutively overexpress AcSir2 protein, SIRT deacetylase activity was measured, and the intracellular localization of AcSir2 and the effects on the growth and encystation of trophozoites were examined. In addition, the sirtuin inhibitor salermide was used to determine whether these effects were caused by AcSir2 overexpression RESULTS: AcSir2 was classified as a class-IV sirtuin. AcSir2 exhibited functional SIRT deacetylase activity, localized mainly in the nucleus, and its transcription was upregulated during encystation. In trophozoites, AcSir2 overexpression led to greater cell growth, and this growth was inhibited by treatment with salermide, a sirtuin inhibitor. When AcSir2 was overexpressed in the cysts, the encystation rate was significantly higher; this was also reversed with salermide treatment. In AcSir2-overexpressing encysting cells, the transcription of cellulose synthase was highly upregulated compared with that of control cells, and this upregulation was abolished with salermide treatment. Transmission electron microscope-based ultrastructural analysis of salermide-treated encysting cells showed that the structure of the exocyst wall and intercyst space was impaired and that the endocyst wall had not formed. CONCLUSIONS These results indicate that AcSir2 is a SIRT deacetylase that plays an essential role as a regulator of a variety of cellular processes and that the regulation of AcSir2 expression is important for the growth and encystation of A. castellanii.
Collapse
Affiliation(s)
- So-Young Joo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ja Moon Aung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
20
|
Abstract
AbstractEntamoeba histolytica infection causes amoebiasis, which is a global public health problem. The major route of infection is oral ingestion of E. histolytica cysts, cysts being the sole form responsible for host-to-host transmission. Cysts are produced by cell differentiation from proliferative trophozoites in a process termed ‘encystation’. Therefore, encystation is an important process from a medical as well as a biological perspective. Previous electron microscopy studies have shown the ultrastructure of precysts and mature cysts; however, the dynamics of ultrastructural changes during encystation were ambiguous. Here, we analysed a series of Entamoeba invadens encysting cells by transmission electron microscopy. Entamoeba invadens is a model for encystation and the cells were prepared by short interval time course sampling from in vitro encystation-inducing cultures. We related sampled cells to stage conversion, which was monitored in the overall population by flow cytometry. The present approach revealed the dynamics of ultrastructure changes during E. invadens encystation. Importantly, the results indicate a functional linkage of processes that are crucial in encystation, such as glycogen accumulation and cyst wall formation. Hence, this study provides a reference for studying sequential molecular events during Entamoeba encystation.
Collapse
|
21
|
Li C, Zhuang M, Zhu B, Li Y, Zhang W, Yan H, Zhang P, Li D, Yang J, Sun Y, Chen H, Cui Q, Jin P, Sun Y. Epidermal growth factor regulation by autophagy-mediated lncRNA H19 in murine intestinal tract after severe burn. J Cell Mol Med 2020; 24:5878-5887. [PMID: 32301281 PMCID: PMC7214185 DOI: 10.1111/jcmm.15262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
To investigate the regulation of epidermal growth factor (EGF) by autophagy‐mediated long non‐coding RNA (lncRNA) H19 in the intestinal tracts of severely burned mice. C57BL/6J mice received third‐degree burns to 30% of the total body surface area. Rapamycin and 3‐methyladenine (3‐MA) were used to activate and inhibit autophagy, and the changes in LC3 and Beclin1 levels were assessed by Western blotting. The effect of autophagy on lncRNA H19 was detected by qRT‐PCR. Adenovirus‐mediated overexpression of lncRNA H19 in IEC‐6 cells was used to assess the effects of lncRNA H19 on EGF and let‐7g via bioinformatics analysis, Western blotting and qRT‐PCR. let‐7g mimic/inhibitor was used to overexpress/inhibit let‐7g, and qRT‐PCR and Western blotting were used to detect the effects of let‐7g on EGF. The expression levels of LC3‐II, Beclin1 and lncRNA H19 were increased in intestinal tissues and IEC‐6 cells after rapamycin treatment but were reversed after 3‐MA treatment. LC3‐II, Beclin1 and lncRNA H19 levels increased in intestinal tissues after the burn, and these increases were more significant after rapamycin treatment but decreased after 3‐MA treatment. The lncRNA H19 overexpression in IEC‐6 cells resulted in increased and decreased expression levels of EGF and let‐7g, respectively. Furthermore, overexpression and inhibition of let‐7g resulted in decreased and increased expression of EGF, respectively. Taken together, intestinal autophagy is activated after a serious burn, which can increase the transcription level of lncRNA H19. lncRNA H19 may regulate the repair of EGF via let‐7g following intestinal mucosa injury after a burn.
Collapse
Affiliation(s)
- Cuijie Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Bo Zhu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Ye Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Wenwen Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Hao Yan
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Pan Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Dan Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Juan Yang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Yuan Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Haijun Chen
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Qingwei Cui
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Peisheng Jin
- Department of Plastic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| |
Collapse
|
22
|
Vijayakumar K, Cho GW. Autophagy: An evolutionarily conserved process in the maintenance of stem cells and aging. Cell Biochem Funct 2019; 37:452-458. [PMID: 31318072 DOI: 10.1002/cbf.3427] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/02/2023]
Abstract
Autophagy is an evolutionarily conserved process that degrades and recycles defective organelles, toxic proteins, and various other aggregates on the cytoplasmic surface by sequestering them into autophagosomes which, then, fuse with lysosomes which degrade them. If these aggregates are not cleared, they accumulate and damage the cell resulting in cellular senescence and aging. Stem cells, with their capacity to differentiate, are crucial for tissue homeostasis. In addition to differentiation, the stemness of stem cells must be preserved. Recent studies in stem cells show the importance of autophagy in evading cellular senescence. In this review, we describe the conservative nature of the autophagy process, carried out throughout evolution. In particular, we highlight the role of autophagy in various evolutionarily diverse species and how it evolved to maintain tissue homeostasis and regulate aging and cellular senescence in stem cells.
Collapse
Affiliation(s)
- Karthikeyan Vijayakumar
- Department of Biology, College of Natural Science, Chosun University, Gwangju, South Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, South Korea
| | - Goang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju, South Korea.,Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, South Korea
| |
Collapse
|
23
|
Hernández-García MS, Miranda-Ozuna JFT, Salazar-Villatoro L, Vázquez-Calzada C, Ávila-González L, González-Robles A, Ortega-López J, Arroyo R. Biogenesis of Autophagosome in Trichomonas vaginalis during Macroautophagy Induced by Rapamycin-treatment and Iron or Glucose Starvation Conditions. J Eukaryot Microbiol 2019; 66:654-669. [PMID: 30620421 DOI: 10.1111/jeu.12712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Autophagy is an adaptive response for cell survival in which cytoplasmic components and organelles are degraded in bulk under normal and stress conditions. Trichomonas vaginalis is a parasite highly adaptable to stress conditions such as iron (IR) and glucose restriction (GR). Autophagy can be traced by detecting a key autophagy protein (Atg8) anchored to the autophagosome membrane by a lipid moiety. Our goal was to perform a morphological and cellular study of autophagy in T. vaginalis under GR, IR, and Rapamycin (Rapa) treatment using TvAtg8 as a putative autophagy marker. We cloned tvatg8a and tvatg8b and expressed and purified rTvAtg8a and rTvAtg8b to produce specific polyclonal antibodies. Autophagy vesicles were detected by indirect immunofluorescence assays and confirmed by ultrastructural analysis. The biogenesis of autophagosomes was detected, showing intact cytosolic cargo. TvAtg8 was detected as puncta signal with the anti-rTvAtg8b antibody that recognized soluble and lipid-associated TvAtg8b by Western blot assays in lysates from stress-inducing conditions. The TvAtg8b signal co-localized with the CytoID and lysotracker labeling (autolysosomes) that accumulated after E-64d treatment in GR parasites. Our data suggest that autophagy induced by starvation in T. vaginalis results in the formation of autophagosomes for which TvAtg8b could be a putative autophagy marker.
Collapse
Affiliation(s)
- Mar S Hernández-García
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Jesús F T Miranda-Ozuna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Carlos Vázquez-Calzada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Leticia Ávila-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| |
Collapse
|
24
|
Potential role of autophagy in proteolysis in Trichomonas vaginalis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 52:336-344. [PMID: 30503389 DOI: 10.1016/j.jmii.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autophagy has been shown to be involved in the pathogenesis of several protists, offering prospects for the developments of new drugs targeting autophagy. However, there is no evidence illustrating functional autophagy in the deep-branching trichomonads. The human parasitic protist Trichomonas vaginalis has been predicted to possess reduced autophagic machinery, with only autophagy-related protein 8 (Atg8) conjugation system required for autophagosome formation. METHODS The recombinant protein of TvAtg8 (rTvAtg8) and the polyclonal antibody against rTvAtg8 were generated. The expression and localization of TvAtg8 was monitored upon autophagy induction by glucose restriction (GR) compared with glucose-rich cultivation. The role of TvAtg8 in proteolysis was clarified. RESULTS Here, we report that T. vaginalis Atg8 (TvAtg8) is upregulated and conjugated to autophagosome-like vesicles upon autophagy induction by GR. Moreover, we investigate, for the first time, the role of autophagy in T. vaginalis. Proteasome inhibition (PI)-induced autophagy compensates for the removal of polyubiquitinated proteins under glucose-rich condition. GR-induced autophagy is a major proteolytic system in T. vaginalis. These results suggest that autophagy is vital for proteolysis in T. vaginalis with an impaired ubiquitin-proteasome system or under glucose-limited environment. CONCLUSION Our findings unveiled previously unidentified functions of autophagy in proteostasis in trichomonads, advancing our understanding of this highly conserved process in the ancient eukaryote.
Collapse
|
25
|
Kazama M, Yoshida K, Ogiwara S, Makiuchi T, Tachibana H. Influence of Heterologous Transplant of DNA-lacking Mitochondria from Entamoeba histolytica on Proliferation of Entamoeba invadens. J Eukaryot Microbiol 2018; 66:483-493. [PMID: 30329208 DOI: 10.1111/jeu.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
In mitochondria, compatibility of proteins encoded in mitochondrial DNA and nuclear DNA is essential for the normal functioning of the organelle. Incompatibility between mitochondrial and nuclear DNA can lead to dysfunctional respiration, mitochondrial diseases, and lethal problems, which suggests that the presence of heterologous mitochondria is unfavorable. In a previous study, we established a transplant method for DNA-lacking mitochondria (mitosomes) in the anaerobic protozoan Entamoeba histolytica. In this study, interspecies transplant of mitosomes from E. histolytica into Entamoeba invadens, which is a parasitic protozoon of reptiles, was performed using the microinjection method at various temperatures and injection volumes. When E. invadens was used as recipient, it showed higher tolerance to a lower temperature and larger injection volume, in comparison with E. histolytica. After microinjection, donor mitosomes expressing HA-tag conjugated protein were observed in recipient cells by immunofluorescent staining. The heterologous mitosomes-injected cells proliferated and growth rate of the microinjected-cells was similar to that of intact cells. Therefore, we conclude that interspecies transplant of DNA-lacking mitochondria does not result in incompatibility.
Collapse
Affiliation(s)
- Makoto Kazama
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,NEKKEN Bio-Resource Center, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kazuhiro Yoshida
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Sanae Ogiwara
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
26
|
Hong Y, Kang JM, Joo SY, Song SM, Lê HG, Thái TL, Lee J, Goo YK, Chung DI, Sohn WM, Na BK. Molecular and Biochemical Properties of a Cysteine Protease of Acanthamoeba castellanii. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:409-418. [PMID: 30419726 PMCID: PMC6243185 DOI: 10.3347/kjp.2018.56.5.409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
Abstract
Acanthamoeba spp. are free-living protozoa that are opportunistic pathogens for humans. Cysteine proteases of Acanthamoeba have been partially characterized, but their biochemical and functional properties are not clearly understood yet. In this study, we isolated a gene encoding cysteine protease of A. castellanii (AcCP) and its biochemical and functional properties were analyzed. Sequence analysis of AcCP suggests that this enzyme is a typical cathepsin L family cysteine protease, which shares similar structural characteristics with other cathepsin L-like enzymes. The recombinant AcCP showed enzymatic activity in acidic conditions with an optimum at pH 4.0. The recombinant enzyme effectively hydrolyzed human proteins including hemoglobin, albumin, immunoglobuins A and G, and fibronectin at acidic pH. AcCP mainly localized in lysosomal compartment and its expression was observed in both trophozoites and cysts. AcCP was also identified in cultured medium of A. castellanii. Considering to lysosomal localization, secretion or release by trophozoites and continuous expression in trophozoites and cysts, the enzyme could be a multifunctional enzyme that plays important biological functions for nutrition, development and pathogenicity of A. castellanii. These results also imply that AcCP can be a promising target for development of chemotherapeutic drug for Acanthamoeba infections.
Collapse
Affiliation(s)
- Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - So-Young Joo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Su-Min Song
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
27
|
Samanta SK, Varghese SS, Krishnan D, Baidya M, Nayak D, Mukherjee S, Ghosh SK. A novel encystation specific protein kinase regulates chitin synthesis in Entamoeba invadens. Mol Biochem Parasitol 2018; 220:19-27. [DOI: 10.1016/j.molbiopara.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
|
28
|
Effect of Multipurpose Solution Combined With Autophagy Inhibitors on Adhesion of Acanthamoeba trophozoites to Silicone Hydrogel Contact Lenses. Cornea 2017; 36:1538-1543. [DOI: 10.1097/ico.0000000000001340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Cárdenas-Zúñiga R, Sánchez-Monroy V, Bermúdez-Cruz RM, Rodríguez MA, Serrano-Luna J, Shibayama M. Ubiquitin-like Atg8 protein is expressed during autophagy and the encystation process in Naegleria gruberi. Parasitol Res 2016; 116:303-312. [DOI: 10.1007/s00436-016-5293-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022]
|
30
|
Induction of Autophagy interferes the tachyzoite to bradyzoite transformation of Toxoplasma gondii. Parasitology 2016; 143:639-45. [DOI: 10.1017/s0031182015001985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYAutophagy process in Toxoplasma gondii plays a vital role in regulating parasite survival or death. Thus, once having an understanding of certain effects of autophagy on the transformation of tachyzoite to bradyzoite this will allow us to elucidate the function of autophagy during parasite development. Herein, we used three TgAtg proteins involved in Atg8 conjugation system, TgAtg3, TgAtg7 and TgAtg8 to evaluate the autophagy level in tachyzoite and bradyzoite of Toxoplasma in vitro based on Pru TgAtg7-HA transgenic strains. We showed that both TgAtg3 and TgAtg8 were expressed at a significantly lower level in bradyzoites than in tachyzoites. Importantly, the number of parasites containing fluorescence-labelled TgAtg8 puncta was significantly reduced in bradyzoites than in tachyzoites, suggesting that autophagy is downregulated in Toxoplasma bradyzoite in vitro. Moreover, after treatment with drugs, bradyzoite-specific gene BAG1 levels decreased significantly in rapamycin-treated bradyzoites and increased significantly in 3-MA-treated bradyzoites in comparison with control bradyzoites, indicating that Toxoplasma autophagy is involved in the transformation of tachyzoite to bradyzoite in vitro. Together, it is suggested that autophagy may serve as a potential strategy to regulate the transformation.
Collapse
|
31
|
Pais-Morales J, Betanzos A, García-Rivera G, Chávez-Munguía B, Shibayama M, Orozco E. Resveratrol Induces Apoptosis-Like Death and Prevents In Vitro and In Vivo Virulence of Entamoeba histolytica. PLoS One 2016; 11:e0146287. [PMID: 26731663 PMCID: PMC4701480 DOI: 10.1371/journal.pone.0146287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis.
Collapse
Affiliation(s)
- Jonnatan Pais-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
- * E-mail:
| |
Collapse
|
32
|
Kim SH, Moon EK, Hong Y, Chung DI, Kong HH. Autophagy protein 12 plays an essential role in Acanthamoeba encystation. Exp Parasitol 2015; 159:46-52. [DOI: 10.1016/j.exppara.2015.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/25/2015] [Accepted: 08/16/2015] [Indexed: 11/28/2022]
|
33
|
Lee YR, Na BK, Moon EK, Song SM, Joo SY, Kong HH, Goo YK, Chung DI, Hong Y. Essential Role for an M17 Leucine Aminopeptidase in Encystation of Acanthamoeba castellanii. PLoS One 2015; 10:e0129884. [PMID: 26075721 PMCID: PMC4468156 DOI: 10.1371/journal.pone.0129884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions such as starvation, low temperatures, and exposure to biocides. During encystation, a massive turnover of intracellular components occurs, and a large number of organelles and proteins are degraded by proteases. Previous studies with specific protease inhibitors have shown that cysteine and serine proteases are involved in encystation of Acanthamoeba, but little is known about the role of metalloproteases in this process. Here, we have biochemically characterized an M17 leucine aminopeptidase of Acanthamoeba castellanii (AcLAP) and analyzed its functional involvement in encystation of the parasite. Recombinant AcLAP shared biochemical properties such as optimal pH, requirement of divalent metal ions for activity, substrate specificity for Leu, and inhibition profile by aminopeptidase inhibitors and metal chelators with other characterized M17 family LAPs. AcLAP was highly expressed at a late stage of encystation and mainly localized in the cytoplasm of A. castellanii. Knockdown of AcLAP using small interfering RNA induced a decrease of LAP activity during encystation, a reduction of mature cyst formation, and the formation of abnormal cyst walls. In summary, these results indicate that AcLAP is a typical M17 family enzyme that plays an essential role during encystation of Acanthamoeba.
Collapse
Affiliation(s)
- Yu-Ran Lee
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 700–422, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660–751, Republic of Korea
| | - Eun-Kyung Moon
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 700–422, Republic of Korea
| | - Su-Min Song
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 700–422, Republic of Korea
| | - So-Young Joo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 700–422, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University, College of Medicine, Busan 602–714, Republic of Korea
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 700–422, Republic of Korea
| | - Dong-Il Chung
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 700–422, Republic of Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 700–422, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Picazarri K, Nakada-Tsukui K, Tsuboi K, Miyamoto E, Watanabe N, Kawakami E, Nozaki T. Atg8 is involved in endosomal and phagosomal acidification in the parasitic protist Entamoeba histolytica. Cell Microbiol 2015; 17:1510-22. [PMID: 25923949 PMCID: PMC4744732 DOI: 10.1111/cmi.12453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 01/08/2023]
Abstract
Autophagy is one of two major bulk protein degradation systems and is conserved throughout eukaryotes. The protozoan Entamoeba histolytica, which is a human intestinal parasite, possesses a restricted set of autophagy‐related (Atg) proteins compared with other eukaryotes and thus represents a suitable model organism for studying the minimal essential components and ancestral functions of autophagy. E. histolytica possesses two conjugation systems: Atg8 and Atg5/12, although a gene encoding Atg12 is missing in the genome. Atg8 is considered to be the central and authentic marker of autophagosomes, but recent studies have demonstrated that Atg8 is not exclusively involved in autophagy per se, but other fundamental mechanisms of vesicular traffic. To investigate this question in E. histolytica, we studied on Atg8 during the proliferative stage. Atg8 was constitutively expressed in both laboratory‐maintained and recently established clinical isolates and appeared to be lipid‐modified in logarithmic growth phase, suggesting a role of Atg8 in non‐stress and proliferative conditions. These findings are in contrast to those for Entamoeba invadens, in which autophagy is markedly induced during an early phase of differentiation from the trophozoite into the cyst. The repression of Atg8 gene expression in En. histolytica by antisense small RNA‐mediated transcriptional gene silencing resulted in growth retardation, delayed endocytosis and reduced acidification of endosomes and phagosomes. Taken together, these results suggest that Atg8 and the Atg8 conjugation pathway have some roles in the biogenesis of endosomes and phagosomes in this primitive eukaryote.
Collapse
Affiliation(s)
- Karina Picazarri
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Tsuboi
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eri Miyamoto
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Naoko Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Eiryo Kawakami
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Laboratory for Disease Systems Modeling, RIKEN Center for integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
35
|
Autophagy inhibitors as a potential antiamoebic treatment for Acanthamoeba keratitis. Antimicrob Agents Chemother 2015; 59:4020-5. [PMID: 25896709 DOI: 10.1128/aac.05165-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Acanthamoeba cysts are resistant to extreme physical and chemical conditions. Autophagy is an essential pathway for encystation of Acanthamoeba cells. To evaluate the possibility of an autophagic Acanthamoeba encystation mechanism, we evaluated autophagy inhibitors, such as 3-methyladenine (3MA), LY294002, wortmannin, bafilomycin A, and chloroquine. Among these autophagy inhibitors, the use of 3MA and chloroquine showed a significant reduction in the encystation ratio in Acanthamoeba cells. Wortmannin also inhibited the formation of mature cysts, while LY294002 and bafilomycin A did not affect the encystation of Acanthamoeba cells. Transmission electron microscopy revealed that 3MA and wortmannin inhibited autophagy formation and that chloroquine interfered with the formation of autolysosomes. Inhibition of autophagy or autolysosome formation resulted in a significant block in the encystation in Acanthamoeba cells. Clinical treatment with 0.02% polyhexamethylene biguanide (PHMB) showed high cytopathic effects on Acanthamoeba trophozoites and cysts; however, it also revealed high cytopathic effects on human corneal epithelial cells. In this study, we investigated effects of the combination of a low (0.00125%) concentration of PHMB with each of the autophagy inhibitors 3MA, wortmannin, and chloroquine on Acanthamoeba and human corneal epithelial cells. These new combination treatments showed low cytopathic effects on human corneal cells and high cytopathic effects on Acanthamoeba cells. Taken together, these results provide fundamental information for optimizing the treatment of Acanthamoeba keratitis.
Collapse
|
36
|
Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum. PLoS One 2014; 9:e113220. [PMID: 25426852 PMCID: PMC4245143 DOI: 10.1371/journal.pone.0113220] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/21/2014] [Indexed: 02/07/2023] Open
Abstract
Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8) employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64) and aspartic (pepstatin) protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine), indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in apicoplast biogenesis. Collectively, our results reveal several atypical features of autophagy in malaria parasites, which may be largely associated with non-degradative processes.
Collapse
|
37
|
Schmidt RS, Bütikofer P. Autophagy in Trypanosoma brucei: amino acid requirement and regulation during different growth phases. PLoS One 2014; 9:e93875. [PMID: 24699810 PMCID: PMC3974859 DOI: 10.1371/journal.pone.0093875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/11/2014] [Indexed: 01/10/2023] Open
Abstract
Autophagy in the protozoan parasite, Trypanosoma brucei, may be involved in differentiation between different life cycle forms and during growth in culture. We have generated multiple parasite cell lines stably expressing green fluorescent protein- or hemagglutinin-tagged forms of the autophagy marker proteins, TbAtg8.1 and TbAtg8.2, in T. brucei procyclic forms to establish a trypanosome system for quick and reliable determination of autophagy under different culture conditions using flow cytometry. We found that starvation-induced autophagy in T. brucei can be inhibited by addition of a single amino acid, histidine, to the incubation buffer. In addition, we show that autophagy is induced when parasites enter stationary growth phase in culture and that their capacity to undergo starvation-induced autophagy decreases with increasing cell density.
Collapse
Affiliation(s)
- Remo S. Schmidt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
38
|
Huang KY, Chen YYM, Fang YK, Cheng WH, Cheng CC, Chen YC, Wu TE, Ku FM, Chen SC, Lin R, Tang P. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta Gen Subj 2014; 1840:53-64. [DOI: 10.1016/j.bbagen.2013.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/22/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
39
|
Jayabalasingham B, Voss C, Ehrenman K, Romano JD, Smith ME, Fidock DA, Bosch J, Coppens I. Characterization of the ATG8-conjugation system in 2 Plasmodium species with special focus on the liver stage: possible linkage between the apicoplastic and autophagic systems? Autophagy 2013; 10:269-84. [PMID: 24342964 DOI: 10.4161/auto.27166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plasmodium parasites successfully colonize different habitats within mammals and mosquitoes, and adaptation to various environments is accompanied by changes in their organelle composition and size. Previously, we observed that during hepatocyte infection, Plasmodium discards organelles involved in invasion and expands those implicated in biosynthetic pathways. We hypothesized that this process is regulated by autophagy. Plasmodium spp. possess a rudimentary set of known autophagy-related proteins that includes the ortholog of yeast Atg8. In this study, we analyzed the activity of the ATG8-conjugation pathway over the course of the lifecycle of Plasmodium falciparum and during the liver stage of Plasmodium berghei. We engineered a transgenic P. falciparum strain expressing mCherry-PfATG8. These transgenic parasites expressed mCherry-PfATG8 in human hepatocytes and erythrocytes, and in the midgut and salivary glands of Anopheles mosquitoes. In all observed stages, mCherry-PfATG8 was localized to tubular structures. Our EM and colocalization studies done in P. berghei showed the association of PbATG8 on the limiting membranes of the endosymbiont-derived plastid-like organelle known as the apicoplast. Interestingly, during parasite replication in hepatocytes, the association of PbATG8 with the apicoplast increases as this organelle expands in size. PbATG3, PbATG7 and PbATG8 are cotranscribed in all parasitic stages. Molecular analysis of PbATG8 and PbATG3 revealed a novel mechanism of interaction compared with that observed for other orthologs. This is further supported by the inability of Plasmodium ATG8 to functionally complement atg8Δ yeast or localize to autophagosomes in starved mammalian cells. Altogether, these data suggests a unique role for the ATG8-conjugation system in Plasmodium parasites.
Collapse
Affiliation(s)
- Bamini Jayabalasingham
- Department of Molecular Microbiology and Immunology; Malaria Research Institute; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA; Department of Microbiology & Immunology; Division of Infectious Diseases, Medical Sciences; Columbia University Medical Center; New York, NY USA
| | - Christiane Voss
- Department of Molecular Microbiology and Immunology; Malaria Research Institute; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA
| | - Karen Ehrenman
- Department of Molecular Microbiology and Immunology; Malaria Research Institute; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA
| | - Julia D Romano
- Department of Molecular Microbiology and Immunology; Malaria Research Institute; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA
| | - Maria E Smith
- Department of Molecular Microbiology and Immunology; Malaria Research Institute; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA
| | - David A Fidock
- Department of Microbiology & Immunology; Division of Infectious Diseases, Medical Sciences; Columbia University Medical Center; New York, NY USA; Department of Medicine Division of Infectious Diseases, Medical Sciences; Columbia University Medical Center; New York, NY USA
| | - Juergen Bosch
- Department of Molecular Microbiology and Immunology; Malaria Research Institute; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA; Department of Biochemistry and Molecular Biology; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology; Malaria Research Institute; Johns Hopkins University Bloomberg School of Public Health; Baltimore, MD USA
| |
Collapse
|
40
|
Moon EK, Hong Y, Chung DI, Kong HH. Identification of atg8 isoform in encysting Acanthamoeba. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:497-502. [PMID: 24327773 PMCID: PMC3857495 DOI: 10.3347/kjp.2013.51.5.497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 12/31/2022]
Abstract
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.
Collapse
Affiliation(s)
- Eun-Kyung Moon
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | | | |
Collapse
|
41
|
De Cádiz AE, Jeelani G, Nakada-Tsukui K, Caler E, Nozaki T. Transcriptome analysis of encystation in Entamoeba invadens. PLoS One 2013; 8:e74840. [PMID: 24040350 PMCID: PMC3770568 DOI: 10.1371/journal.pone.0074840] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 08/08/2013] [Indexed: 11/23/2022] Open
Abstract
Encystation is an essential differentiation process for the completion of the life cycle of a group of intestinal protozoa including Entamoeba histolytica, the causative agent of intestinal and extraintestinal amebiasis. However, regulation of gene expression during encystation is poorly understood. To comprehensively understand the process at the molecular level, the transcriptomic profiles of E. invadens, which is a related reptilian species that causes an invasive disease similar to that of E. histolytica, was investigated during encystation. Using a custom-generated Affymetrix platform microarray, we performed time course (0.5, 2, 8, 24, 48, and 120 h) gene expression analysis of encysting E. invadens. ANOVA analysis revealed that a total of 1,528 genes showed ≥3 fold up-regulation at one or more time points, relative to the trophozoite stage. Of these modulated genes, 8% (116 genes) were up-regulated at the early time points (0.5, 2 and 8h), while 63% (962 genes) were up-regulated at the later time points (24, 48, and 120 h). Twenty nine percent (450 genes) are either up-regulated at 2 to 5 time points or constitutively up-regulated in both early and late stages. Among the up-regulated genes are the genes encoding transporters, cytoskeletal proteins, proteins involved in vesicular trafficking (small GTPases), Myb transcription factors, cysteine proteases, components of the proteasome, and enzymes for chitin biosynthesis. This study represents the first kinetic analysis of gene expression during differentiation from the invasive trophozoite to the dormant, infective cyst stage in Entamoeba. Functional analysis on individual genes and their encoded products that are modulated during encystation may lead to the discovery of targets for the development of new chemotherapeutics that interfere with stage conversion of the parasite.
Collapse
Affiliation(s)
- Aleyla Escueta De Cádiz
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Biological Science and Environmental Studies, College of Science and Mathematics, University of the Philippines Mindanao, Davao, Philippines
| | - Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Elisabet Caler
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
42
|
Cysteine protease inhibitor (AcStefin) is required for complete cyst formation of Acanthamoeba. EUKARYOTIC CELL 2013; 12:567-74. [PMID: 23397569 DOI: 10.1128/ec.00308-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions, such as those associated with starvation, low temperatures, and biocides. Furthermore, cysteine proteases have been implicated in the massive turnover of intracellular components required for encystation. Thus, strict modulation of the activities of cysteine proteases is required to protect Acanthamoeba from intracellular damage. However, mechanisms underlying the control of protease activity during encystation have not been established in Acanthamoeba. In the present study, we identified and characterized Acanthamoeba cysteine protease inhibitor (AcStefin), which was found to be highly expressed during encystation and to be associated with lysosomes by fluorescence microscopy. Recombinant AcStefin inhibited various cysteine proteases, including human cathepsin B, human cathepsin L, and papain. Transfection with small interfering RNA against AcStefin increased cysteine protease activity during encystation and resulted in incomplete cyst formation, reduced excystation efficiency, and a significant reduction in cytoplasmic area. Taken together, these results indicate that AcStefin is involved in the modulation of cysteine proteases and that it plays an essential role during the encystation of Acanthamoeba.
Collapse
|
43
|
Hain AUP, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR, Graham DRM, Colquhoun DR, Coppens I, Bosch J. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J Struct Biol 2012; 180:551-62. [PMID: 22982544 DOI: 10.1016/j.jsb.2012.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 08/26/2012] [Accepted: 09/03/2012] [Indexed: 12/22/2022]
Abstract
The autophagy-related proteins are thought to serve multiple functions in Plasmodium and are considered essential to parasite survival and development. We have studied two key interacting proteins, Atg8 and Atg3, of the autophagy pathway in Plasmodium falciparum. These proteins are vital for the formation and elongation of the autophagosome and essential to the process of macroautophagy. Autophagy may be required for conversion of the sporozoite into erythrocytic-infective merozoites and may be crucial for other functions during asexual blood stages. Here we describe the identification of an Atg8 family interacting motif (AIM) in Plasmodium Atg3, which binds Plasmodium Atg8. We determined the co-crystal structure of PfAtg8 with a short Atg3¹⁰³⁻¹¹⁰ peptide, corresponding to this motif, to 2.2 Å resolution. Our in vitro interaction studies are in agreement with our X-ray crystal structure. Furthermore they suggest an important role for a unique Apicomplexan loop absent from human Atg8 homologues. Prevention of the protein-protein interaction of full length PfAtg8 with PfAtg3 was achieved at low micromolar concentrations with a small molecule, 1,2,3-trihydroxybenzene. Together our structural and interaction studies represent a starting point for future antimalarial drug discovery and design for this novel protein-protein interaction.
Collapse
Affiliation(s)
- Adelaide U P Hain
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kitamura K, Kishi-Itakura C, Tsuboi T, Sato S, Kita K, Ohta N, Mizushima N. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS One 2012; 7:e42977. [PMID: 22900071 PMCID: PMC3416769 DOI: 10.1371/journal.pone.0042977] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/16/2012] [Indexed: 01/24/2023] Open
Abstract
Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8). PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.
Collapse
Affiliation(s)
- Kei Kitamura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chieko Kishi-Itakura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takafumi Tsuboi
- Cell-Free Science and Technology Research Center and Venture Business Laboratory, Ehime University, Matsuyama, Ehime, Japan
| | - Shigeharu Sato
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (NO); (NM)
| | - Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (NO); (NM)
| |
Collapse
|
45
|
Song SM, Han BI, Moon EK, Lee YR, Yu HS, Jha BK, Danne DBS, Kong HH, Chung DI, Hong Y. Autophagy protein 16-mediated autophagy is required for the encystation of Acanthamoeba castellanii. Mol Biochem Parasitol 2012; 183:158-65. [DOI: 10.1016/j.molbiopara.2012.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 01/28/2023]
|
46
|
Moon EK, Chung DI, Hong Y, Kong HH. Atg3-mediated lipidation of Atg8 is involved in encystation of Acanthamoeba. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 49:103-8. [PMID: 21738264 PMCID: PMC3121065 DOI: 10.3347/kjp.2011.49.2.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/07/2011] [Accepted: 02/18/2011] [Indexed: 11/27/2022]
Abstract
Autophagy is a catabolic process involved in the degradation of a cell's own components for cell growth, development, homeostasis, and the recycling of cellular products. Autophagosome is an essential component in the protozoan parasite during differentiation and encystation. The present study identified and characterized autophagy-related protein (Atg) 3, a member of Atg8 conjugation system, in Acanthamoeba castellanii (AcAtg3). AcAtg3 encoding a 304 amino acid protein showed high similarity with the catalytic cysteine site of other E2 like enzymes of ubiquitin system. Predicted 3D structure of AcAtg3 revealed a hammer-like shape, which is the characteristic structure of E2-like enzymes. The expression level of AcAtg3 did not increase during encystation. However, the formation of mature cysts was significantly reduced in Atg3-siRNA transfected cells in which the production of Atg8-phosphatidylethanolamine conjugate was inhibited. Fluorescent microscopic analysis revealed that dispersed AcAtg3-EGFP fusion protein gathered around autophagosomal membranes during encystation. These results provide important information for understanding autophagic machinery through the lipidation reaction mediated by Atg3 in Acanthamoeba.
Collapse
Affiliation(s)
- Eun-Kyung Moon
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-721, Korea
| | | | | | | |
Collapse
|
47
|
Brennand A, Gualdrón-López M, Coppens I, Rigden DJ, Ginger ML, Michels PA. Autophagy in parasitic protists: Unique features and drug targets. Mol Biochem Parasitol 2011; 177:83-99. [DOI: 10.1016/j.molbiopara.2011.02.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/30/2011] [Accepted: 02/02/2011] [Indexed: 12/24/2022]
|
48
|
Duszenko M, Ginger ML, Brennand A, Gualdrón-López M, Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langsley G, de Castro SL, Menna-Barreto R, Mottram JC, Navarro M, Rigden DJ, Romano PS, Stoka V, Turk B, Michels PAM. Autophagy in protists. Autophagy 2011; 7:127-58. [PMID: 20962583 DOI: 10.4161/auto.7.2.13310] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.
Collapse
Affiliation(s)
- Michael Duszenko
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435. [PMID: 20959619 DOI: 10.1152/physrev.00030.2009] [Citation(s) in RCA: 1344] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakada-Tsukui K, Saito-Nakano Y, Husain A, Nozaki T. Conservation and function of Rab small GTPases in Entamoeba: annotation of E. invadens Rab and its use for the understanding of Entamoeba biology. Exp Parasitol 2010; 126:337-47. [PMID: 20434444 DOI: 10.1016/j.exppara.2010.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 04/19/2010] [Accepted: 04/19/2010] [Indexed: 12/25/2022]
Abstract
Entamoeba invadens is a reptilian enteric protozoan parasite closely related to the human pathogen Entamoeba histolytica and a good model organism of encystation. To understand the molecular mechanism of vesicular trafficking involved in the encystation of Entamoeba, we examined the conservation of Rab small GTPases between the two species. E. invadens has over 100 Rab genes, similar to E. histolytica. Most of the Rab subfamilies are conserved between the two species, while a number of species-specific Rabs are also present. We annotated all E. invadens Rabs according to the previous nomenclature [Saito-Nakano, Y., Loftus, B.J., Hall, N., Nozaki, T., 2005. The diversity of Rab GTPases in Entamoeba histolytica. Experimental Parasitology 110, 244-252]. Comparative genomic analysis suggested that the fundamental vesicular traffic machinery is well conserved, while there are species-specific protein transport mechanisms. We also reviewed the function of Rabs in Entamoeba, and proposed the use of the annotation of E. invadens Rab genes to understand the ubiquitous importance of Rab-mediated membrane trafficking during important biological processes including differentiation in Entamoeba.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|