1
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Santos DRDS, Bianco K, Clementino MBM, Dávila AMR, de Filippis I. Characterisation of Neisseria meningitidis cc11/ET-15 variant by whole genome sequencing. Mem Inst Oswaldo Cruz 2022; 117:e220118. [PMID: 36228280 PMCID: PMC9543360 DOI: 10.1590/0074-02760220118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neisseria meningitidis strains belonging to clonal complex 11 is the cause of numerous outbreaks and epidemics in the United States, Canada and Europe, accounting for 49.5% of cases of meningococcal disease caused by serogroup C worldwide. In Brazil, it is the second most frequent clonal complex within this serogroup. The genetic characterisation of cc11/ET-15 variants is important for the epidemiological monitoring of meningococcal disease, through the identification of circulating epidemic clones, to support specific actions of Health Surveillance aiming outbreaks control. OBJECTIVES The objective of this study was to identify features in the genome of cc11/ET-15 clones through whole-genome sequencing (WGS), that differ from cc11/non-ET-15 strains that could explain their virulence. METHODS The whole genome of three cc11/ET-15 representative strains were sequenced with a minimum coverage of 100X with the MiSeq System and compared to the genome of cc11/non-ET-15 strains. RESULTS Genome analysis of cc11/ET-15 variants showed the presence of resistance factors, mobile genetic elements and virulence factors not found in cc11/non-ET-15 strains. MAIN CONCLUSIONS Our results show that these strains carry virulence factors not identified in cc11/non-ET-15 strains, which could explain the high lethality rates attributed to this clone worldwide.
Collapse
Affiliation(s)
- Debora Ribeiro de Souza Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| | - Kayo Bianco
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil
| | | | | | - Ivano de Filippis
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Mousavi S, Bereswill S, Heimesaat MM. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020; 8:E482. [PMID: 32231139 PMCID: PMC7232424 DOI: 10.3390/microorganisms8040482] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
: Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment.
Collapse
|
4
|
Feldman C, Anderson R. Meningococcal pneumonia: a review. Pneumonia (Nathan) 2019; 11:3. [PMID: 31463180 PMCID: PMC6708554 DOI: 10.1186/s41479-019-0062-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although Neisseria meningitidis is one of the major causes of meningitis, meningococcal pneumonia is the most common non-neurological organ disease caused by this pathogen. Methods We conducted a review of the literature to describe the risk factors, pathogenesis, clinical features, diagnosis, treatment and prevention of meningococcal pneumonia. Results Meningococcal pneumonia was first described in 1907 and during the 1918–1919 influenza pandemic large numbers of cases of meningococcal pneumonia occurred in patients following the initial viral infection. A number of publications, mainly case series or case reports, has subsequently appeared in the literature. Meningococcal pneumonia occurs mainly with serogroups Y, W-135 and B. Risk factors for meningococcal pneumonia have not been well characterised, but appear to include older age, smoking, people living in close contact (e.g. military recruits and students at university), preceding viral and bacterial infections, haematological malignancies, chronic respiratory conditions and various other non-communicable and primary and secondary immunodeficiency diseases. Primary meningococcal pneumonia occurs in 5–10% of patients with meningococcal infection and is indistinguishable clinically from pneumonia caused by other common pathogens. Fever, chills and pleuritic chest pain are the most common symptoms, occurring in > 50% of cases. Productive sputum and dyspnoea are less common. Diagnosis of meningococcal pneumonia may be made by the isolation of the organism in sputum, blood, or normally sterile site cultures, but is likely to underestimate the frequency of meningococcal pneumonia. If validated, PCR-based techniques may be of value for diagnosis in the future. While penicillin was the treatment of choice for meningococcal infection, including pneumonia, prior to 1991, a third generation cephalosporin has been more commonly used thereafter, because of concerns of penicillin resistance. Chemoprophylaxis, using one of a number of antibiotics, has been recommended for close contacts of patients with meningococcal meningitis, and similar benefits may be seen in contacts of patients with meningococcal pneumonia. Effective vaccines are available for the prevention of infection with certain meningococcal serogroups, but this field is still evolving. Conclusion Meningococcal pneumonia occurs fairly frequently and should be considered as a possible cause of pneumonia, particularly in patients with specific risk factors.
Collapse
Affiliation(s)
- Charles Feldman
- 1Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- 2Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Mostowy RJ, Holt KE. Diversity-Generating Machines: Genetics of Bacterial Sugar-Coating. Trends Microbiol 2018; 26:1008-1021. [PMID: 30037568 PMCID: PMC6249986 DOI: 10.1016/j.tim.2018.06.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens and commensals are surrounded by diverse surface polysaccharides which include capsules and lipopolysaccharides. These carbohydrates play a vital role in bacterial ecology and interactions with the environment. Here, we review recent rapid advancements in this field, which have improved our understanding of the roles, structures, and genetics of bacterial polysaccharide antigens. Genetic loci encoding the biosynthesis of these antigens may have evolved as bacterial diversity-generating machines, driven by selection from a variety of forces, including host immunity, bacteriophages, and cell-cell interactions. We argue that the high adaptive potential of polysaccharide antigens should be taken into account in the design of polysaccharide-targeting medical interventions like conjugate vaccines and phage-based therapies.
Collapse
Affiliation(s)
- Rafał J Mostowy
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia; The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Zeng Z, Chen X, Yue H, He H, Ren Y, Tang C, Zhang B. The effect of rfaD and rfaF of Haemophilus parasuis on lipooligosaccharide induced inflammation by NF-κB/MAPKs signaling in porcine alveolar macrophages. J Vet Med Sci 2018; 80:842-845. [PMID: 29628479 PMCID: PMC5989033 DOI: 10.1292/jvms.16-0586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Haemophilus parasuis, the rfa cluster has been identified as a virulence-associated factor that is involved in lipooligosaccharide (LOS) biosynthesis.
In this study, we assessed the roles of rfaD and rfaF genes in H. parasuis SC096 on LOS-induced pro-inflammatory factors and the related
signaling pathways in porcine alveolar macrophages (PAMs) by real-time PCR and western blotting. The results showed that the LOSs of both rfaD and rfaF
mutants (ΔrfaD-LOS and ΔrfaF-LOS) significantly decreased the mRNA expression of pro-inflammatory factors (IL-1α, IL-1β, IL-6, IL-8 and TNF-α) in PAMs
compared with H. parasuis SC096 LOS (WT-LOS). Furthermore, in ΔrfaD-LOS- and ΔrfaF-LOS-treated cells, IκBα degradation was significantly
inhibited and levels of phospho-p65 and phospho-p38 were significantly reduced in PAMs. These findings suggested that the rfaD and rfaF genes mediated LOS
induction of pro-inflammatory cytokines in PAMs by regulating the NF-κB and MAPKs signaling pathways during H. parasuis infection.
Collapse
Affiliation(s)
- Ze Zeng
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Xinnuo Chen
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Huan He
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Yupeng Ren
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Bin Zhang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| |
Collapse
|
7
|
Dick J, Hebling S, Becam J, Taha MK, Schubert-Unkmeir A. Comparison of the inflammatory response of brain microvascular and peripheral endothelial cells following infection with Neisseria meningitidis. Pathog Dis 2018; 75:3098218. [PMID: 28379411 DOI: 10.1093/femspd/ftx038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
The interaction of Neisseria meningitidis with both peripheral and brain endothelial cells is a critical event in the development of invasive meningococcal disease. In this study, we used in vitro models based on human brain microvascular endothelial cells (HBMEC), and peripheral endothelial EA.hy926 cells, to investigate their roles in the inflammatory response towards meningococcal infection. Both cell lines were infected with two pathogenic N. meningitidis isolates and secretion of the cytokine interleukin-6 (IL-6), the CXC chemokine IL-8 and the monocyte chemoattractant protein-1 (MCP-1) were estimated by ELISA. Neisseria meningitidis was able to stimulate the production of IL-6 and IL-8 by HBMEC and EA.hy926 cells in a time- and concentration-dependent manner. Interestingly, HBMEC released significant higher amounts of IL-6 and IL-8. Moreover, we observed that heat-killed bacteria stimulated high levels of IL-8. In addition, capsule expression had an inhibitory effect on IL-8 release. We extended our study and included serogroup C strains belonging to sequence type 11 clonal complex (cc) from a recent outbreak in France, as well as isolates belonging to the hypervirulent clonal complexes cc8, cc18, cc32 and cc269 and analyzed their ability to induce the secretion of IL-8 from both cell lines. Although individual variations were observed among different isolates, no clear correlations were observed between strain origin, clinical presentation and IL-8 levels.
Collapse
Affiliation(s)
- Julia Dick
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Sabrina Hebling
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Jérôme Becam
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unit of Invasive Bacterial Infections, Paris 75015, France
| | | |
Collapse
|
8
|
Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:416-34. [PMID: 26076386 DOI: 10.1089/omi.2015.0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (∼35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Krishna Bisetty
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Faizan Ahmad
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
9
|
Huang L, Ma L, Fan K, Li Y, Xie L, Xia W, Gu B, Liu G. Necrotizing pneumonia and empyema caused by Neisseria flavescens infection. J Thorac Dis 2014; 6:553-7. [PMID: 24822118 DOI: 10.3978/j.issn.2072-1439.2014.02.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/26/2014] [Indexed: 11/14/2022]
Abstract
Neisseria flavescens is an uncommon pathogen of human infection, pneumonia and empyema caused by N. flavescens is rarely reported. Herein, we report a 56-year-old diabetic patient presenting necrotising pneumonia and empyema due to N. flavescens infection. The main clinical manifestation of this patient was high fever, sticky pus and gradually aggravating dyspnea. The chest computed tomography (CT) scan showed there are mass of high density areas around hilus of the left lung, hollow sign with inflammation also appeared. A biopsy specimen was taken from the left principal bronchus by lung puncture biopsy and showed necrosis and inflammation. Microscopic examination of direct smear and culture of sticky pus, much more gram-negative diplococcus was present, pathogen was further identified by Vitek NH card, Vitek MS and confirmed as N. flavescens by 16S rRNA gene sequencing finally. Anti-infection therapy following the antimicrobial susceptibility test results was effectively. To our knowledge, this is the first report of pulmonary infection caused by N. flavescens.
Collapse
Affiliation(s)
- Ling Huang
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Lan Ma
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Kun Fan
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Yang Li
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Le Xie
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Wenying Xia
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Bing Gu
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Genyan Liu
- 1 Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 2 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing 210003, China ; 3 Department of Laboratory Medicine, Gaochun People's Hospital of Nanjing, Nanjing 211300, China ; 4 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| |
Collapse
|
10
|
Zarantonelli ML, Skoczynska A, Antignac A, El Ghachi M, Deghmane AE, Szatanik M, Mulet C, Werts C, Peduto L, d'Andon MF, Thouron F, Nato F, Lebourhis L, Philpott DJ, Girardin SE, Vives FL, Sansonetti P, Eberl G, Pedron T, Taha MK, Boneca IG. Penicillin resistance compromises Nod1-dependent proinflammatory activity and virulence fitness of neisseria meningitidis. Cell Host Microbe 2013; 13:735-45. [PMID: 23768497 DOI: 10.1016/j.chom.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 03/05/2013] [Accepted: 04/30/2013] [Indexed: 12/12/2022]
Abstract
Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains.
Collapse
|
11
|
Zughaier SM. Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol 2010; 89:469-80. [PMID: 21191086 DOI: 10.1189/jlb.0610369] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CPS are major virulence factors in infections caused by Neisseria meningitidis and form the basis for meningococcal serogroup designation and protective meningococcal vaccines. CPS polymers are anchored in the meningococcal outer membrane through a 1,2-diacylglycerol moiety, but the innate immunostimulatory activity of CPS is largely unexplored. Well-established human and murine macrophage cell lines and HEK/TLR stably transfected cells were stimulated with CPS, purified from an endotoxin-deficient meningococcal serogroup B NMB-lpxA mutant. CPS induced inflammatory responses via TLR2- and TLR4-MD-2. Meningococcal CPS induced a dose-dependent release of cytokines (TNF-α, IL-6, IL-8, and CXCL10) and NO from human and murine macrophages, respectively. CPS induced IL-8 release from HEK cells stably transfected with TLR2/6, TLR2, TLR2/CD14, and TLR4/MD-2/CD14 but not HEK cells alone. mAb to TLR2 but not an isotype control antibody blocked CPS-induced IL-8 release from HEK-TLR2/6-transfected cells. A significant reduction in TNF-α and IL-8 release was seen when THP-1- and HEK-TLR4/MD-2-CD14- but not HEK-TLR2- or HEK-TLR2/6-transfected cells were stimulated with CPS in the presence of Eritoran (E5564), a lipid A antagonist that binds to MD-2, and a similar reduction in NO and TNF-α release was also seen in RAW 264.7 cells in the presence of Eritoran. CD14 and LBP enhanced CPS bioactivity, and NF-κB was, as anticipated, the major signaling pathway. Thus, these data suggest that innate immune recognition of meningococcal CPS by macrophages can occur via TLR2- and TLR4-MD-2 pathways.
Collapse
Affiliation(s)
- Susu M Zughaier
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
12
|
Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J Bacteriol 2010; 192:2182-92. [PMID: 20139192 DOI: 10.1128/jb.01222-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Campylobacter jejuni is a highly prevalent human pathogen for which pathogenic and stress survival strategies remain relatively poorly understood. We previously found that a C. jejuni strain 81-176 mutant defective for key virulence and stress survival attributes was also hyper-biofilm and hyperreactive to the UV fluorescent dye calcofluor white (CFW). We hypothesized that screening for CFW hyperreactive mutants would identify additional genes required for C. jejuni pathogenesis properties. Surprisingly, two such mutants harbored lesions in lipooligosaccharide (LOS) genes (waaF and lgtF), indicating a complete loss of the LOS outer core region. We utilized this as an opportunity to explore the role of each LOS core-specific moiety in the pathogenesis and stress survival of this strain and thus also constructed DeltagalT and DeltacstII mutants with more minor LOS truncations. Interestingly, we found that mutants lacking the LOS outer core (DeltawaaF and DeltalgtF but not DeltagalT or DeltacstII mutants) exhibited enhanced biofilm formation. The presence of the complete outer core was also necessary for resistance to complement-mediated killing. In contrast, any LOS truncation, even that of the terminal sialic acid (DeltacstII), resulted in diminished resistance to polymyxin B. The cathelicidin LL-37 was found to be active against C. jejuni, with the LOS mutants exhibiting modest but tiled alterations in LL-37 sensitivity. The DeltawaaF mutant but not the other LOS mutant strains also exhibited a defect in intraepithelial cell survival, an aspect of C. jejuni pathogenesis that has only recently begun to be clarified. Finally, using a mouse competition model, we now provide the first direct evidence for the importance of the C. jejuni LOS in host colonization. Collectively, this study has uncovered novel roles for the C. jejuni LOS, highlights the dynamic nature of the C. jejuni cell envelope, and provides insight into the contribution of specific LOS core moieties to stress survival and pathogenesis.
Collapse
|
13
|
Lello J, Hussell T. Functional group/guild modelling of inter-specific pathogen interactions: a potential tool for predicting the consequences of co-infection. Parasitology 2008; 135:825-39. [PMID: 18477416 DOI: 10.1017/s0031182008000383] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although co-infection is the norm in most human and animal populations, clinicians currently have no practical tool to assist them in choosing the best treatment strategy for such patients. Given the vast range of potential pathogens which may co-infect the host, obtaining such a practical tool may seem an intractable problem. In ecology the joint concepts of functional groups and guilds have been used to conceptually simplify complex ecosystems, in order to understand how their component parts interact and may be manipulated. Here we propose a mechanism by which to apply these concepts to pathogen co-infection systems. Further, we describe how these groups could be incorporated into a mathematical modelling framework which, after validation, could be used as a clinical tool to predict the outcome of any particular combination of pathogens co-infecting a host.
Collapse
Affiliation(s)
- J Lello
- School of Biosciences, Cardiff University, Biomedical Sciences Building, Museum Avenue, Cardiff, CF10 3US.
| | | |
Collapse
|