1
|
Nguyen TTT, Shahin K, Allan B, Sarfraz M, Wheler C, Gerdts V, Köster W, Dar A. Enhancement of protective efficacy of innate immunostimulant based formulations against yolk sac infection in young chicks. Poult Sci 2022; 101:102119. [PMID: 36087444 PMCID: PMC9468504 DOI: 10.1016/j.psj.2022.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to characterize and compare the protective effects of various innate immune stimulants against yolk sac infection (YSI) caused by an avian pathogenic Escherichia coli in young chicks. The immune stimulants were administered alone or in various combinations of unmethylated CpG oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (Poly I:C), and avian antimicrobial peptides (AMPs). Routes included in ovo or in ovo followed by a subcutaneous (S/C) injection. CpG alone and in combination with Poly I:C, truncated avian cathelicidin (CATH)-1(6-26), avian beta defensin (AvBD)1, and CATH-1(6-26) + AvBD1, were administered in ovo to 18-day-old embryonated eggs for gene expression and challenge studies. Next, CpG alone and the potentially effective formulation of CpG + Poly I:C, were administrated via the in ovo route using 40 embryonated eggs. At 1 day post-hatch, half of each group also received their respective treatments via the S/C route. Four hours later, all chicks were challenged using E. coli strain EC317 and mortalities were recorded for 14 d. The first challenge study revealed that amongst the single use and combinations of CpG with different innate immune stimulants, a higher protection and a lower clinical score were offered by the combination of CpG + Poly I:C. The second challenge study showed that this combination (CpG + Poly I:C) provides an even higher level of protection when a second dose is administered via the S/C route at 1 day post-hatch. The current research highlights the efficacy of a combination of CpG + Poly I:C administered either in ovo or in ovo along with a S/C injection and its potential use as an alternative to antibiotics against yolk sac infection in young chicks.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada.
| | - Khalid Shahin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Mishal Sarfraz
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Arshud Dar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| |
Collapse
|
2
|
Varma DM, Zahid MSH, Bachelder EM, Ainslie KM. Formulation of host-targeted therapeutics against bacterial infections. Transl Res 2020; 220:98-113. [PMID: 32268128 PMCID: PMC10132281 DOI: 10.1016/j.trsl.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/23/2022]
Abstract
The global burden of bacterial infections is rising due to increasing resistance to the majority of first-line antibiotics, rendering these drugs ineffective against several clinically important pathogens. Limited transport of antibiotics into cells compounds this problem for gram-negative bacteria that exhibit prominent intracellular lifecycles. Furthermore, poor bioavailability of antibiotics in infected tissues necessitates higher doses and longer treatment regimens to treat resistant infections. Although emerging antibiotics can combat these problems, resistance still may develop over time. Expanding knowledge of host-pathogen interactions has inspired research and development of host-directed therapies (HDTs). HDTs target host-cell machinery critical for bacterial pathogenesis to treat bacterial infections alone or as adjunctive treatment with traditional antibiotics. Unlike traditional antibiotics that directly affect bacteria, a majority of HDTs function by boosting the endogenous antimicrobial activity of cells and are consequently less prone to bacterial tolerance induced by selection pressure. Therefore, HDTs can be quite effective against intracellular cytosolic or vacuolar bacteria, which a majority of traditional antibiotics are unable to eradicate. However, in vivo therapeutic efficacy of HDTs is reliant on adequate bioavailability. Particle-based formulations demonstrate the potential to enable targeted drug delivery, enhance cellular uptake, and increase drug concentration in the host cell of HDTs. This review selected HDTs for clinically important pathogens, identifies formulation strategies that can improve their therapeutic efficacy and offers insights toward further development of HDTs for bacterial infections.
Collapse
Affiliation(s)
- Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
3
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
4
|
Allan B, Wheler C, Köster W, Sarfraz M, Potter A, Gerdts V, Dar A. In Ovo Administration of Innate Immune Stimulants and Protection from Early Chick Mortalities due to Yolk Sac Infection. Avian Dis 2019; 62:316-321. [PMID: 30339510 DOI: 10.1637/11840-041218-reg.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Omphalitis or yolk sac infection (YSI) and colibacillosis are the most common infectious diseases that lead to high rates of early chick mortalities (ECMs) in young chicks. Out of numerous microbial causes, avian pathogenic Escherichia coli (APEC) or extraintestinal pathogenic E. coli infections are considered the most common cause of these conditions. YSI causes deterioration and decomposition of yolk, leading to deficiency of necessary nutrients and maternal antibodies, retarded growth, poor carcass quality, and increased susceptibility to other infections, including omphalitis, colibacillosis, and respiratory tract infection. Presently, in ovo injection of antibiotics, heavy culling, or after hatch use of antibiotics is practiced to manage ECM. However, increased antibiotic resistance and emergence of "super bugs" associated with use or misuse of antibiotics in the animal industry have raised serious concerns. These concerns urgently require a focus on host-driven nonantibiotic approaches for stimulation of protective antimicrobial immunity. Using an experimental YSI model in newborn chicks, we evaluated the prophylactic potential of three in ovo-administered innate immune stimulants and immune adjuvants for protection from ECM due to YSI. Our data have shown >80%, 65%, and 60% survival with in ovo use of cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotides (ODN), polyinosinic:polycytidylic acid, and polyphosphazene, respectively. In conclusion, data from these studies suggest that in ovo administration of CpG ODN may serve as a potential candidate for replacement of antibiotics for the prevention and control of ECM due to YSI in young chicks.
Collapse
Affiliation(s)
- Brenda Allan
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Colette Wheler
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Wolfgang Köster
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Mishal Sarfraz
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Andy Potter
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Volker Gerdts
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Arshud Dar
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| |
Collapse
|
5
|
Sharma D, Malik A, Packiriswamy N, Steury MD, Parameswaran N. Poly(I:C) Priming Exacerbates Cecal Ligation and Puncture-Induced Polymicrobial Sepsis in Mice. Inflammation 2018; 41:328-336. [PMID: 29127663 DOI: 10.1007/s10753-017-0690-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis continues to be a major healthcare issue with one of the highest mortality rates in intensive care units. Toll-like receptors are pattern recognition receptors that are intricately involved in the pathogenesis of sepsis. TLR3 is a major receptor for double-stranded RNA and is largely associated with immunity to viral infection. In this study, we examined the role of TLR3 priming in the immunopathology of sepsis using cecal-ligation and puncture (CLP) model of sepsis in mice. Mice injected with vehicle or poly(I:C) were subjected to sham or CLP surgery and various parameters of sepsis, including mortality, inflammation, and bacterial clearance were assessed. Poly(I:C) pre-treatment significantly enhanced mortality in mice subjected to CLP. Consistent with this, inflammatory cytokines including TNFα, IL-12p40, IFNγ, and MCP-1 were enhanced both systemically and locally in the poly(I:C)-treated group compared to the vehicle control. In addition, bacterial load was significantly higher in the poly(I:C)-treated septic mice. These changes were associated with reduced macrophage activation (but not neutrophils) in the peritoneal cavity of poly(I:C) pre-treated mice compared to vehicle pre-treatment. Together our results demonstrate that poly(I:C) priming in sepsis is likely to be detrimental to the host due to effects on systemic inflammatory cytokines and bacterial clearance.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Physiology, Michigan State University, 567 Wilson Road, #2201 Biomedical Physical Sci. Bldg, East Lansing, MI, 48824, USA
| | - Ankit Malik
- Department of Physiology, Michigan State University, 567 Wilson Road, #2201 Biomedical Physical Sci. Bldg, East Lansing, MI, 48824, USA
| | - Nandakumar Packiriswamy
- Department of Physiology, Michigan State University, 567 Wilson Road, #2201 Biomedical Physical Sci. Bldg, East Lansing, MI, 48824, USA
| | - Michael D Steury
- Department of Physiology, Michigan State University, 567 Wilson Road, #2201 Biomedical Physical Sci. Bldg, East Lansing, MI, 48824, USA
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, 567 Wilson Road, #2201 Biomedical Physical Sci. Bldg, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Cystatins 9 and C as a Novel Immunotherapy Treatment That Protects against Multidrug-Resistant New Delhi Metallo-Beta-Lactamase-1-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2018; 62:AAC.01900-17. [PMID: 29229643 PMCID: PMC5826106 DOI: 10.1128/aac.01900-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Multidrug-resistant (MDR) bacterial pneumonia can induce dysregulated pulmonary and systemic inflammation leading to morbidity and mortality. Antibiotics to treat MDR pathogens do not function to modulate the extent and intensity of inflammation and can have serious side effects. Here we evaluate the efficacy of two human cysteine proteinase inhibitors, cystatin 9 (CST9) and cystatin C (CSTC), as a novel immunotherapeutic treatment to combat MDR New Delhi metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae. Our results showed that mice infected intranasally (i.n.) with a 90% lethal dose (LD90) challenge of NDM-1 K. pneumoniae and then treated with the combination of human recombinant CST9 (rCST9) and rCSTC (rCSTs; 50 pg of each i.n. at 1 h postinfection [p.i.] and/or 500 pg of each intraperitoneally [i.p.] at 3 days p.i.) had significantly improved survival compared to that of infected mice alone or infected mice treated with individual rCSTs (P < 0.05). Results showed that both of our optimal rCST treatment regimens modulated pulmonary and systemic proinflammatory cytokine secretion in the serum, lungs, liver, and spleen in infected mice (P < 0.05). Treatment also significantly decreased the bacterial burden (P < 0.05) while preserving lung integrity, with reduced inflammatory cell accumulation compared to that in infected mice. Further, rCST treatment regimens reduced lipid peroxidation and cell apoptosis in the lungs of infected mice. Additionally, in vitro studies showed that rCSTs (50 or 500 pg of each) directly decreased the viability of NDM-1 K. pneumoniae. In conclusion, the data showed that rCST9/rCSTC worked synergistically to modulate host inflammation against MDR NDM-1 K. pneumoniae pneumonia, which significantly improved survival. Therefore, rCST9/rCSTC is a promising therapeutic candidate for the treatment of bacterial pneumonia.
Collapse
|
7
|
Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol 2018; 11:21-34. [PMID: 28812547 PMCID: PMC5738267 DOI: 10.1038/mi.2017.71] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Lung epithelial cells are increasingly recognized to be active effectors of microbial defense, contributing to both innate and adaptive immune function in the lower respiratory tract. As immune sentinels, lung epithelial cells detect diverse pathogens through an ample repertoire of membrane-bound, endosomal, and cytosolic pattern-recognition receptors (PRRs). The highly plastic epithelial barrier responds to detected threats via modulation of paracellular flux, intercellular communications, mucin production, and periciliary fluid composition. Epithelial PRR stimulation also induces production of cytokines that recruit and sculpt leukocyte-mediated responses, and promotes epithelial generation of antimicrobial effector molecules that are directly microbicidal. The epithelium can alternately enhance tolerance to pathogens, preventing tissue damage through PRR-induced inhibitory signals, opsonization of pathogen-associated molecular patterns, and attenuation of injurious leukocyte responses. The inducibility of these protective responses has prompted attempts to therapeutically harness epithelial defense mechanisms to protect against pneumonias. Recent reports describe successful strategies for manipulation of epithelial defenses to protect against a wide range of respiratory pathogens. The lung epithelium is capable of both significant antimicrobial responses that reduce pathogen burdens and tolerance mechanisms that attenuate immunopathology. This manuscript reviews inducible lung epithelial defense mechanisms that offer opportunities for therapeutic manipulation to protect vulnerable populations against pneumonia.
Collapse
Affiliation(s)
- Miguel M. Leiva-Juárez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
8
|
Saint RJ, D'Elia RV, Bryant C, Clark GC, Atkins HS. Mitogen-activated protein kinases (MAPKs) are modulated during Francisella tularensis infection, but inhibition of extracellular-signal-regulated kinases (ERKs) is of limited therapeutic benefit. Eur J Clin Microbiol Infect Dis 2016; 35:2015-2024. [PMID: 27714591 PMCID: PMC5138274 DOI: 10.1007/s10096-016-2754-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
Francisella tularensis is a Gram-negative intracellular bacterium that causes the disease tularemia. The disease can be fatal if left untreated and there is currently no licenced vaccine available; the identification of new therapeutic targets is therefore required. Toll-like receptors represent an interesting target for therapeutic modulation due to their essential role in generating immune responses. In this study, we analysed the in vitro expression of the key mitogen-activated protein kinases (MAPKs) p38, JNK and ERK in murine alveolar macrophages during infection with F. tularensis. The phosphorylation profile of ERK highlighted its potential as a target for therapeutic modulation and subsequently the effect of ERK manipulation was measured in a lethal intranasal F. tularensis in vivo model of infection. The selective ERK1/2 inhibitor PD0325901 was administered orally to mice either pre- or post-challenge with F. tularensis strain LVS. Both treatment regimens selectively reduced ERK expression, but only the pre-exposure treatment produced decreased bacterial burden in the spleen and liver, which correlated with a significant reduction in the pro-inflammatory cytokines IFN-γ, MCP-1, IL-6, and TNF-α. However, no overall improvements in survival were observed for treated animals in this study. ERK may represent a useful therapeutic target where selective dampening of the immune response (to control the damaging pathology seen during infection) is combined with antibiotic treatment required to eradicate bacterial infection. This combination treatment strategy has been shown to be effective in other models of tularemia.
Collapse
Affiliation(s)
- R J Saint
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - R V D'Elia
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - C Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - G C Clark
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - H S Atkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.,University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Periasamy S, Avram D, McCabe A, MacNamara KC, Sellati TJ, Harton JA. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia. PLoS Pathog 2016; 12:e1005517. [PMID: 27015566 PMCID: PMC4807818 DOI: 10.1371/journal.ppat.1005517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.
Collapse
Affiliation(s)
- Sivakumar Periasamy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Katherine C. MacNamara
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jonathan A. Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ruiz J, Kanagavelu S, Flores C, Romero L, Riveron R, Shih DQ, Fukata M. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine. Front Cell Infect Microbiol 2016; 5:105. [PMID: 26793623 PMCID: PMC4710052 DOI: 10.3389/fcimb.2015.00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr−1hi cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.
Collapse
Affiliation(s)
- Jose Ruiz
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Saravana Kanagavelu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA
| | - Claudia Flores
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute Los Angeles, CA, USA
| | - Laura Romero
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Reldy Riveron
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - David Q Shih
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Masayuki Fukata
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA; Department of Cell Biology, University of Miami Miller School of MedicineMiami, FL, USA; Department of Biomedical Science, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
11
|
Collier MA, Peine KJ, Gautam S, Oghumu S, Varikuti S, Borteh H, Papenfuss TL, Sataoskar AR, Bachelder EM, Ainslie KM. Host-mediated Leishmania donovani treatment using AR-12 encapsulated in acetalated dextran microparticles. Int J Pharm 2016; 499:186-194. [PMID: 26768723 DOI: 10.1016/j.ijpharm.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a disease caused by parasites of Leishmania sp., which effects nearly 12 million people worldwide and is associated with treatment complications due to widespread parasite resistance toward pathogen-directed therapeutics. The current treatments for visceral leishmaniasis (VL), the systemic form of the disease, involve pathogen-mediated drugs and have long treatment regimens, increasing the risk of forming resistant strains. One way to limit emergence of resistant pathogens is through the use of host-mediated therapeutics. The host-mediated therapeutic AR-12, which is FDA IND-approved for cancer treatment, has shown activity against a broad spectrum of intracellular pathogens; however, due to hydrophobicity and toxicity, it is difficult to reach therapeutic doses. We have formulated AR-12 into microparticles (AR-12/MPs) using the novel biodegradable polymer acetalated dextran (Ace-DEX) and used this formulation for the systemic treatment of VL. Treatment with AR-12/MPs significantly reduced liver, spleen, and bone marrow parasite loads in infected mice, while combinatorial therapies with amphotericin B had an even more significant effect. Overall, AR-12/MPs offer a unique, host-mediated therapy that could significantly reduce the emergence of drug resistance in the treatment of VL.
Collapse
Affiliation(s)
- M A Collier
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - K J Peine
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - S Gautam
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - S Oghumu
- Department of Pathology, The Ohio State's Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - S Varikuti
- Department of Pathology, The Ohio State's Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - H Borteh
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - T L Papenfuss
- Department of Pathology, The Ohio State's Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - A R Sataoskar
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - E M Bachelder
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - K M Ainslie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
12
|
FTT0831c/FTL_0325 contributes to Francisella tularensis cell division, maintenance of cell shape, and structural integrity. Infect Immun 2014; 82:2935-48. [PMID: 24778115 DOI: 10.1128/iai.00102-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Francisella FTT0831c/FTL_0325 gene encodes amino acid motifs to suggest it is a lipoprotein and that it may interact with the bacterial cell wall as a member of the OmpA-like protein family. Previous studies have suggested that FTT0831c is surface exposed and required for virulence of Francisella tularensis by subverting the host innate immune response (M. Mahawar et al., J. Biol. Chem. 287:25216-25229, 2012). We also found that FTT0831c is required for murine pathogenesis and intramacrophage growth of Schu S4, but we propose a different model to account for the proinflammatory nature of the resultant mutants. First, inactivation of FTL_0325 from live vaccine strain (LVS) or FTT0831c from Schu S4 resulted in temperature-dependent defects in cell viability and morphology. Loss of FTT0831c was also associated with an unusual defect in lipopolysaccharide O-antigen synthesis, but loss of FTL_0325 was not. Full restoration of these properties was observed in complemented strains expressing FTT0831c in trans, but not in strains lacking the OmpA motif, suggesting that cell wall contact is required. Finally, growth of the LVS FTL_0325 mutant in Mueller-Hinton broth at 37°C resulted in the appearance of membrane blebs at the poles and midpoint, prior to the formation of enlarged round cells that showed evidence of compromised cellular membranes. Taken together, these data are more consistent with the known structural role of OmpA-like proteins in linking the OM to the cell wall and, as such, maintenance of structural integrity preventing altered surface exposure or release of Toll-like receptor 2 agonists during rapid growth of Francisella in vitro and in vivo.
Collapse
|
13
|
Boisset S, Caspar Y, Sutera V, Maurin M. New therapeutic approaches for treatment of tularaemia: a review. Front Cell Infect Microbiol 2014; 4:40. [PMID: 24734221 PMCID: PMC3975101 DOI: 10.3389/fcimb.2014.00040] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/13/2014] [Indexed: 12/23/2022] Open
Abstract
Antibiotic treatment of tularaemia is based on a few drugs, including the fluoroquinolones (e.g., ciprofloxacin), the tetracyclines (e.g., doxycycline), and the aminoglycosides (streptomycin and gentamicin). Because no effective and safe vaccine is currently available, tularaemia prophylaxis following proven exposure to F. tularensis also relies on administration of antibiotics. A number of reasons make it necessary to search for new therapeutic alternatives: the potential toxicity of first-line drugs, especially in children and pregnant women; a high rate of treatment relapses and failures, especially for severe and/or suppurated forms of the disease; and the possible use of antibiotic-resistant strains in the context of a biological threat. This review presents novel therapeutic approaches that have been explored in recent years to improve tularaemia patients' management and prognosis. These new strategies have been evaluated in vitro, in axenic media and cell culture systems and/or in animal models. First, the activities of newly available antibiotic compounds were evaluated against F. tularensis, including tigecycline (a glycylcycline), ketolides (telithromycin and cethromycin), and fluoroquinolones (moxifloxacin, gatifloxacin, trovafloxacin and grepafloxacin). The liposome delivery of some antibiotics was evaluated. The effect of antimicrobial peptides against F. tularensis was also considered. Other drugs were evaluated for their ability to suppress the intracellular multiplication of F. tularensis. The effects of the modulation of the innate immune response (especially via TLR receptors) on the course of F. tularensis infection was characterized. Another approach was the administration of specific antibodies to induce passive resistance to F. tularensis infection. All of these studies highlight the need to develop new therapeutic strategies to improve the management of patients with tularaemia. Many possibilities exist, some unexplored. Moreover, it is likely that new therapeutic alternatives that are effective against this intracellular pathogen could be, at least partially, extrapolated to other human pathogens.
Collapse
Affiliation(s)
- Sandrine Boisset
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| | - Yvan Caspar
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| | - Vivien Sutera
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| | - Max Maurin
- Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU de Grenoble Grenoble, France ; Université Joseph Fourier-Grenoble 1 Grenoble, France ; Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS/UJF, UMR 5163 Grenoble, France
| |
Collapse
|
14
|
Collier MA, Gallovic MD, Peine KJ, Duong AD, Bachelder EM, Gunn JS, Schlesinger LS, Ainslie KM. Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Rev Anti Infect Ther 2013; 11:1225-35. [PMID: 24134600 DOI: 10.1586/14787210.2013.845524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intracellular pathogens present a major health risk because of their innate ability to evade clearance. Their location within host cells and ability to react to the host environment by mutation or transcriptional changes often enables survival mechanisms to resist standard therapies. Host-directed drugs do not target the pathogen, minimizing the potential development of drug resistance; however, they can be difficult to deliver efficiently to intracellular sites. Vehicle delivery of host-mediated response drugs not only improves drug distribution and toxicity profiles, but can reduce the total amount of drug necessary to clear infection. In this article, we will review some host-directed drugs and current drug delivery techniques that can be used to efficiently clear intracellular infections.
Collapse
Affiliation(s)
- Michael A Collier
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Helbig ET, Opitz B, Sander LE. Adjuvant immunotherapies as a novel approach to bacterial infections. Immunotherapy 2013; 5:365-81. [PMID: 23557420 DOI: 10.2217/imt.13.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The rapid emergence of multidrug-resistant pathogens, especially Gram-negative bacteria and mycobacteria, represents one of the major medical challenges of the 21st century. The gradual loss of effective classical antibiotics for many bacterial pathogens, combined with an increasing population density and mobility, urgently calls for the development of novel treatments. Here, we discuss the potential of adjuvant immunotherapies to selectively stimulate protective immune responses as a treatment option for bacterial infections. In order to elicit appropriate immune responses and to avoid unwanted inflammatory tissue damage, it is essential to identify ligands and receptor pathways that specifically control protective responses at the site of infection. We summarize existing data and discuss suitable candidate targets for future immunotherapies of infectious diseases.
Collapse
Affiliation(s)
- Elisa T Helbig
- Department of Infectious Diseases & Pulmonary Medicine, Charité University Hospital, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | |
Collapse
|
16
|
Eaves-Pyles T, Patel J, Arigi E, Cong Y, Cao A, Garg N, Dhiman M, Pyles RB, Arulanandam B, Miller AL, Popov VL, Soong L, Carlsen ED, Coletta C, Szabo C, Almeida IC. Immunomodulatory and antibacterial effects of cystatin 9 against Francisella tularensis. Mol Med 2013; 19:263-75. [PMID: 23922243 DOI: 10.2119/molmed.2013.00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/26/2022] Open
Abstract
Cystatin 9 (CST9) is a member of the type 2 cysteine protease inhibitor family, which has been shown to have immunomodulatory effects that restrain inflammation, but its functions against bacterial infections are unknown. Here, we report that purified human recombinant (r)CST9 protects against the deadly bacterium Francisella tularensis (Ft) in vitro and in vivo. Macrophages infected with the Ft human pathogen Schu 4 (S4), then given 50 pg of rCST9 exhibited significantly decreased intracellular bacterial replication and increased killing via preventing the escape of S4 from the phagosome. Further, rCST9 induced autophagy in macrophages via the regulation of the mammalian target of rapamycin (mTOR) signaling pathways. rCST9 promoted the upregulation of macrophage proteins involved in antiinflammation and antiapoptosis, while restraining proinflammatory-associated proteins. Interestingly, the viability and virulence of S4 also was decreased directly by rCST9. In a mouse model of Ft inhalation, rCST9 significantly decreased organ bacterial burden and improved survival, which was not accompanied by excessive cytokine secretion or subsequent immune cell migration. The current report is the first to show the immunomodulatory and antimicrobial functions of rCST9 against Ft. We hypothesize that the attenuation of inflammation by rCST9 may be exploited for therapeutic purposes during infection.
Collapse
Affiliation(s)
- Tonyia Eaves-Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
18
|
Flick-Smith HC, Fox MA, Hamblin KA, Richards MI, Jenner DC, Laws TR, Phelps AL, Taylor C, Harding SV, Ulaeto DO, Atkins HS. Assessment of antimicrobial peptide LL-37 as a post-exposure therapy to protect against respiratory tularemia in mice. Peptides 2013; 43:96-101. [PMID: 23500517 DOI: 10.1016/j.peptides.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 11/20/2022]
Abstract
Early activation of the innate immune response is important for protection against infection with Francisella tularensis live vaccine strain (LVS) in mice. The human cathelicidin antimicrobial peptide LL-37 is known to have immunomodulatory properties, and therefore exogenously administered LL-37 may be suitable as an early post-exposure therapy to protect against LVS infection. LL-37 has been evaluated for immunostimulatory activity in uninfected mice and for activity against LVS in macrophage assays and protective efficacy when administered post-challenge in a mouse model of respiratory tularemia. Increased levels of pro-inflammatory cytokine IL-6, chemokines monocyte chemoattractant protein 1 (MCP-1) and CXCL1 with increased neutrophil influx into the lungs were observed in uninfected mice after intranasal administration of LL-37. Following LVS challenge, LL-37 administration resulted in increased IL-6, IL-12 p70, IFNγ and MCP-1 production, a slowing of LVS growth in the lung, and a significant extension of mean time to death compared to control mice. However, protection was transient, with the LL-37 treated mice eventually succumbing to infection. As this short course of nasally delivered LL-37 was moderately effective at overcoming the immunosuppressive effects of LVS infection this suggests that a more sustained treatment regimen may be an effective therapy against this pathogen.
Collapse
Affiliation(s)
- Helen C Flick-Smith
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kdo hydrolase is required for Francisella tularensis virulence and evasion of TLR2-mediated innate immunity. mBio 2013; 4:e00638-12. [PMID: 23404403 PMCID: PMC3573668 DOI: 10.1128/mbio.00638-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The highly virulent Francisella tularensis subsp. tularensis has been classified as a category A bioterrorism agent. A live vaccine strain (LVS) has been developed but remains unlicensed in the United States because of an incomplete understanding of its attenuation. Lipopolysaccharide (LPS) modification is a common strategy employed by bacterial pathogens to avoid innate immunity. A novel modification enzyme has recently been identified in F. tularensis and Helicobacter pylori. This enzyme, a two-component Kdo (3-deoxy-d-manno-octulosonic acid) hydrolase, catalyzes the removal of a side chain Kdo sugar from LPS precursors. The biological significance of this modification has not yet been studied. To address the role of the two-component Kdo hydrolase KdhAB in F. tularensis pathogenesis, a ΔkdhAB deletion mutant was constructed from the LVS strain. In intranasal infection of mice, the ΔkdhAB mutant strain had a 50% lethal dose (LD(50)) 2 log(10) units higher than that of the parental LVS strain. The levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid were significantly higher (2-fold) in mice infected with the ΔkdhAB mutant than in mice infected with LVS. In vitro stimulation of bone marrow-derived macrophages with the ΔkdhAB mutant induced higher levels of TNF-α and IL-1β in a TLR2-dependent manner. In addition, TLR2(-/-) mice were more susceptible than wild-type mice to ΔkdhAB bacterial infection. Finally, immunization of mice with ΔkdhAB bacteria elicited a high level of protection against the highly virulent F. tularensis subsp. tularensis strain Schu S4. These findings suggest an important role for the Francisella Kdo hydrolase system in virulence and offer a novel mutant as a candidate vaccine. IMPORTANCE The first line of defense against a bacterial pathogen is innate immunity, which slows the progress of infection and allows time for adaptive immunity to develop. Some bacterial pathogens, such as Francisella tularensis, suppress the early innate immune response, killing the host before adaptive immunity can mature. To avoid an innate immune response, F. tularensis enzymatically modifies its lipopolysaccharide (LPS). A novel LPS modification-Kdo (3-deoxy-d-manno-octulosonic acid) saccharide removal--has recently been reported in F. tularensis. We found that the kdhAB mutant was significantly attenuated in mice. Additionally, the mutant strain induced an early innate immune response in mice both in vitro and in vivo. Immunization of mice with this mutant provided protection against the highly virulent F. tularensis strain Schu S4. Thus, our study has identified a novel LPS modification important for microbial virulence. A mutant lacking this modification may be used as a live attenuated vaccine against tularemia.
Collapse
|
20
|
Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J Virol 2013; 87:3261-70. [PMID: 23302870 DOI: 10.1128/jvi.01956-12] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are a critical component of the first line of antiviral defense. The activation of Toll-like receptors (TLRs) expressed by dendritic cells triggers different signaling cascades that result in the production of large amounts of IFNs. However, the functional consequences of TLR activation and differential IFN production in specific cell populations other than antigen-presenting cells have not yet been fully elucidated. In this study, we investigated TLR expression and polarization in airway epithelial cells (AECs) and the consequences of TLR agonist stimulation for the production of type I (IFN-α/β) and type III (IFN-λ) IFNs. Our results show that the pattern of expression and polarization of all TLRs in primary AEC cultures mirrors that of the human airways ex vivo and is receptor specific. The antiviral TLRs (TLR3, TLR7, and TLR9) are mostly expressed on the apical cell surfaces of epithelial cells in the human trachea and in primary polarized AECs. Type III IFN is the predominant IFN produced by the airway epithelium, and TLR3 is the only TLR that mediates IFN production by AECs, while all TLR agonists tested are capable of inducing AEC activation and interleukin-8 production. In response to influenza virus infection, AECs can produce IFN-λ in an IFNAR- and STAT1-independent manner. Our results emphasize the importance of using primary well-differentiated AECs to study TLR and antiviral responses and provide further insight into the regulation of IFN production during the antiviral response of the lung epithelium.
Collapse
|
21
|
Ashtekar AR, Katz J, Xu Q, Michalek SM. A mucosal subunit vaccine protects against lethal respiratory infection with Francisella tularensis LVS. PLoS One 2012; 7:e50460. [PMID: 23209745 PMCID: PMC3508931 DOI: 10.1371/journal.pone.0050460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis (FT) is a highly virulent pathogen for humans and other mammals. Severe morbidity and mortality is associated with respiratory FT infection and there are concerns about intentional dissemination of this organism. Therefore, FT has been designated a category A biothreat agent and there is a growing interest in the development of a protective vaccine. In the present study, we determine the protective potential of a subunit vaccine comprised of the FT heat shock protein DnaK and surface lipoprotein Tul4 against respiratory infection with the live vaccine strain (LVS) of FT in mice. First, we establish an optimal intranasal immunization regimen in C57BL/6 mice using recombinant DnaK or Tul4 together with the adjuvant GPI-0100. The individual immunization regimens induced robust salivary IgA, and vaginal and bronchoalveolar IgA and IgG antigen-specific antibodies. Serum IgG1 and IgG2c antibody responses were also induced, indicative of a mixed type 2 and type 1 response, respectively. Next, we show that immunization with DnaK and Tul4 induces mucosal and systemic antibody responses that are comparable to that seen following immunization with each antigen alone. This immunization regimen also induced IFN-γ, IL-10 and IL-17A production by splenic CD4(+) T cells in an antigen-specific manner. Importantly, over 80% of the mice immunized with DnaK and Tul4, but not with each antigen alone, were protected against a lethal respiratory challenge with FT LVS. Protection correlated with reduced bacterial burden in the lung, liver and spleen of mice. This study demonstrates the potential of DnaK and Tul4 as protective antigens and lends support to the notion of combining distinct, immunodominant antigens into an effective multivalent tularemia vaccine.
Collapse
Affiliation(s)
- Amit R. Ashtekar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qingan Xu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
22
|
Davis CG, Chang K, Osborne D, Walton AH, Ghosh S, Dunne WM, Hotchkiss RS, Muenzer JT. TLR3 agonist improves survival to secondary pneumonia in a double injury model. J Surg Res 2012; 182:270-6. [PMID: 23083640 DOI: 10.1016/j.jss.2012.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Toll-like receptors (TLR) can initiate various immune responses and are therefore activated under diverse infectious states. Previous studies have focused on TLR3 primarily as an antiviral pathway. However, recent research has demonstrated its efficacy in bacterial infection. Having developed a murine double injury model of cecal ligation and puncture (CLP) followed by Pseudomonas aeruginosa (Pa), we hypothesized that targeted administration of Poly I:C, a TLR3 agonist, would protect mice against secondary pneumonia. MATERIAL AND METHODS B6 mice underwent CLP followed 4 d afterward by an intranasal dose of Pa. Animals were given Poly I:C or vehicle (phosphate-buffered saline) intranasally 24 h post CLP and every day thereafter for a total of 6 d. For acute studies, mice were sacrificed at two time points, 4 d post CLP and 1 d post pneumonia (Pa). RESULTS Poly I:C treatment led to a significant improvement in survival (69% versus 33%). Cytokine analysis from bronchioalveolar lavage displayed significant differences both immediately before and after pneumonia. Bronchioalveolar lavage cultures taken at 24 h post double injury showed significantly higher colony counts in the lungs of control animals compared with those of Poly I:C animals. Measurements of TLR3 expression showed significant increases within both the immune and lung epithelial cells of Poly I:C-treated mice. Finally, the lungs of treated animals had significant increases in lymphocytes and innate cells. CONCLUSIONS The prophylactic treatment applied in this clinically relevant model further illustrates the overarching hypothesis of immune dysfunction and the possibility of corrective immune modulation within the setting of sepsis.
Collapse
Affiliation(s)
- Christopher G Davis
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tian X, Xu F, Lung WY, Meyerson C, Ghaffari AA, Cheng G, Deng JC. Poly I:C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria. PLoS One 2012; 7:e41879. [PMID: 22962579 PMCID: PMC3433467 DOI: 10.1371/journal.pone.0041879] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 06/29/2012] [Indexed: 11/18/2022] Open
Abstract
Secondary bacterial pneumonias are a frequent complication of influenza and other respiratory viral infections, but the mechanisms underlying viral-induced susceptibility to bacterial infections are poorly understood. In particular, it is unclear whether the host's response against the viral infection, independent of the injury caused by the virus, results in impairment of antibacterial host defense. Here, we sought to determine whether the induction of an “antiviral” immune state using various viral recognition receptor ligands was sufficient to result in decreased ability to combat common bacterial pathogens of the lung. Using a mouse model, animals were administered polyinosine-polycytidylic acid (poly I:C) or Toll-like 7 ligand (imiquimod or gardiquimod) intranasally, followed by intratracheal challenge with Streptococcus pneumoniae. We found that animals pre-exposed to poly I:C displayed impaired bacterial clearance and increased mortality. Poly I:C-exposed animals also had decreased ability to clear methicillin-resistant Staphylococcus aureus. Furthermore, we showed that activation of Toll-like receptor (TLR)3 and Retinoic acid inducible gene (RIG-I)/Cardif pathways, which recognize viral nucleic acids in the form of dsRNA, both contribute to poly I:C mediated impairment of bacterial clearance. Finally, we determined that poly I:C administration resulted in significant induction of type I interferons (IFNs), whereas the elimination of type I IFN signaling improved clearance and survival following secondary bacterial pneumonia. Collectively, these results indicate that in the lung, poly I:C administration is sufficient to impair pulmonary host defense against clinically important gram-positive bacterial pathogens, which appears to be mediated by type I IFNs.
Collapse
Affiliation(s)
- Xiaoli Tian
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Feng Xu
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wing Yi Lung
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Cherise Meyerson
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Amir Ali Ghaffari
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jane C. Deng
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Identifying a role for Toll-like receptor 3 in the innate immune response to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect Immun 2011; 80:254-65. [PMID: 22006569 DOI: 10.1128/iai.05549-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Because epithelial cells are the major cell type productively infected with Chlamydia during genital tract infections, the overall goal of our research was to understand the contribution of infected epithelial cells to the host defense. We previously showed that Toll-like receptor 3 (TLR3) is the critical pattern recognition receptor in oviduct epithelial (OE) cells that is stimulated during Chlamydia infection, resulting in the synthesis of beta interferon (IFN-β). Here, we present data that implicates TLR3 in the expression of a multitude of other innate-inflammatory immune modulators including interleukin-6 (IL-6), CXCL10, CXCL16, and CCL5. We demonstrate that Chlamydia-induced expression of these cytokines is severely disrupted in TLR3-deficient OE cells, whereas Chlamydia replication in the TLR3-deficient cells is more efficient than in wild-type OE cells. Pretreatment of the TLR3-deficient OE cells with 50 U of IFN-β/ml prior to infection diminished Chlamydia replication and restored the ability of Chlamydia infection to induce IL-6, CXCL10, and CCL5 expression in TLR3-deficient OE cells; however, CXCL16 induction was not restored by IFN-β preincubation. Our findings were corroborated in pathway-focused PCR arrays, which demonstrated a multitude of different inflammatory genes that were defectively regulated during Chlamydia infection of the TLR3-deficient OE cells, and we found that some of these genes were induced only when IFN-β was added prior to infection. Our OE cell data implicate TLR3 as an essential inducer of IFN-β and other inflammatory mediators by epithelial cells during Chlamydia infection and highlight the contribution of TLR3 to the inflammatory cytokine response.
Collapse
|
25
|
Cole LE, Mann BJ, Shirey KA, Richard K, Yang Y, Gearhart PJ, Chesko KL, Viscardi RM, Vogel SN. Role of TLR signaling in Francisella tularensis-LPS-induced, antibody-mediated protection against Francisella tularensis challenge. J Leukoc Biol 2011; 90:787-97. [PMID: 21750122 DOI: 10.1189/jlb.0111014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Immunization with Ft-LPS provokes an antigen-specific, B-1a cell-derived antibody response that protects WT mice against an otherwise lethal challenge with Ft LVS. However, this same regimen offers limited protection to TLR2(-/-) mice, despite production of WT levels of anti-Ft-LPS antibodies. As Ft-LPS exhibits no TLR2 agonist activity, and macrophage-induced cytokine production in response to Ft LVS is overwhelmingly TLR2-dependent, we hypothesized that treatment of TLR2(-/-) mice with an alternative, MyD88-dependent TLR agonist would compensate for reduced recognition of Ft LVS in TLR2(-/-) mice and thereby, restore Ft-LPS-mediated protection. Administration of the nontoxic TLR4 agonist, synthetic Escherichia coli MPL, at the time of Ft-LPS immunization or Ft LVS challenge, fully protected TLR2(-/-) mice, whereas treatment of WT or TLR2(-/-) mice with MPL alone conferred partial protection. The TLR5 agonist, flagellin, also synergized with Ft-LPS to protect TLR2(-/-) mice from lethal Ft LVS challenge. In contrast to Ft LVS, Ft-LPS pretreatment failed to protect mice against i.n. challenge with Ft Schu S4, whereas MPL, administered in the absence or presence of Ft-LPS, conferred significant, albeit partial, protection. MPL treatment of macrophages increased the uptake of Ft LVS and decreased intracellular bacterial survival while shifting the macrophage-differentiation phenotype from "alternatively activated" to "classically activated". Collectively, our data suggest that optimal, Ft-LPS-mediated protection against Ft LVS infection requires two discrete events, i.e., production of Ft-LPS-specific antibody, as well as TLR-mediated macrophage activation, to fully control Francisella infection.
Collapse
Affiliation(s)
- Leah E Cole
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
27
|
Stundick MV, Metz M, Sampath A, Larsen JC. State-of-the-art therapeutic medical countermeasures for bacterial threat agents. Drug Dev Res 2011. [DOI: 10.1002/ddr.20462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
The viral TLR3 agonist poly(I:C) stimulates phagocytosis and intracellular killing of Escherichia coli by microglial cells. Neurosci Lett 2010; 482:17-20. [PMID: 20599470 DOI: 10.1016/j.neulet.2010.06.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/19/2010] [Accepted: 06/26/2010] [Indexed: 11/22/2022]
Abstract
Stimulation of murine primary microglia with Toll-like receptor (TLR) agonists enhances their ability to phagocytose and kill bacteria. Here we show that the viral TLR3 agonist poly(I:C) stimulates the release of cyto-/chemokines and nitric oxide by microglia. Poly(I:C) increases microglial phagocytosis and intracellular killing of Escherichia coli K1, a pathogenic encapsulated bacterial strain, after 30 and 90 min of co-incubation. Stimulation with a viral epitope may strengthen the resistance of the brain to bacterial infections in vivo. Our data encourage animal experiments with poly(I:C) derivatives to assess whether this approach can increase the resistance of the CNS against bacterial infections.
Collapse
|