1
|
Karabacak P, Toğay VA, Aşcı Çelik D. Lymphocyte DNA damage in sepsis and septic-shock intensive-care patients: Damage is greater in non-intubated patients. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 879-880:503516. [PMID: 35914866 DOI: 10.1016/j.mrgentox.2022.503516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Sepsis is an excessive host response to infection; septic shock is a more severe clinical condition. We studied 43 sepsis patients, 32 septic-shock patients, and a group of healthy controls. The patients' Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) 2 score were much higher in the septic-shock group than in the sepsis group. We used the comet assay to measure lymphocyte DNA damage; the damage scores were significantly higher in both the sepsis and the septic-shock groups compared to the healthy controls. There was no statistically significant difference between the sepsis and septic-shock groups. We also compared DNA damage levels of intubated vs. non-intubated patients. DNA damage was significantly higher in non-intubated patients compared to intubated patients, for both the sepsis and the septic-shock groups. Early intubation may be beneficial in non-intubated patients who have high levels of DNA damage.
Collapse
Affiliation(s)
- Pınar Karabacak
- Süleyman Demirel University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Isparta, Turkey.
| | - Vehbi Atahan Toğay
- Süleyman Demirel University, Faculty of Medicine, Department of Medical Biology, Isparta, Turkey.
| | - Dilek Aşcı Çelik
- Süleyman Demirel University, Faculty of Medicine, Department of Medical Biology, Isparta, Turkey.
| |
Collapse
|
2
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
3
|
Lin P, Shen G, Guo K, Qin S, Pu Q, Wang Z, Gao P, Xia Z, Khan N, Jiang J, Xia Q, Wu M. Type III CRISPR-based RNA editing for programmable control of SARS-CoV-2 and human coronaviruses. Nucleic Acids Res 2022; 50:e47. [PMID: 35166837 PMCID: PMC9071467 DOI: 10.1093/nar/gkac016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/20/2021] [Accepted: 01/30/2022] [Indexed: 01/18/2023] Open
Abstract
Gene-editing technologies, including the widespread usage of CRISPR endonucleases, have the potential for clinical treatments of various human diseases. Due to the rapid mutations of SARS-CoV-2, specific and effective prevention and treatment by CRISPR toolkits for coronavirus disease 2019 (COVID-19) are urgently needed to control the current pandemic spread. Here, we designed Type III CRISPR endonuclease antivirals for coronaviruses (TEAR-CoV) as a therapeutic to combat SARS-CoV-2 infection. We provided a proof of principle demonstration that TEAR-CoV-based RNA engineering approach leads to RNA-guided transcript degradation both in vitro and in eukaryotic cells, which could be used to broadly target RNA viruses. We report that TEAR-CoV not only cleaves SARS-CoV-2 genome and mRNA transcripts, but also degrades live influenza A virus (IAV), impeding viral replication in cells and in mice. Moreover, bioinformatics screening of gRNAs along RNA sequences reveals that a group of five gRNAs (hCoV-gRNAs) could potentially target 99.98% of human coronaviruses. TEAR-CoV also exerted specific targeting and cleavage of common human coronaviruses. The fast design and broad targeting of TEAR-CoV may represent a versatile antiviral approach for SARS-CoV-2 or potentially other emerging human coronaviruses.
Collapse
Affiliation(s)
- Ping Lin
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jianxin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
4
|
DNA damage assessment in pneumonia patients treated in the intensive care unit. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
6
|
Gao P, Guo K, Pu Q, Wang Z, Lin P, Qin S, Khan N, Hur J, Liang H, Wu M. oprC Impairs Host Defense by Increasing the Quorum-Sensing-Mediated Virulence of Pseudomonas aeruginosa. Front Immunol 2020; 11:1696. [PMID: 32849593 PMCID: PMC7417366 DOI: 10.3389/fimmu.2020.01696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa, found widely in the wild, causes infections in the lungs and several other organs in healthy people but more often in immunocompromised individuals. P. aeruginosa infection leads to inflammasome assembly, pyroptosis, and cytokine release in the host. OprC is one of the bacterial porins abundant in the outer membrane vesicles responsible for channel-forming and copper binding. Recent research has revealed that OprC transports copper, an essential trace element involved in various physiological processes, into bacteria during copper deficiency. Here, we found that oprC deletion severely impaired bacterial motility and quorum-sensing systems, as well as lowered levels of lipopolysaccharide and pyocyanin in P. aeruginosa. In addition, oprC deficiency impeded the stimulation of TLR2 and TLR4 and inflammasome activation, resulting in decreases in proinflammatory cytokines and improved disease phenotypes, such as attenuated bacterial loads, lowered lung barrier damage, and longer mouse survival. Moreover, oprC deficiency significantly alleviated pyroptosis in macrophages. Mechanistically, oprC gene may impact quorum-sensing systems in P. aeruginosa to alter pyroptosis and inflammatory responses in cells and mice through the STAT3/NF-κB signaling pathway. Our findings characterize OprC as a critical virulence regulator, providing the groundwork for further dissection of the pathogenic mechanism of OprC as a potential therapeutic target of P. aeruginosa.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nadeem Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
7
|
DNA Repair Protein OGG1 in Pulmonary Infection and Other Inflammatory Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7121726 DOI: 10.1007/978-981-13-8413-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the last decades, extensive research has uncovered functional roles and underlying mechanisms of DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1) in the pathogenesis of inflammatory response in infection and other diseases in the lung. OGG1 excises 8-oxo-7,8-dihydroguanine (8-oxo-dG) lesion on DNA that is often induced by generation of reactive oxygen species (ROS) and has been linked to mutations, cancer development, and tissue damage. Most, if not all, environmental toxic agents and mammalian cellular metabolites elicit the generation of ROS, either directly, indirectly, or both, which is among the first cellular responses. ROS in combination with other oxidative molecules/moieties are recognized as a major factor for killing invading pathogens but meanwhile can cause tissue damage. ROS potentially modify proteins, lipids, and DNA due to the strong molecular reactivity. While oxidative stress causes increased levels of all types of oxidatively modified DNA bases, accumulation of 8-oxo-dG in the DNA has been singled out to be a main culprit linking to various inflammatory disease processes. Oxidatively damaged DNA bases such as 8-oxo-dG are primarily repaired by the base excision repair (BER) mechanism, in which OGG1, as the lesion recognition enzyme, plays a fundamental role in fixing this DNA damage. In this chapter, we summarize the roles and potential mechanistic analyses of OGG1 in lung infection and other inflammatory diseases.
Collapse
|
8
|
Trend S, Chang BJ, O'Dea M, Stick SM, Kicic A. Use of a Primary Epithelial Cell Screening Tool to Investigate Phage Therapy in Cystic Fibrosis. Front Pharmacol 2018; 9:1330. [PMID: 30546305 PMCID: PMC6280614 DOI: 10.3389/fphar.2018.01330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/29/2018] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial-resistant microbes are an increasing threat to human health. In cystic fibrosis (CF), airway infections with Pseudomonas aeruginosa remain a key driver of lung damage. With few new antibiotics on the development horizon, alternative therapeutic approaches are needed against antimicrobial-resistant pathogens. Phage therapy, or the use of viruses that infect bacteria, is one proposed novel therapy to treat bacterial infections. However, the airways are complex microenvironments with unique characteristics that may affect the success of novel therapies. Here, three phages of P. aeruginosa (E79, F116, and one novel clinically derived isolate, designated P5) were screened for activity against 21 P. aeruginosa strains isolated from children with CF. Of these, phage E79 showed broad antibacterial activity (91% of tested strains sensitive) and was selected for further assessment. E79 genomic DNA was extracted, sequenced, and confirmed to contain no bacterial pathogenicity genes. High titre phage preparations were then purified using ion-exchange column chromatography and depleted of bacterial endotoxin. Primary airway epithelial cells derived from children with CF (n = 8, age range 0.2–5.5 years, 5 males) or healthy non-CF controls (n = 8, age range 2.5–4.0 years, 4 males) were then exposed to purified phage for 48 h. Levels of inflammatory IL-1β, IL-6, and IL-8 cytokine production were measured in culture supernatant by immunoassays and the extent of cellular apoptosis was measured using a ssDNA kit. Cytokine and apoptosis levels were compared between E79-stimulated and unstimulated controls, and, encouragingly, purified preparations of E79 did not stimulate any significant inflammatory cytokine responses or induce apoptosis in primary epithelial cells derived from children with or without CF. Collectively, this study demonstrates the feasibility of utilizing pre-clinical in vitro culture models to screen therapeutic candidates, and the potential of E79 as a therapeutic phage candidate in CF.
Collapse
Affiliation(s)
- Stephanie Trend
- Telethon Kids Institute, Perth, WA, Australia.,Division of Paediatrics, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Barbara J Chang
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mark O'Dea
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Perth, WA, Australia.,Division of Paediatrics, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory Medicine, Perth Children's Hospital, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Perth, WA, Australia.,Division of Paediatrics, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory Medicine, Perth Children's Hospital, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Occupation and the Environment, School of Public Health, Curtin University, Perth, WA, Australia
| | | | | | | |
Collapse
|
9
|
Hao W, Qi T, Pan L, Wang R, Zhu B, Aguilera-Aguirre L, Radak Z, Hazra TK, Vlahopoulos SA, Bacsi A, Brasier AR, Ba X, Boldogh I. Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biol 2018; 18:43-53. [PMID: 29940424 PMCID: PMC6019822 DOI: 10.1016/j.redox.2018.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
8-Oxoguanine DNA glycosylase 1 (OGG1) initiates the base excision repair pathway by removing one of the most abundant DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). Recent data showed that 8-oxoG not only is a pro-mutagenic genomic base lesion, but also functions as an epigenetic mark and that consequently OGG1 acquire distinct roles in modulation of gene expression. In support, lack of functional OGG1 in Ogg1-/- mice led to an altered expression of genes including those responsible for the aberrant innate and adaptive immune responses and susceptibility to metabolic disorders. Therefore, the present study examined stimulus-driven OGG1-DNA interactions at whole genome level using chromatin immunoprecipitation (ChIP)-coupled sequencing, and the roles of OGG1 enriched on the genome were validated by molecular and system-level approaches. Results showed that signaling levels of cellular ROS generated by TNFα, induced enrichment of OGG1 at specific sites of chromatinized DNA, primarily in the regulatory regions of genes. OGG1-ChIP-ed genes are associated with important cellular and biological processes and OGG1 enrichment was limited to a time scale required for immediate cellular responses. Prevention of OGG1-DNA interactions by siRNA depletion led to modulation of NF-κB's DNA occupancy and differential expression of genes. Taken together these data show TNFα-ROS-driven enrichment of OGG1 at gene regulatory regions in the chromatinized DNA, which is a prerequisite to modulation of gene expression for prompt cellular responses to oxidant stress.
Collapse
Affiliation(s)
- Wenjing Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Tianyang Qi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ruoxi Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Bing Zhu
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Tapas K Hazra
- Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Spiros A Vlahopoulos
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Allan R Brasier
- Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
10
|
Druzhinin VG, Matskova LV, Fucic A. Induction and modulation of genotoxicity by the bacteriome in mammals. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:70-77. [PMID: 29807578 DOI: 10.1016/j.mrrev.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
The living environment is a multilevel physical and chemical xenobiotic complex with potentially mutagenic effects and health risks. In addition to inorganic exposures, all terrestrial and aquatic living forms interact with microbiota as selectively established communities of bacteria, viruses and fungi. Along these lines, the human organism should then be considered a "meta-organism" with complex dynamics of interaction between the environment and microbiome. Bacterial communities within the microbiome, bacteriome, by its mass, symbiotic or competitive position and composition are in a fragile balance with the host organisms and have a crucial impact on their homeostasis. Bacteriome taxonomic composition is modulated by age, sex and host genetic profile and may be changed by adverse environmental exposures and life style factors such as diet or drug intake. A changed and/or misbalanced bacteriome has genotoxic potential with significant impact on the pathogenesis of acute, chronic and neoplastic diseases in the host organism. Bacteria may produce genotoxins, express a variety of pathways in which they generate free radicals or affect DNA repair causing genome damage, cell cycle arrest and apoptosis, modulate immune response and launch carcinogenesis in the host organism. Future investigations should focus on the interplay between exposure to xenobiotics and bacteriome composition, immunomodulation caused by misbalanced bacteriome, impact of the environment on bacteriome composition in children and its lifelong effect on health risks.
Collapse
Affiliation(s)
- V G Druzhinin
- Department of Genetics, Kemerovo State University, Kemerovo. Russia; Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - L V Matskova
- Department of Microbiology and Tumor Biology, Karolinska Institute, Stockholm. Sweden
| | - A Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
11
|
Dopp E, Richard J, Dwidjosiswojo Z, Simon A, Wingender J. Influence of the copper-induced viable but non-culturable state on the toxicity of Pseudomonas aeruginosa towards human bronchial epithelial cells in vitro. Int J Hyg Environ Health 2017; 220:1363-1369. [PMID: 28941772 DOI: 10.1016/j.ijheh.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
The viable but non-culturable (VBNC) state of the opportunistic bacterium Pseudomonas aeruginosa was previously shown to be induced by copper ions in concentrations relevant to those in drinking water plumbing systems. This decrease of bacterial culturability without loss of viability might have an influence on human health due to an underestimation of the actual contamination in drinking water systems. The aim of this study was to investigate the influence of culturable P. aeruginosa, viable but not culturable as well as culturable again after resuscitation from the VBNC state on human bronchial epithelial cells (BEAS-2B) in vitro. Cyto- and genotoxic effects of P. aeruginosa at different states were studied using trypan blue, MTT, xCELLigence as well as the micronucleus assay. While P. aeruginosa in the VBNC state did not have any cytotoxic or genotoxic effect on BEAS-2B cells, untreated (culturable) and resuscitated P. aeruginosa did show cell damage, including disruption of cell membranes, inhibition of mitochondrial activity and cell proliferation as well as DNA-damaging effects. We conclude from our study that P. aeruginosa after resuscitation from the VBNC state regains its viability and cyto-/genotoxicity and therefore might influence human health.
Collapse
Affiliation(s)
- Elke Dopp
- IWW Water Center, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Jessica Richard
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | | | - Anne Simon
- IWW Water Center, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- IWW Water Center, Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany; Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Ye Y, Lin P, Zhang W, Tan S, Zhou X, Li R, Pu Q, Koff JL, Dhasarathy A, Ma F, Deng X, Jiang J, Wu M. Response to Comment on "DNA Repair Interacts with Autophagy To Regulate Inflammatory Responses to Pulmonary Hyperoxia". THE JOURNAL OF IMMUNOLOGY 2017; 199:381-382. [PMID: 28696327 DOI: 10.4049/jimmunol.1700676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yan Ye
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203.,State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China
| | - Weidong Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Shirui Tan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Xikun Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongpeng Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonathan L Koff
- Department of Medicine, Yale University, New Haven, CT 06510
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 100005, People's Republic of China; and
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
13
|
Ye Y, Lin P, Zhang W, Tan S, Zhou X, Li R, Pu Q, Koff JL, Dhasarathy A, Ma F, Deng X, Jiang J, Wu M. DNA Repair Interacts with Autophagy To Regulate Inflammatory Responses to Pulmonary Hyperoxia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2844-2853. [PMID: 28202616 PMCID: PMC5360514 DOI: 10.4049/jimmunol.1601001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Oxygen is supplied as a supportive treatment for patients suffering from acute respiratory distress syndrome. Unfortunately, high oxygen concentration increases reactive oxygen species generation, which causes DNA damage and ultimately cell death in the lung. Although 8-oxoguanine-DNA glycosylase (OGG-1) is involved in repairing hyperoxia-mediated DNA damage, the underlying molecular mechanism remains elusive. In this study, we report that ogg-1-deficient mice exhibited a significant increase of proinflammatory cytokines (TNF-α, IL-6, and IFN-γ) in the lung after being exposed to 95% oxygen. In addition, we found that ogg-1 deficiency downregulated (macro)autophagy when exposed to hyperoxia both in vitro and in vivo, which was evident by decreased conversion of LC3-I to LC3-II, reduced LC3 punctate staining, and lower Atg7 expression compared with controls. Using a chromatin immunoprecipitation assay, we found that OGG-1 associated with the promoter of Atg7, suggesting a role for OGG1 in regulation of Atg7 activity. Knocking down OGG-1 decreased the luciferase reporter activity of Atg7. Further, inflammatory cytokine levels in murine lung epithelial cell line cells were downregulated following autophagy induction by starvation and rapamycin treatment, and upregulated when autophagy was blocked using 3-methyladenine and chloroquine. atg7 knockout mice and Atg7 small interfering RNA-treated cells exhibited elevated levels of phospho-NF-κB and intensified inflammatory cytokines, suggesting that Atg7 impacts inflammatory responses to hyperoxia. These findings demonstrate that OGG-1 negatively regulates inflammatory cytokine release by coordinating molecular interaction with the autophagic pathway in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Yan Ye
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China
| | - Weidong Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Shirui Tan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Xikun Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongpeng Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 2211116, People's Republic of China
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonathan L Koff
- Department of Medicine, Yale University, New Haven, CT 06510
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 100005, People's Republic of China; and
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
14
|
Li R, Fang L, Pu Q, Lin P, Hoggarth A, Huang H, Li X, Li G, Wu M. Lyn prevents aberrant inflammatory responses to Pseudomonas infection in mammalian systems by repressing a SHIP-1-associated signaling cluster. Signal Transduct Target Ther 2016; 1:16032. [PMID: 29263906 PMCID: PMC5661651 DOI: 10.1038/sigtrans.2016.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
The pleiotropic Src kinase Lyn has critical roles in host defense in alveolar macrophages against bacterial infection, but the underlying mechanism for Lyn-mediated inflammatory response remains largely elusive. Using mouse Pseudomonas aeruginosa infection models, we observed that Lyn-/- mice manifest severe lung injury and enhanced inflammatory responses, compared with wild-type littermates. We demonstrate that Lyn exerts this immune function through interaction with IL-6 receptor and cytoskeletal protein Ezrin via its SH2 and SH3 domains. Depletion of Lyn results in excessive STAT3 activation, and enhanced the Src homology 2-containing inositol-5-phopsphatase 1 (SHIP-1) expression. Deletion of SHIP-1 in Lyn-/- mice (double knockout) promotes mouse survival and reduces inflammatory responses during P. aeruginosa infection, revealing the rescue of the deadly infectious phenotype in Lyn deficiency. Mechanistically, loss of SHIP-1 reduces NF-κB-dependent cytokine production and dampens MAP kinase activation through a TLR4-independent PI3K/Akt pathway. These findings reveal Lyn as a regulator for host immune response against P. aeruginosa infection through SHIP-1 and IL-6/STAT3 signaling pathway in alveolar macrophages.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R., China
| | - Lizhu Fang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Austin Hoggarth
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Huang Huang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Guoping Li
- Inflammation and Allergic Disease Research Unit, First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
15
|
|
16
|
Li X, He S, Li R, Zhou X, Zhang S, Yu M, Ye Y, Wang Y, Huang C, Wu M. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration. Nat Microbiol 2016; 1:16132. [PMID: 27670114 PMCID: PMC5061341 DOI: 10.1038/nmicrobiol.2016.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) play critical roles in various biological processes, including cell proliferation, development and host defence. However, the molecular mechanism for miRNAs in regulating bacterial-induced inflammation remains largely unclear. Here, we report that miR-301b augments pro-inflammatory response during pulmonary infection, and caffeine suppresses the effect of miR-301b and thereby augments respiratory immunity. LPS treatment or Pseudomonas aeruginosa infection induces miR-301b expression via a TLR4/MyD88/NF-κB pathway. Importantly, caffeine decreases miR-301b expression through negative regulation of the cAMP/PKA/NF-κB axis. Further, c-Myb is identified as a target of miR-301b, which positively modulates anti-inflammatory cytokines IL-4 and TGF-β1, but negatively regulates pro-inflammatory cytokines MIP-1α and IL-17A. Moreover, repression of miR-301b results in increased transcription of c-Myb and elevated levels of neutrophil infiltration, thereby alleviating infectious symptoms in mice. These findings reveal miR-301b as a new controller of inflammatory response by repressing c-Myb function to inhibit the anti-inflammatory response to bacterial infection, representing a novel mechanism for balancing inflammation.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Sisi He
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Xikun Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Shuang Zhang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Min Yu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Ye
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| |
Collapse
|
17
|
Li R, Tan S, Yu M, Jundt MC, Zhang S, Wu M. Annexin A2 Regulates Autophagy in Pseudomonas aeruginosa Infection through the Akt1-mTOR-ULK1/2 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 195:3901-11. [PMID: 26371245 DOI: 10.4049/jimmunol.1500967] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023]
Abstract
Earlier studies reported that a cell membrane protein, Annexin A2 (AnxA2), plays multiple roles in the development, invasion, and metastasis of cancer. Recent studies demonstrated that AnxA2 also functions in immunity against infection, but the underlying mechanism remains largely elusive. Using a mouse infection model, we reveal a crucial role for AnxA2 in host defense against Pseudomonas aeruginosa, as anxa2(-/-) mice manifested severe lung injury, systemic dissemination, and increased mortality compared with wild-type littermates. In addition, anxa2(-/-) mice exhibited elevated inflammatory cytokines (TNF-α, IL-6, IL-1β, and IFN-γ), decreased bacterial clearance by macrophages, and increased superoxide release in the lung. We further identified an unexpected molecular interaction between AnxA2 and Fam13A, which activated Rho GTPase. P. aeruginosa infection induced autophagosome formation by inhibiting Akt1 and mTOR. Our results indicate that AnxA2 regulates autophagy, thereby contributing to host immunity against bacteria through the Akt1-mTOR-ULK1/2 signaling pathway.
Collapse
Affiliation(s)
- Rongpeng Li
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211800, People's Republic of China
| | - Shirui Tan
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; College of Agriculture, Yunnan University, Kunming 650091, People's Republic of China
| | - Min Yu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China; and
| | - Michael C Jundt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Shuang Zhang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203; State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
18
|
Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology. Biomolecules 2015; 5:1762-82. [PMID: 26270677 PMCID: PMC4598774 DOI: 10.3390/biom5031762] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT) family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
|
19
|
Lemercier C. When our genome is targeted by pathogenic bacteria. Cell Mol Life Sci 2015; 72:2665-76. [PMID: 25877988 PMCID: PMC11114081 DOI: 10.1007/s00018-015-1900-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic cells repair thousands of lesions arising in the genome at each cell cycle. The most hazardous damage is likely DNA double-strand breaks (DSB) that cleave the double helix backbone. DSBs occur naturally during T cell receptor and immunoglobulin gene recombination in lymphocytes. DSBs can also arise as a consequence of exogenous stresses (e.g., ionizing irradiation, chemotherapeutic drugs, viruses) or oxidative processes. An increasing number of studies have reported that infection with pathogenic bacteria also alters the host genome, producing DSB and other modifications on DNA. This review focuses on recent data on bacteria-induced DNA damage and the known strategies used by these pathogens to maintain a physiological niche in the host. Even after DNA repair in infected cells, "scars" often remain on chromosomes and might generate genomic instability at the next cell division. Chronic inflammation in tissue, combined with infection and DNA damage, can give rise to genomic instability and eventually cancer. A functional link between the DNA damage response and the innate immune response has been recently established. Pathogenic bacteria also highjack the host cell cycle, often acting on the stability of the master regulator p53, or dampen the DNA damage response to support bacterial replication in an appropriate reservoir. Except in a few cases, the molecular mechanisms responsible for DNA lesions are poorly understood, although ROS release during infection is a serious candidate for generating DNA breaks. Thus, chronic or repetitive infections with genotoxic bacteria represent a common source of DNA lesions that compromise host genome integrity.
Collapse
Affiliation(s)
- Claudie Lemercier
- INSERM, UMR_S 1038, BGE (Large Scale Biology), 38054, Grenoble, France,
| |
Collapse
|
20
|
Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells. Proc Natl Acad Sci U S A 2015; 112:E3421-30. [PMID: 26080406 DOI: 10.1073/pnas.1424144112] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.
Collapse
|
21
|
Ye Y, Tan S, Zhou X, Li X, Jundt MC, Lichter N, Hidebrand A, Dhasarathy A, Wu M. Inhibition of p-IκBα Ubiquitylation by Autophagy-Related Gene 7 to Regulate Inflammatory Responses to Bacterial Infection. J Infect Dis 2015; 212:1816-26. [PMID: 26022442 DOI: 10.1093/infdis/jiv301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae causes serious infections and healthcare burdens in humans. We have previously reported that the deficiency of autophagy-related gene (Atg) 7 in macrophages (murine alveolar macrophage cell line [MH-S]) induced irregular host immunity against K. pneumoniae and worsened pathologic effects in the lung. In the current study, we investigated the molecular mechanism by which Atg7 influenced K. pneumoniae-induced inflammatory responses. METHODS Expression levels of Atg7, ubiquitin (Ub), and tumor necrosis factor (TNF) α and phosphorylation of IκBα (p-IκBα) were determined with immunoblotting. Ubiquitylation of p-IκBα was determined with immunoprecipitation. RESULTS We noted an interaction between Atg7 and p-IκBα, which was decreased in MH-S after K. pneumoniae infection, whereas the interaction between Ub and p-IκBα was increased. Knock-down of Atg7 with small interfering RNA increased p-IκBα ubiquitylation, promoted nuclear factor κB translocation into the nucleus, and increased the production of TNF-α. Moreover, knock-down of Ub with lentivirus-short hairpin RNA Ub particles decreased binding of p-IκBα to Ub and inhibited TNF-α expression in the primary alveolar macrophages and lung tissue of atg7-knockout mice on K. pneumoniae infection. CONCLUSIONS Loss of Atg7 switched binding of p-IκBα from Atg7 to Ub, resulting in increased ubiquitylation of p-IκBα and intensified inflammatory responses against K. pneumoniae. Our findings not only reveal a regulatory role of Atg7 in ubiquitylation of p-IκBα but also indicate potential therapeutic targets for K. pneumoniae control.
Collapse
Affiliation(s)
- Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Shirui Tan
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming
| | - Xikun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xuefeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Michael C Jundt
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Natalie Lichter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Alec Hidebrand
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Archana Dhasarathy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| |
Collapse
|
22
|
Tan S, Gan C, Li R, Ye Y, Zhang S, Wu X, Yang YY, Fan W, Wu M. A novel chemosynthetic peptide with β-sheet motif efficiently kills Klebsiella pneumoniae in a mouse model. Int J Nanomedicine 2015; 10:1045-59. [PMID: 25709431 PMCID: PMC4330034 DOI: 10.2147/ijn.s73303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is increasingly becoming multiple drug resistant. However, the molecular pathogenesis of Kp in causing tissue injury and dysregulated host defense remains elusive, further dampening the development of novel therapeutic measures. We have previously screened a series of synthetic antimicrobial beta-sheet forming peptides and identified a peptide (IRIKIRIK; ie, IK8L) with a broad range of bactericidal activity and low cytotoxicity in vitro. Here, employing an animal model, we investigated the antibacterial effects of IK8L in acute infection and demonstrated that peritoneal injection of IK8L to mice down-regulated inflammatory cytokines, alleviated lung injury, and importantly, decreased mortality compared to sham-injected controls. In addition, a math model was used to evaluate in vivo imaging data and predict infection progression in infected live animals. Mechanistically, IK8L can kill Kp by inhibiting biofilm formation and modulating production of inflammatory cytokines through the STAT3/JAK signaling both in vitro and in vivo. Collectively, these findings reveal that IK8L may have potential for preventing or treating Kp infection.
Collapse
Affiliation(s)
- Shirui Tan
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA ; Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, People's Republic of China
| | - Changpei Gan
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA ; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Rongpeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| | - Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| | - Shuang Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA ; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xu Wu
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, First Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of China
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
23
|
Haldar S, Dru C, Choudhury D, Mishra R, Fernandez A, Biondi S, Liu Z, Shimada K, Arditi M, Bhowmick NA. Inflammation and pyroptosis mediate muscle expansion in an interleukin-1β (IL-1β)-dependent manner. J Biol Chem 2015; 290:6574-83. [PMID: 25596528 DOI: 10.1074/jbc.m114.617886] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscle inflammation is often associated with its expansion. Bladder smooth muscle inflammation-induced cell death is accompanied by hyperplasia and hypertrophy as the primary cause for poor bladder function. In mice, DNA damage initiated by chemotherapeutic drug cyclophosphamide activated caspase 1 through the formation of the NLRP3 complex resulting in detrusor hyperplasia. A cyclophosphamide metabolite, acrolein, caused global DNA methylation and accumulation of DNA damage in a mouse model of bladder inflammation and in cultured bladder muscle cells. In correlation, global DNA methylation and NLRP3 expression was up-regulated in human chronic bladder inflammatory tissues. The epigenetic silencing of DNA damage repair gene, Ogg1, could be reversed by the use of demethylating agents. In mice, demethylating agents reversed cyclophosphamide-induced bladder inflammation and detrusor expansion. The transgenic knock-out of Ogg1 in as few as 10% of the detrusor cells tripled the proliferation of the remaining wild type counterparts in an in vitro co-culture titration experiment. Antagonizing IL-1β with Anakinra, a rheumatoid arthritis therapeutic, prevented detrusor proliferation in conditioned media experiments as well as in a mouse model of bladder inflammation. Radiation treatment validated the role of DNA damage in the NLRP3-associated caspase 1-mediated IL-1β secretory phenotype. A protein array analysis identified IGF1 to be downstream of IL-1β signaling. IL-1β-induced detrusor proliferation and hypertrophy could be reversed with the use of Anakinra as well as an IGF1 neutralizing antibody. IL-1β antagonists in current clinical practice can exploit the revealed mechanism for DNA damage-mediated muscular expansion.
Collapse
Affiliation(s)
- Subhash Haldar
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Christopher Dru
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Diptiman Choudhury
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, Greater Los Angeles Veterans Administration, Los Angeles, California, and
| | - Rajeev Mishra
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048,
| | - Ana Fernandez
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, Greater Los Angeles Veterans Administration, Los Angeles, California, and
| | - Shea Biondi
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, Greater Los Angeles Veterans Administration, Los Angeles, California, and
| | - Zhenqiu Liu
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Kenichi Shimada
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Arditi
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Neil A Bhowmick
- From the Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, Greater Los Angeles Veterans Administration, Los Angeles, California, and
| |
Collapse
|
24
|
Li X, Ye Y, Zhou X, Huang C, Wu M. Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. THE JOURNAL OF IMMUNOLOGY 2014; 194:1112-21. [PMID: 25535282 DOI: 10.4049/jimmunol.1401958] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that can cause serious infection in immunocompromised individuals. Although autophagy may augment immune responses against P. aeruginosa infection in macrophages, the critical components and their role of autophagy in host defense are largely unknown. In this study, we show that P. aeruginosa infection-induced autophagy activates JAK2/STAT1α and increases NO production. Knocking down Atg7 resulted in increased IFN-γ release, excessive reactive oxygen species, and increased Src homology-2 domain-containing phosphatase 2 activity, which led to lowered phosphorylation of JAK2/STAT1α and subdued expression of NO synthase 2 (NOS2). In addition, we demonstrated the physiological relevance of dysregulated NO under Atg7 deficiency as atg7(-/-) mice were more susceptible to P. aeruginosa infection with increased mortality and severe lung injury than wild-type mice. Furthermore, P. aeruginosa-infected atg7(-/-) mice exhibited increased oxidation but decreased bacterial clearance in the lung and other organs compared with wild-type mice. Mechanistically, atg7 deficiency suppressed NOS2 activity by downmodulating JAK2/STAT1α, leading to decreased NO both in vitro and in vivo. Taken together, these findings revealed that the JAK2/STAT1α/NOS2 dysfunction leads to dysregulated immune responses and worsened disease phenotypes.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and
| | - Xikun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Canhua Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203; and
| |
Collapse
|
25
|
|
26
|
Cao Q, Wang Y, Chen F, Xia Y, Lou J, Zhang X, Yang N, Sun X, Zhang Q, Zhuo C, Huang X, Deng X, Yang CG, Ye Y, Zhao J, Wu M, Lan L. A novel signal transduction pathway that modulates rhl quorum sensing and bacterial virulence in Pseudomonas aeruginosa. PLoS Pathog 2014; 10:e1004340. [PMID: 25166864 PMCID: PMC4148453 DOI: 10.1371/journal.ppat.1004340] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/15/2014] [Indexed: 01/10/2023] Open
Abstract
The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs. The rhl quorum-sensing (QS) system allows P. aeruginosa to regulate diverse metabolic adaptations and virulence. However, how rhl QS system is regulated remains largely unknown. Here, we report that two-component sensor BfmS controls rhl QS system by repressing its cognate response regulator BfmR, which directly suppresses the expression of rhl QS regulator RhlR gene and reduces the production of QS signal molecule N-butanoyl-L-homoserine lactone (C4-HSL). We find that BfmS is critical to the ability of P. aeruginosa to modulate the expression of virulence-associated traits and adapt to the host. Intriguingly, although wild-type BfmS is a repressor of BfmR, naturally occurring missense mutation (L181P, L181P/E376Q, or R393H) can convert its function from a repressor to an activator of BfmR, leading to BfmR activation, which in turn reduces the level of rhl QS signal C4-HSL. These results, therefore, provide important and novel insight into the regulation and evolution of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Qiao Cao
- Hainan University, Haikou, Hainan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Chemistry and BioMedical Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Feifei Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongjie Xia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingyu Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nana Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qin Zhang
- State Key Laboratory of Respiratory Diseases and the First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Diseases and the First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Xi Huang
- Hainan University, Haikou, Hainan, China
| | - Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
| | - Cai-Guang Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Ye
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jing Zhao
- Institute of Chemistry and BioMedical Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (JZ); (MW); (LL)
| | - Min Wu
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail: (JZ); (MW); (LL)
| | - Lefu Lan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JZ); (MW); (LL)
| |
Collapse
|
27
|
Liang H, Deng X, Li X, Ye Y, Wu M. Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa. Nucleic Acids Res 2014; 42:10307-20. [PMID: 25034696 PMCID: PMC4176358 DOI: 10.1093/nar/gku586] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Pseudomonas aeruginosa quorum-sensing (QS) systems contribute to bacterial homeostasis and pathogenicity. Although the AraC-family transcription factor VqsM has been characterized to control the production of virulence factors and QS signaling molecules, its detailed regulatory mechanisms still remain elusive. Here, we report that VqsM directly binds to the lasI promoter region, and thus regulates its expression. To identify additional targets of VqsM in P. aeruginosa PAO1, we performed chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) and detected 48 enriched loci harboring VqsM-binding peaks in the P. aeruginosa genome. The direct regulation of these genes by VqsM has been confirmed by electrophoretic mobility shift assays and quantitative real-time polymerase chain reactions. A VqsM-binding motif was identified by using the MEME suite and verified by footprint assays in vitro. In addition, VqsM directly bound to the promoter regions of the antibiotic resistance regulator NfxB and the master type III secretion system (T3SS) regulator ExsA. Notably, the vqsM mutant displayed more resistance to two types of antibiotics and promoted bacterial survival in a mouse model, compared to wild-type PAO1. Collectively, this work provides new cues to better understand the detailed regulatory networks of QS systems, T3SS, and antibiotic resistance.
Collapse
Affiliation(s)
- Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Xuefeng Li
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, 501 North Columbia Rd, EJRF Building, Room 2726, ND 58203, USA
| | - Yan Ye
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, 501 North Columbia Rd, EJRF Building, Room 2726, ND 58203, USA
| | - Min Wu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, 501 North Columbia Rd, EJRF Building, Room 2726, ND 58203, USA
| |
Collapse
|
28
|
Ye Y, Li X, Wang W, Ouedraogo KC, Li Y, Gan C, Tan S, Zhou X, Wu M. Atg7 deficiency impairs host defense against Klebsiella pneumoniae by impacting bacterial clearance, survival and inflammatory responses in mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L355-63. [PMID: 24993132 DOI: 10.1152/ajplung.00046.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Klebsiella pneumoniae (Kp) is a Gram-negative bacterium that can cause serious infections in humans. Autophagy-related gene 7 (Atg7) has been implicated in certain bacterial infections; however, the role of Atg7 in macrophage-mediated immunity against Kp infection has not been elucidated. Here we showed that Atg7 expression was significantly increased in murine alveolar macrophages (MH-S) upon Kp infection, indicating that Atg7 participated in host defense. Knocking down Atg7 with small-interfering RNA increased bacterial burdens in MH-S cells. Using cell biology assays and whole animal imaging analysis, we found that compared with wild-type mice atg7 knockout (KO) mice exhibited increased susceptibility to Kp infection, with decreased survival rates, decreased bacterial clearance, and intensified lung injury. Moreover, Kp infection induced excessive proinflammatory cytokines and superoxide in the lung of atg7 KO mice. Similarly, silencing Atg7 in MH-S cells markedly increased expression levels of proinflammatory cytokines. Collectively, these findings reveal that Atg7 offers critical resistance to Kp infection by modulating both systemic and local production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Yan Ye
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Xuefeng Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Wenxue Wang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Kiswendsida Claude Ouedraogo
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Yi Li
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Changpei Gan
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Shirui Tan
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Xikun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Min Wu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
29
|
Zhou X, Li X, Ye Y, Zhao K, Zhuang Y, Li Y, Wei Y, Wu M. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat Commun 2014; 5:3619. [PMID: 24717937 PMCID: PMC4011559 DOI: 10.1038/ncomms4619] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/11/2014] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) have been implicated in a spectrum of physiological and pathological conditions, including immune responses. miR-302b has been implicated in stem cell differentiation but its role in immunity remains unknown. Here we show that miR-302b is induced by TLR2 and TLR4 through ERK-p38-NF-κB signaling upon Gram-negative bacterium Pseudomonas aeruginosa infection. Suppression of inflammatory responses to bacterial infection is mediated by targeting IRAK4, a protein required for the activation and nuclear translocation of NF-κB. Through negative feedback, enforced expression of miR-302b or IRAK4 siRNA silencing inhibits downstream NF-κB signaling and airway leukocyte infiltration, thereby alleviating lung injury and increasing survival in P. aeruginosa-infected mice. In contrast, miR-302b inhibitors exacerbate inflammatory responses and decrease survival in P. aeruginosa-infected mice and lung cells. These findings reveal that miR-302b is a novel inflammatory regulator of NF-κB activation in respiratory bacterial infections by providing negative feedback to TLRs-mediated immunity.
Collapse
Affiliation(s)
- Xikun Zhou
- 1] Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA [2] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [3]
| | - Xuefeng Li
- 1] Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA [2] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [3]
| | - Yan Ye
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Kelei Zhao
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yan Zhuang
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yi Li
- 1] Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA [2] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Basic Sciences, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| |
Collapse
|
30
|
Li X, Zhou X, Li Y, Li J, Privratsky B, Ye Y, Wu E, Gao H, Huang C, Wu M. Lyn regulates inflammatory responses in Klebsiella pneumoniae infection via the p38/NF-κB pathway. Eur J Immunol 2014; 44:763-73. [PMID: 24338528 PMCID: PMC4103995 DOI: 10.1002/eji.201343972] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 11/11/2013] [Indexed: 02/05/2023]
Abstract
Klebsiella pneumoniae (Kp) is one of the most common pathogens in nosocomial infections and is becoming increasingly multidrug resistant. However, the underlying molecular pathogenesis of this bacterium remains elusive, limiting the therapeutic options. Understanding the mechanism of its pathogenesis may facilitate the development of anti-bacterial therapeutics. Here, we show that Lyn, a pleiotropic Src tyrosine kinase, is involved in host defense against Kp by regulating phagocytosis process and simultaneously downregulating inflammatory responses. Using acute infection mouse models, we observed that lyn(-/-) mice were more susceptible to Kp with increased mortality and severe lung injury compared with WT mice. Kp infected-lyn(-/-) mice exhibited elevated inflammatory cytokines (IL-6 and TNF-α), and increased superoxide in the lung and other organs. In addition, the phosphorylation of p38 and NF-κB p65 subunit increased markedly in response to Kp infection in lyn(-/-) mice. We also demonstrated that the translocation of p65 from cytoplasm to nuclei increased in cultured murine lung epithelial cells by Lyn siRNA knockdown. Furthermore, lipid rafts clustered with activated Lyn and accumulated in the site of Kp invasion. Taken together, these findings revealed that Lyn may participate in host defense against Kp infection through the negative modulation of inflammatory cytokines.
Collapse
Affiliation(s)
- Xuefeng Li
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Xikun Zhou
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yi Li
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Jiaxin Li
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Breanna Privratsky
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Yan Ye
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Hongwei Gao
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Canhua Huang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203-9037, USA
| |
Collapse
|
31
|
Zhao Y, Ye Y, Zhou X, Chen J, Jin Y, Hanson A, Zhao JX, Wu M. Photosensitive fluorescent dye contributes to phototoxicity and inflammatory responses of dye-doped silica NPs in cells and mice. Am J Cancer Res 2014; 4:445-59. [PMID: 24578727 PMCID: PMC3936296 DOI: 10.7150/thno.7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Dye-doped fluorescent silica nanoparticles provide highly intense and photostable fluorescence signals. However, some dopant dye molecules are photosensitive. A widely-used photosensitive fluorescent dopant, RuBpy, was chosen to systematically investigate the phototoxicity of the dye-doped silica nanoparticles (NPs). We investigated cell viability, DNA damage, and Reactive Oxygen Species (ROS) levels in alveolar macrophages using the dye-doped NPs with or without irradiation. Our results showed that the RuBpy-doped silica NPs could induce significant amount of ROS, DNA damage, apoptosis and impaired proliferation in MH-S cells. In vivo studies in mice showed that RuBpy-doped silica NPs induced significant inflammatory cytokine production and lowered expression in signaling proteins such as ERK1/2 and NF-κB as well as increased lung injury determined by myeloperoxidase and lipid peroxidation. Strikingly, we also found that both RuBpy alone and NPs induced systemic signaling activation in the kidney compared to the liver and lung where showed highly selective signaling patterns, which is more pronounced than RuBpy-doped silica NPs. Moreover, we discovered a critical biomarker (e.g., HMGB1) for silica NPs-induced stress and toxicity and demonstrated differentially-regulated response patterns in various organs. Our results indicate for the first time that the RuBpy-doped silica NPs may impose less inflammatory responses but stronger thermotherapeutic effects on target cells in animals than naked NPs in a time- and dose-dependent manner.
Collapse
|
32
|
Leitão E, Costa AC, Brito C, Costa L, Pombinho R, Cabanes D, Sousa S. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection. Cell Cycle 2014; 13:928-40. [PMID: 24552813 DOI: 10.4161/cc.27780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.
Collapse
Affiliation(s)
- Elsa Leitão
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Ana Catarina Costa
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Cláudia Brito
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Lionel Costa
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Rita Pombinho
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| |
Collapse
|
33
|
Huang H, Weaver A, Wu E, Li Y, Gao H, Fan W, Wu M. Lipid-based signaling modulates DNA repair response and survival against Klebsiella pneumoniae infection in host cells and in mice. Am J Respir Cell Mol Biol 2013; 49:798-807. [PMID: 23742126 DOI: 10.1165/rcmb.2013-0069oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae causes serious infections in the urinary tract, respiratory tract, and blood. Lipid rafts, also known as membrane microdomains, have been linked to the pathogenesis of bacterial infection. However, whether lipid rafts affect K. pneumoniae internalization into host cells remains unknown. Here, we show for the first time that K. pneumoniae was internalized into lung cells by activating lipid rafts. Disrupting lipid rafts by methyl-β-cyclodextrin inhibited pathogen internalization, impairing host defense. A deficient mutant of capsule polysaccharide (CPS) showed a higher internalization rate than a wild-type strain, indicating that CPS may inhibit bacterial entry to host cells. Furthermore, lipid rafts may affect the function of extracellular regulated kinase (ERK)-1/2, and knocking down ERK1/2 via short, interfering RNA increased apoptosis in both alveolar macrophages and epithelial cells after infection. To gain insights into bacterial pathogenesis, we evaluated the impact of lipid rafts on DNA integrity, and showed that raft aggregates also affect DNA damage and DNA repair responses (i.e., 8-oxoguanine DNA glycosylase [Ogg1]) through the regulation of reactive oxygen species. Importantly, cells overexpressing Ogg1 demonstrated reduced cytotoxicity during bacterial infection. Taken together, these results suggest that lipid rafts may modulate bacterial internalization, thereby affecting DNA damage and repair, which is critical to host defense against K. pneumoniae.
Collapse
Affiliation(s)
- Huang Huang
- 1 Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota
| | | | | | | | | | | | | |
Collapse
|
34
|
Lemercier C, Elsen S. Pseudomonas aeruginosaprise en flagrant délit de casse ! Med Sci (Paris) 2013; 29:949-50. [DOI: 10.1051/medsci/20132911006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
35
|
Elsen S, Collin-Faure V, Gidrol X, Lemercier C. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells. Cell Mol Life Sci 2013; 70:4385-97. [PMID: 23760206 PMCID: PMC11113669 DOI: 10.1007/s00018-013-1392-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.
Collapse
Affiliation(s)
- Sylvie Elsen
- CEA, DSV, iRTSV-BCI, INSERM, UMR-S 1036, Biologie Du Cancer Et de L’Infection, CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, UJF-Grenoble 1, Grenoble, France
| | | | - Xavier Gidrol
- CEA, DSV, iRTSV-BGE, INSERM, Unit 1038, Biologie à Grande Echelle, UJF-Grenoble 1, Grenoble, France
| | - Claudie Lemercier
- CEA, DSV, iRTSV-BGE, INSERM, Unit 1038, Biologie à Grande Echelle, UJF-Grenoble 1, Grenoble, France
- INSERM Unit 1038, CEA, DSV, iRTSV-BGE, 17 Rue Des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
36
|
Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the Toll-like receptor 4 signaling pathway. Infect Immun 2013; 81:4509-18. [PMID: 24082079 DOI: 10.1128/iai.01008-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacteria can naturally secrete outer membrane vesicles (OMVs) as pathogenic factors, while these vesicles may also serve as immunologic regulators if appropriately prepared. However, it is largely unknown whether Pseudomonas aeruginosa OMVs can activate inflammatory responses and whether immunization with OMVs can provide immune protection against subsequent infection. We purified and identified OMVs, which were then used to infect lung epithelial cells in vitro as well as C57BL/6J mice to investigate the immune response and the underlying signaling pathway. The results showed that OMVs generated from P. aeruginosa wild-type strain PAO1 were more cytotoxic to alveolar epithelial cells than those from quorum-sensing (QS)-deficient strain PAO1-ΔlasR. The levels of Toll-like receptor 4 (TLR4) and proinflammatory cytokines, including interleukin-1β (IL-1β) and IL-6, increased following OMV infection. Compared with lipopolysaccharide (LPS), lysed OMVs in which the membrane structures were broken induced a weak immune response. Furthermore, expression levels of TLR4-mediated responders (i.e., cytokines) were markedly downregulated by the TLR4 inhibitor E5564. Active immunization with OMVs or passive transfer of sera with a high cytokine quantity acquired from OMV-immunized mice could protect healthy mice against subsequent lethal PAO1 challenges (1.5 × 10(11) CFU). Collectively, these findings indicate that naturally secreted P. aeruginosa OMVs may trigger significant inflammatory responses via the TLR4 signaling pathway and protect mice against pseudomonal lung infection.
Collapse
|
37
|
Deng X, Weerapana E, Ulanovskaya O, Sun F, Liang H, Ji Q, Ye Y, Fu Y, Zhou L, Li J, Zhang H, Wang C, Alvarez S, Hicks LM, Lan L, Wu M, Cravatt BF, He C. Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. Cell Host Microbe 2013; 13:358-70. [PMID: 23498960 DOI: 10.1016/j.chom.2013.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/03/2012] [Accepted: 02/11/2013] [Indexed: 12/29/2022]
Abstract
Thiol-group oxidation of active and allosteric cysteines is a widespread regulatory posttranslational protein modification. Pathogenic bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus, use regulatory cysteine oxidation to respond to and overcome reactive oxygen species (ROS) encountered in the host environment. To obtain a proteome-wide view of oxidation-sensitive cysteines in these two pathogens, we employed a competitive activity-based protein profiling approach to globally quantify hydrogen peroxide (H2O2) reactivity with cysteines across bacterial proteomes. We identified ∼200 proteins containing H2O2-sensitive cysteines, including metabolic enzymes, transcription factors, and uncharacterized proteins. Additional biochemical and genetic studies identified an oxidation-responsive cysteine in the master quorum-sensing regulator LasR and redox-regulated activities for acetaldehyde dehydrogenase ExaC, arginine deiminase ArcA, and glyceraldehyde 3-phosphate dehydrogenase. Taken together, our data indicate that pathogenic bacteria exhibit a complex, multilayered response to ROS that includes the rapid adaption of metabolic pathways to oxidative-stress challenge.
Collapse
Affiliation(s)
- Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xia J, Zhang CR, Zhang S, Li FF, Feng MG, Wang XW, Liu SS. Analysis of whitefly transcriptional responses to Beauveria bassiana infection reveals new insights into insect-fungus interactions. PLoS One 2013; 8:e68185. [PMID: 23861870 PMCID: PMC3702578 DOI: 10.1371/journal.pone.0068185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Background The fungal pathogen, Beauveria bassiana, is an efficient biocontrol agent against a variety of agricultural pests. A thorough understanding of the basic principles of insect-fungus interactions may enable the genetic modification of Beauveria bassiana to enhance its virulence. However, the molecular mechanism of insect response to Beauveria bassiana infection is poorly understood, let alone the identification of fungal virulent factors involved in pathogenesis. Methodology/Principal Findings Here, next generation sequencing technology was applied to examine the expression of whitefly (Bemisia tabaci) genes in response to the infection of Beauveria bassiana. Results showed that, compared to control, 654 and 1,681genes were differentially expressed at 48 hours and 72 hours post-infected whiteflies, respectively. Functional and enrichment analyses indicated that the DNA damage stimulus response and drug metabolism were important anti-fungi strategies of the whitefly. Mitogen-activated protein kinase (MAPK) pathway was also likely involved in the whitefly defense responses. Furthermore, the notable suppression of general metabolism and ion transport genes observed in 72 hours post-infected B. tabaci might be manipulated by fungal secreted effectors. By mapping the sequencing tags to B. bassiana genome, we also identified a number of differentially expressed fungal genes between the early and late infection stages. These genes are generally associated with fungal cell wall synthesis and energy metabolism. The expression of fungal cell wall protein genes might play an important role in fungal pathogenesis and the dramatically up-regulated enzymes of carbon metabolism indicate the increasing usage of energy during the fungal infection. Conclusions/Significance To our knowledge, this is the first report on the molecular mechanism of fungus-whitefly interactions. Our results provide a road map for future investigations on insect-pathogen interactions and genetically modifying the fungus to enhance its efficiency in whitefly control.
Collapse
Affiliation(s)
- Jun Xia
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Chang-Rong Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Shan Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Fang-Fang Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Ming-Guang Feng
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
- * E-mail: (XW); (SL)
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
- * E-mail: (XW); (SL)
| |
Collapse
|
39
|
Guo Q, Shen N, Yuan K, Li J, Wu H, Zeng Y, Fox J, Bansal AK, Singh BB, Gao H, Wu M. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity. Eur J Immunol 2012; 42:1500-11. [PMID: 22678904 DOI: 10.1002/eji.201142051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Caveolin-1 (Cav1) is a structural protein of caveolae. Although Cav1 is associated with certain bacterial infections, it is unknown whether Cav1 is involved in host immunity against Klebsiella pneumoniae, the third most commonly isolated microorganism from bacterial sepsis patients. Here, we showed that cav1 knockout mice succumbed to K. pneumoniae infection with markedly decreased survival rates, increased bacterial burdens, intensified tissue injury, hyperactive proinflammatory cytokines, and systemic bacterial dissemination as compared with WT mice. Knocking down Cav1 by a dominant negative approach in lung epithelial MLE-12 cells resulted in similar outcomes (decreased bacterial clearance and increased proinflammatory cytokine production). Furthermore, we revealed that STAT5 influences the GSK3β-β-catenin-Akt pathway, which contributes to the intensive inflammatory response and rapid infection dissemination seen in Cav1 deficiency. Collectively, our findings indicate that Cav1 may offer resistance to K. pneumoniae infection, by affecting both systemic and local production of proinflammatory cytokines via the actions of STAT5 and the GSK3β-β-catenin-Akt pathway.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yuan K, Huang C, Fox J, Laturnus D, Carlson E, Zhang B, Yin Q, Gao H, Wu M. Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J Cell Sci 2012; 125:507-15. [PMID: 22302984 DOI: 10.1242/jcs.094573] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intracellular bacteria have been shown to cause autophagy, which impacts infectious outcomes, whereas extracellular bacteria have not been reported to activate autophagy. Here, we demonstrate that Pseudomonas aeruginosa, a Gram-negative extracellular bacterium, activates autophagy with considerably increased LC3 punctation in both an alveolar macrophage cell line (MH-S) and primary alveolar macrophages. Using the LC3 Gly120 mutant, we successfully demonstrated a hallmark of autophagy, conjugation of LC3 to phosphatidylethanolamine (PE). The accumulation of typical autophagosomes with double membranes was identified morphologically by transmission electron microscopy (TEM). Furthermore, the increase of PE-conjugated LC3 was indeed induced by infection rather than inhibition of lysosome degradation. P. aeruginosa induced autophagy through the classical beclin-1-Atg7-Atg5 pathway as determined by specific siRNA analysis. Rapamycin and IFN-γ (autophagy inducers) augmented bacterial clearance, whereas beclin-1 and Atg5 knockdown reduced intracellular bacteria. Thus, P. aeruginosa-induced autophagy represents a host protective mechanism, providing new insight into the pathogenesis of this infection.
Collapse
Affiliation(s)
- Kefei Yuan
- The State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li G, Yuan K, Yan C, Fox J, Gaid M, Breitwieser W, Bansal AK, Zeng H, Gao H, Wu M. 8-Oxoguanine-DNA glycosylase 1 deficiency modifies allergic airway inflammation by regulating STAT6 and IL-4 in cells and in mice. Free Radic Biol Med 2012; 52:392-401. [PMID: 22100973 PMCID: PMC3740570 DOI: 10.1016/j.freeradbiomed.2011.10.490] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/23/2022]
Abstract
8-Oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein affects allergic airway inflammation after sensitization and challenge by ovalbumin(OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased IFN-γ production in cultured epithelial cells after exposure to house dust mite extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1 deficiency negatively regulates allergen-induced airway inflammatory response.
Collapse
Affiliation(s)
- Guoping Li
- Respiratory Section, Luzhou Medical College Teaching Hospital, Luzhou 646000, China
| | | | - Chunguang Yan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School
| | | | | | - Wayne Breitwieser
- Pulmonary, Critical Care and Sleep Medicine, the Altru Hospital, Grand Forks, North Dakota
| | - Arvind K. Bansal
- Pulmonary, Critical Care and Sleep Medicine, the Altru Hospital, Grand Forks, North Dakota
| | - Huawei Zeng
- USDA, ARS, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota
| | - Hongwei Gao
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative & Pain Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Min Wu
- Corresponding author: Min Wu, , Tel: 701 777-4875, Fax: 701 777-2382; or Hongwei Gao, , Tel: 617-5255030, Fax: 617-5255027
| |
Collapse
|
42
|
Yuan K, Huang C, Fox J, Gaid M, Weaver A, Li G, Singh BB, Gao H, Wu M. Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor kappaB (NF-kappaB). J Biol Chem 2011; 286:21814-25. [PMID: 21515682 DOI: 10.1074/jbc.m111.237628] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caveolin-1 (Cav-1), an important composition protein within the flask-shaped membrane invaginations termed caveolae, may play a role in host defense against infections. However, the phenotype in Pseudomonas aeruginosa-infected cav1 knock-out (KO) mice is still unresolved, and the mechanism involved is almost entirely unknown. Using a respiratory infection model, we confirmed a crucial role played by Cav-1 in host defense against this pathogen because Cav-1 KO mice showed increased mortality, severe lung injury, and systemic dissemination as compared with wild-type (WT) littermates. In addition, cav1 KO mice exhibited elevated inflammatory cytokines (IL-6, TNF-α, and IL-12a), decreased phagocytic ability of macrophages, and increased superoxide release in the lung, liver, and kidney. We further studied relevant cellular signaling processes and found that STAT3 and NF-κB are markedly activated. Our data revealed that the Cav-1/STAT3/NF-κB axis is responsible for a dysregulated cytokine response, which contributes to increased mortality and disease progression. Moreover, down-regulating Cav-1 in cell culture with a dominant negative strategy demonstrated that STAT3 activation was essential for the translocation of NF-κB into the nucleus, confirming the observations from cav1 KO mice. Collectively, our studies indicate that Cav-1 is critical for inflammatory responses regulating the STAT3/NF-κB pathway and thereby impacting P. aeruginosa infection.
Collapse
Affiliation(s)
- Kefei Yuan
- State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|