1
|
Heininger U, Martini H, Eeuwijk J, Prokić I, Guignard AP, Turriani E, Duchenne M, Berlaimont V. Pertactin deficiency of Bordetella pertussis: Insights into epidemiology, and perspectives on surveillance and public health impact. Hum Vaccin Immunother 2024; 20:2435134. [PMID: 39686838 DOI: 10.1080/21645515.2024.2435134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Pertussis resurgence has been documented even in countries with high pediatric vaccine coverage. The proportion of Bordetella pertussis isolates not expressing pertactin (PRN) has increased in several countries where acellular pertussis (aP) vaccines are used. We systematically reviewed published literature up to July 2023 on PRN-negative B. pertussis isolates in MEDLINE and Embase with no geographical limitations, complemented with a gray literature search. An increase in the proportion of PRN-negative isolates was observed in countries where aP vaccines were used, while such isolates seem to be absent in countries using whole-cell pertussis vaccination. We reviewed the data supporting aP vaccine-driven evolution of B. pertussis, explored the effects of PRN deficiency on the clinical presentation of pertussis, summarized the evidence for preserved aP vaccine effectiveness, and proposed actions to further improve assessment of the clinical significance of PRN deficiency and its potential impact on pertussis prevention.
Collapse
Affiliation(s)
- Ulrich Heininger
- Department of Pediatric Infectious Diseases and Vaccinology, University of Basel Children's Hospital, Basel, Switzerland
| | - Helena Martini
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jennifer Eeuwijk
- Pallas Health Research and Consultancy, a P95 company, Rotterdam, The Netherlands
| | - Ivana Prokić
- Pallas Health Research and Consultancy, a P95 company, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
2
|
Sun X, Zhang T, Sun J, Zhou J, Chen Q, Jia C, Xu Y, Wu Y, Wang Z, Wang W. The seroepidemiology of immunoglobulin G antibodies against pertussis toxin and filamentous hemagglutinin in the east of China during the COVID-19 pandemic. Hum Vaccin Immunother 2024; 20:2331438. [PMID: 38517269 PMCID: PMC10962620 DOI: 10.1080/21645515.2024.2331438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
This study employed sero-epidemiological methods to estimate the incidence of pertussis within a healthy population located in eastern China. The aim was to gain deeper insights into the epidemiological characteristics and burden of pertussis within the country. Blood samples were collected from healthy individuals in Jiangsu Province between June 2019 and December 2022. The levels of IgG antibodies against pertussis toxin (anti-PT) and filamentous hemagglutinin (anti-FHA) in the serum were quantitatively measured using enzyme-linked immunosorbent assay (ELISA). Additionally, pertussis case data reported in Jiangsu Province were collected from the China Information System for Disease Control and Prevention and compared with the results of this study. In 2022, the reported incidence of pertussis stood at 1.0 per 100,000 individuals, marking the highest rate observed in the past two decades. Among 1,909 patients examined, the geometric mean concentration (GMC) of anti-PT IgG antibody was 20.2 (18.5-21.9) IU/ml, while that of anti-FHA IgG antibody was 27.0 (25.4-28.7) IU/ml. The IgG-PT and IgG-FHA seropositivity rate (>20.0 IU/ml) was highest in the 1 ~ 2 y old group and decreased rapidly to the lowest in the 3 ~ 4 y old group and then increased gradually with age. The estimated rate of pertussis infection based on seroprevalence was approximately 25,625-fold higher than the reported notification rate in the ≥15 year age group. Our findings highlight decreased immunity post-vaccination, stressing the importance of additional booster shots for adolescents and adults to maintain immunity and reduce severe illness. Additionally, they offer vital guidance for policymakers to enhance immunization strategies.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Tingting Zhang
- Medical Record Office, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jinning Sun
- Department of Expanded Program on Immunization, Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Juan Zhou
- Department of Expanded Program on Immunization, Gaogang Center for Disease Control and Prevention, Taizhou, China
| | - Qiang Chen
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Chengmei Jia
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yan Xu
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yun Wu
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhiguo Wang
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Wen Wang
- Department of Rheumatology and Immunology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| |
Collapse
|
3
|
Zhou G, Li Y, Wang H, Wang Y, Gao Y, Xu J, Wang F, Peng T, Zhang M, Shao Z. Emergence of Erythromycin-Resistant and Pertactin- and Filamentous Hemagglutinin-Deficient Bordetella pertussis Strains - Beijing, China, 2022-2023. China CDC Wkly 2024; 6:437-441. [PMID: 38846358 PMCID: PMC11150165 DOI: 10.46234/ccdcw2024.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
What is already known about this topic? Pertussis has reemerged as a significant public health threat, primarily due to variations in Bordetella pertussis strains, antimicrobial resistance, and vaccine evasion. What is added by this report? All isolated strains were identified as ptxA1/ptxC2/ptxP3/prn150/fim2-1/fim3-1/fhaB1/tcfA2 type and exhibited resistance to erythromycin. Two strains showed a deficiency in Fha, thirty in Prn, and one strain exhibited multiple immunogen deficiencies. What are the implications for public health practice? The emergence and spread of immunogen-deficient strains likely result from prolonged vaccine selection pressure, posing challenges to the efficacy of pertussis vaccines. Additionally, the ongoing dissemination of ptxP3 strains with high-level macrolide resistance presents a significant obstacle to clinical treatment strategies.
Collapse
Affiliation(s)
- Guilan Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Li
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Hairui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Wang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Yuan Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengshuang Wang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Tao Peng
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Dorey A, Howorka S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat Chem 2024; 16:314-334. [PMID: 38448507 DOI: 10.1038/s41557-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/14/2023] [Indexed: 03/08/2024]
Abstract
Sequencing of nucleic acids with nanopores has emerged as a powerful tool offering rapid readout, high accuracy, low cost and portability. This label-free method for sequencing at the single-molecule level is an achievement on its own. However, nanopores also show promise for the technologically even more challenging sequencing of polypeptides, something that could considerably benefit biological discovery, clinical diagnostics and homeland security, as current techniques lack portability and speed. Here we survey the biochemical innovations underpinning commercial and academic nanopore DNA/RNA sequencing techniques, and explore how these advances can fuel developments in future protein sequencing with nanopores.
Collapse
Affiliation(s)
- Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| |
Collapse
|
5
|
Natrajan MS, Hall JM, Weigand MR, Peng Y, Williams MM, Momin M, Damron FH, Dubey P, Tondella ML, Pawloski LC. Genome-based prediction of cross-protective, HLA-DR-presented epitopes as putative vaccine antigens for multiple Bordetella species. Microbiol Spectr 2024; 12:e0352723. [PMID: 38054724 PMCID: PMC10783135 DOI: 10.1128/spectrum.03527-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Pertussis, caused by Bordetella pertussis, can cause debilitating respiratory symptoms, so whole-cell pertussis vaccines (wPVs) were introduced in the 1940s. However, reactogenicity of wPV necessitated the development of acellular pertussis vaccines (aPVs) that were introduced in the 1990s. Since then, until the COVID-19 pandemic began, reported pertussis incidence was increasing, suggesting that aPVs do not induce long-lasting immunity and may not effectively prevent transmission. Additionally, aPVs do not provide protection against other Bordetella species that are observed during outbreaks. The significance of this work is in determining potential new vaccine antigens for multiple Bordetella species that are predicted to elicit long-term immune responses. Genome-based approaches have aided the development of novel vaccines; here, these methods identified Bordetella vaccine candidates that may be cross-protective and predicted to induce strong memory responses. These targets can lead to an improved vaccine with a strong safety profile while also strengthening the longevity of the immune response.
Collapse
Affiliation(s)
- Muktha S. Natrajan
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Laboratory Leadership Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Michael R. Weigand
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mohamed Momin
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Frederick Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Maria Lucia Tondella
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucia C. Pawloski
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Weaver KL, Bitzer GJ, Wolf MA, Pyles GM, DeJong MA, Dublin SR, Huckaby AB, Gutierrez MDLP, Hall JM, Wong TY, Warden M, Petty JE, Witt WT, Cunningham C, Sen-Kilic E, Damron FH, Barbier M. Intranasal challenge with B. pertussis leads to more severe disease manifestations in mice than aerosol challenge. PLoS One 2023; 18:e0286925. [PMID: 37917623 PMCID: PMC10621807 DOI: 10.1371/journal.pone.0286925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 11/04/2023] Open
Abstract
The murine Bordetella pertussis challenge model has been utilized in preclinical research for decades. Currently, inconsistent methodologies are employed by researchers across the globe, making it difficult to compare findings. The objective of this work was to utilize the CD-1 mouse model with two routes of challenge, intranasal and aerosol administration of B. pertussis, to understand the differences in disease manifestation elicited via each route. We observed that both routes of B. pertussis challenge result in dose-dependent colonization of the respiratory tract, but overall, intranasal challenge led to higher bacterial burden in the nasal lavage, trachea, and lung. Furthermore, high dose intranasal challenge results in induction of leukocytosis and pro-inflammatory cytokine responses compared to aerosol challenge. These data highlight crucial differences in B. pertussis challenge routes that should be considered during experimental design.
Collapse
Affiliation(s)
- Kelly L. Weaver
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Graham J. Bitzer
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - M. Allison Wolf
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Gage M. Pyles
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Megan A. DeJong
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Spencer R. Dublin
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Annalisa B. Huckaby
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Maria de la Paz Gutierrez
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Jesse M. Hall
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Ting Y. Wong
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Matthew Warden
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Jonathan E. Petty
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - William T. Witt
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Casey Cunningham
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Emel Sen-Kilic
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - F. Heath Damron
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Mariette Barbier
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
7
|
Hester MM, Oliveira LVN, Wang R, Mou Z, Lourenco D, Ostroff GR, Specht CA, Levitz SM. Cross-reactivity between vaccine antigens from the chitin deacetylase protein family improves survival in a mouse model of cryptococcosis. Front Immunol 2022; 13:1015586. [PMID: 36248898 PMCID: PMC9554598 DOI: 10.3389/fimmu.2022.1015586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Meningitis due to the fungal pathogen Cryptococcus neoformans is estimated to cause nearly 200,000 deaths annually, mostly in resource-limited regions. We previously identified cryptococcal protein antigens which, when delivered in glucan particles, afford vaccine-mediated protection against an otherwise lethal infection. Many of these proteins exhibit significant homology to other similar cryptococcal proteins leading us to hypothesize that protection may be augmented by immunologic cross-reactivity to multiple members of a protein family. To examine the significance of protein cross-reactivity in vaccination, we utilized strains of Cryptococcus that are genetically deficient in select antigens, yet are still lethal in mice. Vaccination with a protein without homologs (e.g., Mep1 and Lhc1) protected against challenge with wild-type Cryptococcus, but not against a deletion strain lacking that protein. Contrastingly, vaccination with a single chitin deacetylase (Cda) protein protected against the corresponding deletion strain, presumably due to host recognition of one or more other family members still expressed in this strain. Vaccination with a single Cda protein induced cross-reactive antibody and interferon-gamma (IFNγ) immune responses to other Cda protein family members. Paradoxically, we saw no evidence of cross-protection within the carboxypeptidase family of proteins. Factors such as in vivo protein expression and the degree of homology across the family could inform the extent to which vaccine-mediated immunity is amplified. Together, these data suggest a role for prioritizing protein families in fungal vaccine design: increasing the number of immune targets generated by a single antigen may improve efficacy while diminishing the risk of vaccine-resistant strains arising from gene mutations.
Collapse
Affiliation(s)
- Maureen M. Hester
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lorena V. N. Oliveira
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Ruiying Wang
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Zhongming Mou
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Diana Lourenco
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Gary R. Ostroff
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Charles A. Specht
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Stuart M. Levitz
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Brandal LT, Vestrheim DF, Bruvik T, Roness RB, Bjørnstad ML, Greve-Isdahl M, Steens A, Brynildsrud OB. Evolution of Bordetella pertussis in the acellular vaccine era in Norway, 1996 to 2019. Eur J Clin Microbiol Infect Dis 2022; 41:913-924. [PMID: 35543837 PMCID: PMC9135841 DOI: 10.1007/s10096-022-04453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/28/2022] [Indexed: 01/16/2023]
Abstract
We described the population structure of Bordetella pertussis (B. pertussis) in Norway from 1996 to 2019 and determined if there were evolutionary shifts and whether these correlated with changes in the childhood immunization program. We selected 180 B. pertussis isolates, 22 from the whole cell vaccine (WCV) era (1996-1997) and 158 from the acellular vaccine (ACV) era (1998-2019). We conducted whole genome sequencing and determined the distribution and frequency of allelic variants and temporal changes of ACV genes. Norwegian B. pertussis isolates were evenly distributed across a phylogenetic tree that included global strains. We identified seven different allelic profiles of ACV genes (A-F), in which profiles A1, A2, and B dominated (89%), all having pertussis toxin (ptxA) allele 1, pertussis toxin promoter (ptxP) allele 3, and pertactin (prn) allele 2 present. Isolates with ptxP1 and prn1 were not detected after 2007, whereas the prn2 allele likely emerged prior to 1972, and ptxP3 before the early 1980s. Allele conversions of ACV genes all occurred prior to the introduction of ACV. Sixteen percent of our isolates showed mutations within the prn gene. ACV and its booster doses (implemented for children in 2007 and adolescents in 2013) might have contributed to evolvement of a more uniform B. pertussis population, with recent circulating strains having ptxA1, ptxP3, and prn2 present, and an increasing number of prn mutations. These strains clearly deviate from ACV strains (ptxA1, ptxP1, prn1), and this could have implications for vaccine efficiency and, therefore, prevention and control of pertussis.
Collapse
Affiliation(s)
- Lin T Brandal
- Norwegian Institute of Public Health, Oslo, Norway.
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | | | | | | | | | | | | | - Ola B Brynildsrud
- Norwegian Institute of Public Health, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
9
|
Lefrancq N, Bouchez V, Fernandes N, Barkoff AM, Bosch T, Dalby T, Åkerlund T, Darenberg J, Fabianova K, Vestrheim DF, Fry NK, González-López JJ, Gullsby K, Habington A, He Q, Litt D, Martini H, Piérard D, Stefanelli P, Stegger M, Zavadilova J, Armatys N, Landier A, Guillot S, Hong SL, Lemey P, Parkhill J, Toubiana J, Cauchemez S, Salje H, Brisse S. Global spatial dynamics and vaccine-induced fitness changes of Bordetella pertussis. Sci Transl Med 2022; 14:eabn3253. [PMID: 35476597 DOI: 10.1126/scitranslmed.abn3253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As with other pathogens, competitive interactions between Bordetella pertussis strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures; however, this has rarely been measured because of inadequate data and analytical tools. We used 3344 sequences from 23 countries to show that, on average, there are 28.1 transmission chains circulating within a subnational region, with the number of chains strongly associated with host population size. It took 5 to 10 years for B. pertussis to be homogeneously distributed throughout Europe, with the same time frame required for the United States. Increased fitness of pertactin-deficient strains after implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of vaccine policy in shifting local diversity of a pathogen that is responsible for 160,000 deaths annually.
Collapse
Affiliation(s)
- Noémie Lefrancq
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Nadia Fernandes
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France
| | - Alex-Mikael Barkoff
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, Netherlands
| | - Tine Dalby
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Thomas Åkerlund
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Jessica Darenberg
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Katerina Fabianova
- National Institute of Public Health, Department of Infectious Diseases Epidemiology, CZ-10000 Prague, Czech Republic
| | - Didrik F Vestrheim
- Norwegian Institute of Public Health, Department of Infectious Disease Control and Vaccine, N-0213 Oslo, Norway
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK.,Immunisation and Countermeasures Division, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Juan José González-López
- University Hospital Vall d'Hebron, Microbiology Department, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, 08193 Barcelona, Spain
| | - Karolina Gullsby
- Centre for Research and Development, Uppsala University/Region Gävleborg, 80187 Gävle, Sweden
| | - Adele Habington
- Molecular Microbiology Laboratory, Children's Health Ireland, Crumlin, D12 N512 Dublin, Ireland
| | - Qiushui He
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Helena Martini
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, IT-00161 Rome, Italy
| | - Marc Stegger
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Jana Zavadilova
- National Institute of Public Health, National Reference Laboratory for Pertussis and Diphtheria, 100 00 Prague, Czech Republic
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France.,Université Paris Cité, Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Simon Cauchemez
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France
| | - Henrik Salje
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| |
Collapse
|
10
|
Holubova J, Stanek O, Juhasz A, Hamidou Soumana I, Makovicky P, Sebo P. The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathog 2022; 18:e1010402. [PMID: 35395059 PMCID: PMC9020735 DOI: 10.1371/journal.ppat.1010402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/20/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.
Collapse
Affiliation(s)
- Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Attila Juhasz
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Peter Makovicky
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Abrahams JS, Weigand MR, Ring N, MacArthur I, Etty J, Peng S, Williams MM, Bready B, Catalano AP, Davis JR, Kaiser MD, Oliver JS, Sage JM, Bagby S, Tondella ML, Gorringe AR, Preston A. Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microb Genom 2022; 8:000761. [PMID: 35143385 PMCID: PMC8942028 DOI: 10.1099/mgen.0.000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis, whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis. We found 590 amplifications in M. tuberculosis, and like B. pertussis, these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis. This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis, highlighting the need for a more holistic understanding of bacterial genetics.
Collapse
Affiliation(s)
- Jonathan S. Abrahams
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Michael R. Weigand
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie Ring
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Iain MacArthur
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Joss Etty
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Scott Peng
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | | - Stefan Bagby
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - M. Lucia Tondella
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Andrew Preston
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
12
|
Ring N, Davies H, Morgan J, Sundaresan M, Tiong A, Preston A, Bagby S. Comparative genomics of Bordetella pertussis isolates from New Zealand, a country with an uncommonly high incidence of whooping cough. Microb Genom 2022; 8:000756. [PMID: 35084300 PMCID: PMC8914352 DOI: 10.1099/mgen.0.000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Whooping cough, the respiratory disease caused by Bordetella pertussis, has undergone a wide-spread resurgence over the last several decades. Previously, we developed a pipeline to assemble the repetitive B. pertussis genome into closed sequences using hybrid nanopore and Illumina sequencing. Here, this sequencing pipeline was used to conduct a more high-throughput, longitudinal screen of 66 strains isolated between 1982 and 2018 in New Zealand. New Zealand has a higher incidence of whooping cough than many other countries; usually at least twice as many cases per 100000 people as the USA and UK and often even higher, despite similar rates of vaccine uptake. To the best of our knowledge, these strains are the first New Zealand B. pertussis isolates to be sequenced. The analyses here show that, on the whole, genomic trends in New Zealand B. pertussis isolates, such as changing allelic profile in vaccine-related genes and increasing pertactin deficiency, have paralleled those seen elsewhere in the world. At the same time, phylogenetic comparisons of the New Zealand isolates with global isolates suggest that a number of strains are circulating in New Zealand, which cluster separately from other global strains, but which are closely related to each other. The results of this study add to a growing body of knowledge regarding recent changes to the B. pertussis genome, and are the first genetic investigation into B. pertussis isolates from New Zealand.
Collapse
Affiliation(s)
- Natalie Ring
- Department of Biology and Biochemistry, University of Bath, UK
- Roslin Institute, University of Edinburgh, UK
| | - Heather Davies
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Julie Morgan
- Institute of Environmental Science and Research, Porirua, New Zealand
| | | | - Audrey Tiong
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Andrew Preston
- Department of Biology and Biochemistry, University of Bath, UK
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
13
|
Saedi S, Safarchi A, Moghadam FT, Heidarzadeh S, Nikbin VS, Shahcheraghi F. Fha Deficient Bordetella pertussis Isolates in Iran with 50 Years Whole Cell Pertussis Vaccination. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1454-1462. [PMID: 34568185 PMCID: PMC8426785 DOI: 10.18502/ijph.v50i7.6636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
Background: Bordetella pertussis, a highly contagious respiratory. Notably, the resurgence of pertussis has recently been associated with the lacking production of vaccine virulence factors. This study aimed to screen pertactin (Prn) and filamentous hemagglutinin (Fha) production in Iran with 50 years’ whole cell vaccine (WCV) immunization program. Methods: Overall, 130 B. pertussis isolates collected from Pertussis Reference Laboratory of Iran during 2005–2018. Real-time PCR was performed by targeting IS481, ptxP, IS1001 and IS1002 for species confirmation of B. pertussis. Western-blot was used to evaluate the expression of virulence factors (pertactin and filamentous hemagglutinin). Results: All tested B. pertussis isolates expressed Prn and all except two isolates expressed Fha. We have sequenced genomes of these strains and identified differences compared with genome reference B. pertussis Tohama I. Conclusion: Many countries reporting Prn and Fha-deficiency due to acellular vaccine (ACV) pressure. Our results demonstrate in a country with WCV history, Fha-deficient isolates may rise independently. However, Prn-deficient isolates are more under the ACV pressure in B. pertussis isolates. Continues surveillance will provide a better understanding of the effect of WCV on the evolution of the pathogen deficiency.
Collapse
Affiliation(s)
- Samaneh Saedi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Safarchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Bouchez V, Guillot S, Landier A, Armatys N, Matczak S, Toubiana J, Brisse S. Evolution of Bordetella pertussis over a 23-year period in France, 1996 to 2018. ACTA ACUST UNITED AC 2021; 26. [PMID: 34533118 PMCID: PMC8447829 DOI: 10.2807/1560-7917.es.2021.26.37.2001213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundBordetella pertussis is the main agent of whooping cough. Vaccination with acellular pertussis vaccines has been largely implemented in high-income countries. These vaccines contain 1 to 5 antigens: pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN) and/or fimbrial proteins (FIM2 and FIM3). Monitoring the emergence of B. pertussis isolates that might partially escape vaccine-induced immunity is an essential component of public health strategies to control whooping cough.AimWe aimed to investigate temporal trends of fimbriae serotypes and vaccine antigen-expression in B. pertussis over a 23-year period in France (1996-2018).MethodsIsolates (n = 2,280) were collected through hospital surveillance, capturing one third of hospitalised paediatric pertussis cases. We assayed PT, FHA and PRN production by Western blot (n = 1,428) and fimbriae production by serotyping (n = 1,058). Molecular events underlying antigen deficiency were investigated by genomic sequencing.ResultsThe proportion of PRN-deficient B. pertussis isolates has increased steadily from 0% (0/38) in 2003 to 48.4% (31/64) in 2018 (chi-squared test for trend, p < 0.0001), whereas only 5 PT-, 5 FHA- and 9 FIM-deficient isolates were found. Impairment of PRN production was predominantly due to IS481 insertion within the prn gene or a 22 kb genomic inversion involving the prn promoter sequence, indicative of convergent evolution. FIM2-expressing isolates have emerged since 2011 at the expense of FIM3.ConclusionsB. pertussis is evolving through the rapid increase of PRN-deficient isolates and a recent shift from FIM3 to FIM2 expression. Excluding PRN, the loss of vaccine antigen expression by circulating B. pertussis isolates is epidemiologically insignificant.
Collapse
Affiliation(s)
- Valérie Bouchez
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Annie Landier
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Nathalie Armatys
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| | - Soraya Matczak
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | -
- The members of the group are listed under Investigators
| | - Julie Toubiana
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France.,Université de Paris, Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Whooping Cough and other Bordetella infections, Paris, France
| |
Collapse
|
15
|
Safarchi A, Saedi S, Octavia S, Sedaghatpour M, Bolourchi N, Tay CY, Lamichhane B, Shahcheraghi F, Lan R. Evolutionary genomics of recent clinical Bordetella pertussis isolates from Iran: wide circulation of multiple ptxP3 lineages and report of the first ptxP3 filamentous hemagglutinin-negative B. pertussis. INFECTION GENETICS AND EVOLUTION 2021; 93:104970. [PMID: 34171476 DOI: 10.1016/j.meegid.2021.104970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Here we investigated nationwide clinical Bordetella pertussis isolated during 2005-2017 from different provinces of Iran, a country with more than 50 years whole cell vaccine immunisation history. Our results revealed the ongoing increase in the population of ptxP3/fim3-2 B. pertussis isolates in different provinces which were differentiated into nine clades. The largest clade (clade 8) which was previously found to be prevalent in Tehran was also prevalent across the country and clade 5 with ptxP3/prn9 genotype has also increased in frequency (14% of all ptxP3 isolates) in recent years. Furthermore, we detected the first ptxP3 B. pertussis isolates that does not express filamentous hemagglutinin (FhaB) as one of the major antigens of the pathogen and a key component of the acellular pertussis vaccine.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Samaneh Saedi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Mehdi Sedaghatpour
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran
| | - Negin Bolourchi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran
| | - Chin Yen Tay
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Binit Lamichhane
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia.
| | - Fereshteh Shahcheraghi
- Pertussis Reference Laboratory, Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Islamic Republic of Iran.
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
16
|
Jiang W, Wei C, Mou D, Zuo W, Liang J, Ma X, Wang L, Gao N, Gu Q, Luo P, Ma Y, Li J, Liu S, Shi L, Sun M. Infant rhesus macaques as a non-human primate model of Bordetella pertussis infection. BMC Infect Dis 2021; 21:407. [PMID: 33941094 PMCID: PMC8091708 DOI: 10.1186/s12879-021-06090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s–1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. Methods In the present study, infant rhesus macaques were challenged with Bordetella pertussis (B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. Results Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p. Conclusion These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06090-y.
Collapse
Affiliation(s)
- Wenwen Jiang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Chen Wei
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Dachao Mou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Weilun Zuo
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Lichan Wang
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Na Gao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Peng Luo
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Yan Ma
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jingyan Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China.
| |
Collapse
|
17
|
Lesne E, Cavell BE, Freire-Martin I, Persaud R, Alexander F, Taylor S, Matheson M, van Els CACM, Gorringe A. Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Front Microbiol 2020; 11:2108. [PMID: 32983069 PMCID: PMC7481377 DOI: 10.3389/fmicb.2020.02108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Despite high vaccination coverage, Bordetella pertussis the causative agent of whooping cough is still a health concern worldwide. A resurgence of pertussis cases has been reported, particularly in countries using acellular vaccines with waning immunity and pathogen adaptation thought to be responsible. A better understanding of protective immune responses is needed for the development of improved vaccines. In our study, B. pertussis strain B1917 variants presenting a single gene deletion were generated to analyze the role of vaccine components or candidate vaccine antigens as targets for bactericidal antibodies generated after acellular vaccination or natural infection. Our results show that acellular vaccination generates bactericidal antibodies that are only directed against pertactin. Serum bactericidal assay performed with convalescent samples show that disease induces bactericidal antibodies against Prn but against other antigen(s) as well. Four candidate vaccine antigens (CyaA, Vag8, BrkA, and TcfA) have been studied but were not targets for complement-mediated bactericidal antibodies after natural infection. We confirm that Vag8 and BrkA are involved in complement resistance and would be targeted by blocking antibodies. Our study suggests that the emergence and the widespread circulation of Prn-deficient strains is driven by acellular vaccination and the generation of bactericidal antibodies targeting Prn.
Collapse
Affiliation(s)
- Elodie Lesne
- Public Health England, Porton Down, United Kingdom
| | | | | | - Ruby Persaud
- Public Health England, Porton Down, United Kingdom
| | | | | | | | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | |
Collapse
|
18
|
Zeddeman A, van Schuppen E, Kok KE, van Gent M, Heuvelman KJ, Bart MJ, van der Heide HGJ, Gillard J, Simonetti E, Eleveld MJ, van Opzeeland FJH, van Selm S, de Groot R, de Jonge MI, Mooi FR, Diavatopoulos DA. Effect of FHA and Prn on Bordetella pertussis colonization of mice is dependent on vaccine type and anatomical site. PLoS One 2020; 15:e0237394. [PMID: 32822419 PMCID: PMC7446907 DOI: 10.1371/journal.pone.0237394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/25/2020] [Indexed: 01/05/2023] Open
Abstract
Bordetella pertussis vaccine escape mutants that lack expression of the pertussis antigen pertactin (Prn) have emerged in vaccinated populations in the last 10–20 years. Additionally, clinical isolates lacking another acellular pertussis (aP) vaccine component, filamentous hemagglutinin (FHA), have been found sporadically. Here, we show that both whole-cell pertussis (wP) and aP vaccines induced protection in the lungs of mice, but that the wP vaccine was more effective in nasal clearance. Importantly, bacterial populations isolated from the lungs shifted to an FHA-negative phenotype due to frameshift mutations in the fhaB gene. Loss of FHA expression was strongly selected for in Prn-deficient strains in the lungs following aP but not wP vaccination. The combined loss of Prn and FHA led to complete abrogation of bacterial surface binding by aP-induced serum antibodies. This study demonstrates vaccine- and anatomical site-dependent adaptation of B. pertussis and has major implications for the design of improved pertussis vaccines.
Collapse
Affiliation(s)
- Anne Zeddeman
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Evi van Schuppen
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Kristianne E. Kok
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein van Gent
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees J. Heuvelman
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marieke J. Bart
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han G. J. van der Heide
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joshua Gillard
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Elles Simonetti
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Fred J. H. van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Saskia van Selm
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I. de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Frits R. Mooi
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Dimitri A. Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Fong W, Rockett R, Timms V, Sintchenko V. Optimization of sample preparation for culture-independent sequencing of Bordetella pertussis. Microb Genom 2020; 6:e000332. [PMID: 32108565 PMCID: PMC7200065 DOI: 10.1099/mgen.0.000332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bordetella pertussis, the aetiological agent of whooping cough, is re-emerging globally despite widespread vaccination. B. pertussis is highly infectious and, prior to vaccination programmes, was the leading cause of infant mortality. The WHO estimated that over 600 000 deaths are prevented annually by pertussis vaccination, but B. pertussis infection was still responsible for over 63 000 deaths globally in 2013. The re-emergence of B. pertussis has been linked to strains with inactive or absent major virulence factors included in vaccines such as pertactin, pertussis toxin and filamentous haemagglutinin. Thus, the molecular surveillance of currently circulating strains is critical in understanding and controlling B. pertussis. Such information provides data on strains to inform control measures and the identification of future vaccine antigens. Current surveillance and typing methods for B. pertussis rely on the availability of clinical isolates. However, since the 1990s, the majority of pertussis cases have been diagnosed by PCR, where an isolate is not needed. The rapid decline in the availability of B. pertussis isolates impacts our ability to monitor this infection. The growing uptake of next-generation sequencing (NGS) has offered the opportunity for culture-independent genome sequencing and typing of this fastidious pathogen. Therefore, the objective of the study was to optimize respiratory sample preparation, independent of culture, in order to type B. pertussis using NGS. The study compared commercial depletion kits and specimen-processing methods using selective lysis detergents. The goal was to deplete human DNA, the major obstacle for sequencing a pathogen directly from a clinical sample. Samples spiked with a clinically relevant amount of B. pertussis were used to provide comparison between the different methods. Commercial depletion kits including the MolYsis, Qiagen Microbiome and NEBNext Kits were tested. Previously published methods, for Saponin and TritonX-100, were also trialled as a depletion. The ratio of B. pertussis to human DNA was determined by real-time PCR for ERV3 and IS481 (as markers of human and B. pertussis DNA, respectively), then samples were sequenced using the Illumina NextSeq 500 platform. The number of human and B. pertussis sequenced reads were then compared between treatments. The results showed that commercial kits reduced the human DNA present, but also reduced the concentration of target B. pertussis. However, selective lysis with Saponin treatment resulted in almost undetectable levels of human DNA, with minimal loss of target B. pertussis DNA. Sequencing read depth improved five-fold in reads to B. pertussis. Our investigation delivered a potential protocol that will enable the public health laboratory surveillance of B. pertussis in the era of culture-independent testing.
Collapse
Affiliation(s)
- Winkie Fong
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Rebecca Rockett
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Verlaine Timms
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
20
|
How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:1-17. [PMID: 31321755 DOI: 10.1007/5584_2019_401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level.
Collapse
|
21
|
Molecular Epidemiology of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:19-33. [PMID: 31342459 DOI: 10.1007/5584_2019_402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although vaccination has been effective, Bordetella pertussis is increasingly causing epidemics, especially in industrialized countries using acellular vaccines (aPs). One factor behind the increased circulation is the molecular changes on the pathogen level. After pertussis vaccinations were introduced, changes in the fimbrial (Fim) serotype of the circulating strains was observed. When bacterial typing methods improved, further changes between the vaccine and circulating strains, especially among the common virulence genes including pertussis toxin (PT) and pertactin (PRN) were noticed. Moreover, development of genome based techniques including pulsed-field gel electrophoresis (PFGE), multiple-locus variable number tandem repeat analysis (MLVA) and whole-genome sequencing (WGS) have offered a better resolution to monitor B. pertussis strains. After the introduction of aP vaccines, B. pertussis strains that are deficient to vaccine antigens, especially PRN, have appeared widely. On the other hand, antimicrobial resistance to first line drugs (macrolides) against B. pertussis is still low in many countries and therefore no globally evaluated antimicrobial susceptibility test values have been recommended. In this review, we focus on the molecular changes in the bacteria, which have or may have affected the past and current epidemiology of pertussis.
Collapse
|
22
|
Ring N, Abrahams JS, Jain M, Olsen H, Preston A, Bagby S. Resolving the complex Bordetella pertussis genome using barcoded nanopore sequencing. Microb Genom 2018; 4:e000234. [PMID: 30461375 PMCID: PMC6321869 DOI: 10.1099/mgen.0.000234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/12/2018] [Indexed: 11/30/2022] Open
Abstract
The genome of Bordetella pertussis is complex, with high G+C content and many repeats, each longer than 1000 bp. Long-read sequencing offers the opportunity to produce single-contig B. pertussis assemblies using sequencing reads which are longer than the repetitive sections, with the potential to reveal genomic features which were previously unobservable in multi-contig assemblies produced by short-read sequencing alone. We used an R9.4 MinION flow cell and barcoding to sequence five B. pertussis strains in a single sequencing run. We then trialled combinations of the many nanopore user community-built long-read analysis tools to establish the current optimal assembly pipeline for B. pertussis genome sequences. This pipeline produced closed genome sequences for four strains, allowing visualization of inter-strain genomic rearrangement. Read mapping to the Tohama I reference genome suggests that the remaining strain contains an ultra-long duplicated region (almost 200 kbp), which was not resolved by our pipeline; further investigation also revealed that a second strain that was seemingly resolved by our pipeline may contain an even longer duplication, albeit in a small subset of cells. We have therefore demonstrated the ability to resolve the structure of several B. pertussis strains per single barcoded nanopore flow cell, but the genomes with highest complexity (e.g. very large duplicated regions) remain only partially resolved using the standard library preparation and will require an alternative library preparation method. For full strain characterization, we recommend hybrid assembly of long and short reads together; for comparison of genome arrangement, assembly using long reads alone is sufficient.
Collapse
Affiliation(s)
- Natalie Ring
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jonathan S. Abrahams
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Miten Jain
- UC Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Hugh Olsen
- UC Santa Cruz Genomics Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Andrew Preston
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Stefan Bagby
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
23
|
Dienstbier A, Pouchnik D, Wildung M, Amman F, Hofacker IL, Parkhill J, Holubova J, Sebo P, Vecerek B. Comparative genomics of Czech vaccine strains of Bordetella pertussis. Pathog Dis 2018; 76:5089975. [PMID: 30184175 DOI: 10.1093/femspd/fty071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/30/2018] [Indexed: 11/13/2022] Open
Abstract
Bordetella pertussis is a strictly human pathogen causing the respiratory infectious disease called whooping cough or pertussis. B. pertussis adaptation to acellular pertussis vaccine pressure has been repeatedly highlighted, but recent data indicate that adaptation of circulating strains started already in the era of the whole cell pertussis vaccine (wP) use. We sequenced the genomes of five B. pertussis wP vaccine strains isolated in the former Czechoslovakia in the pre-wP (1954-1957) and early wP (1958-1965) eras, when only limited population travel into and out of the country was possible. Four isolates exhibit a similar genome organization and form a distinct phylogenetic cluster with a geographic signature. The fifth strain is rather distinct, both in genome organization and SNP-based phylogeny. Surprisingly, despite isolation of this strain before 1966, its closest sequenced relative appears to be a recent isolate from the US. On the genome content level, the five vaccine strains contained both new and already described regions of difference. One of the new regions contains duplicated genes potentially associated with transport across the membrane. The prevalence of this region in recent isolates indicates that its spread might be associated with selective advantage leading to increased strain fitness.
Collapse
Affiliation(s)
- Ana Dienstbier
- Institute of Microbiology v.v.i., Laboratory of post-transcriptional control of gene expression, 14220 Prague, Czech Republic
| | - Derek Pouchnik
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520
| | - Mark Wildung
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-7520
| | - Fabian Amman
- University of Vienna, Institute for Theoretical Chemistry, Währinger Straße 17, A-1090 Vienna, Austria
| | - Ivo L Hofacker
- University of Vienna, Institute for Theoretical Chemistry, Währinger Straße 17, A-1090 Vienna, Austria.,University of Vienna, Research group BCB, Faculty of Computer Science, Währinger Straße 24, 1090 Vienna, Austria
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Cambridge, UK
| | - Jana Holubova
- Institute of Microbiology v.v.i, Laboratory of molecular biology of bacterial pathogens, 14220 Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology v.v.i, Laboratory of molecular biology of bacterial pathogens, 14220 Prague, Czech Republic
| | - Branislav Vecerek
- Institute of Microbiology v.v.i., Laboratory of post-transcriptional control of gene expression, 14220 Prague, Czech Republic
| |
Collapse
|