1
|
Abstract
The complexity of parasites and their life cycles makes vaccination against parasitic diseases challenging. This review highlights this by discussing vaccination against four relevant parasites of poultry. Coccidia, i.e., Eimeria spp., are the most important parasites in poultry production, causing multiple billions of dollars of damage worldwide. Due to the trend of antibiotic-free broiler production, use of anticoccidia vaccines in broilers is becoming much more important. As of now, only live vaccines are on the market, almost all of which must be produced in birds. In addition, these live vaccines require extra care in the management of flocks to provide adequate protection and prevent the vaccines from causing damage. Considerable efforts to develop recombinant vaccines and related work to understand the immune response against coccidia have not yet resulted in an alternative. Leucozytozoon caulleryi is a blood parasite that is prevalent in East and South Asia. It is the only poultry parasite for which a recombinant vaccine has been developed and brought to market. Histomonas meleagridis causes typhlohepatitis in chickens and turkeys. The systemic immune response after intramuscular vaccination with inactivated parasites is not protective. The parasite can be grown and attenuated in vitro, but only together with bacteria. This and the necessary intracloacal application make the use of live vaccines difficult. So far, there have been no attempts to develop a recombinant vaccine against H. meleagridis. Inactivated vaccines inducing antibodies against the poultry red mite Dermanyssus gallinae have the potential to control infestations with this parasite. Potential antigens for recombinant vaccines have been identified, but the use of whole-mite extracts yields superior results. In conclusion, while every parasite is unique, development of vaccines against them shares common problems, namely the difficulties of propagating them in vitro and the identification of protective antigens that might be used in recombinant vaccines.
Collapse
Affiliation(s)
- Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849,
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
2
|
Shi TY, Li TE, Hao Y, Sun HC, Fu Y, Yan WC, Hao LL. Molecular characterization and protective efficacy of vacuolar protein sorting 29 from Eimeria tenella. Front Cell Infect Microbiol 2023; 13:1205782. [PMID: 37469602 PMCID: PMC10352494 DOI: 10.3389/fcimb.2023.1205782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Vacuolar protein sorting 29 (VPS29) is a core component of the retromer-retriever complex and is essential for recycling numerous cell-surface cargoes from endosomes. However, there are no reports yet on VPS29 of Eimeria spp. Methods Here, we cloned and prokaryotically expressed a partial sequence of Eimeria tenella VPS29 (EtVPS29) with RT-PCR and engineered strain of Escherichia coli respectively. The localization of the VPS29 protein in E. tenella sporozoites was investigated with immunofluorescence (IFA) and overexpression assays. And its protective efficacy against E. tenella infection was investigated in chickens with the animal protection test. Results An EtVPS29 gene fragment with an ORF reading frame of 549 bp was cloned. The band size of the expressed recombinant protein, rEtVPS29, was approximately 39 kDa and was recognized by the chicken anti-E. tenella positive serum. EtVPS29 protein was observed widely distributing in the cytoplasm of E. tenella sporozoites in the IFA and overexpression assays. rEtVPS29 significantly increased average body weight gain and decreased mean lesion score and oocyst output in chickens. The relative weight gain rate in the rEtVPS29-immunized group was 62.9%, which was significantly higher than that in the unimmunized and challenged group (P < 0.05). The percentage of reduced oocyst output in the rEtVPS29 immunized group was 32.2%. The anticoccidial index of the rEtVPS29-immunized group was 144.2. Serum ELISA also showed that rEtVPS29 immunization induced high levels of specific antibodies in chickens. Discussion These results suggest that rEtVPS29 can induce a specific immune response and is a potential candidate for the development of novel vaccines against E. tenella infections in chickens.
Collapse
Affiliation(s)
- Tuan-yuan Shi
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Tian-en Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yun Hao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hong-chao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wen-chao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Li-li Hao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chen C, Tian D, Su J, Liu X, Shah MAA, Li X, Xu L, Yan R, Song X. Protective Efficacy of Rhomboid-Like Protein 3 as a Candidate Antigen Against Eimeria maxima in Chickens. Front Microbiol 2021; 12:614229. [PMID: 34025594 PMCID: PMC8131851 DOI: 10.3389/fmicb.2021.614229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/15/2021] [Indexed: 12/03/2022] Open
Abstract
Avian coccidiosis brings tremendous economic loss to the poultry industry worldwide. The third generation vaccine, including subunit and DNA vaccines, exhibited promising developmental prospects. In a previous study, we found rhomboid-like protein 3 of Eimeria maxima (EmROM3) was involved in infections by Eimeria species. However, the protective efficacy of EmROM3 against Eimeria maxima (E. maxima) remains unknown. In this study, chickens were intramuscularly immunized with the recombinant protein EmROM3 (rEmROM3) or pVAX1-EmROM3 to determine the EmROM3-induced immune response. The induced humoral immune response was determined by measuring serum IgG antibody levels in immunized chickens. The induced cellular immune response was detected by measuring the transcription level of immune related cytokines and the proportion of T cell subsets of the immunized chickens. Finally, the protective efficacy of the EmROM3 vaccine against E. maxima was evaluated by immunization-challenge trials. Results revealed that the purified rEmROM3 reacted with chicken anti-E. maxima serum. The recombinant plasmid of pVAX1-EmROM3 was transcribed and translated in the injected muscle from the vaccinated chickens. In experimental groups, the IgG titers, proportions of CD4+ and CD8+ T cells, and transcription level of splenic cytokines were significantly increased compared with the control groups. The immunization-challenge trial revealed that immunization with rEmROM3 or pVAX1-EmROM3 led to restored weight gain, alleviated enteric lesion, decreased oocyst output as well as the higher anticoccidial index (ACI), indicating partial protection against E. maxima. These results indicate that EmROM3 is an effective candidate antigen for developing novel vaccines against infection by E. maxima.
Collapse
Affiliation(s)
- Chen Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Di Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Nanjing Ringpai Vet Hospital Co., Ltd., Nanjing, China
| | - Junzhi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqian Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Ali A Shah
- Department of Pathobiology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Kong W, Wang X, Fields E, Okon B, Jenkins MC, Wilkins G, Brovold M, Golding T, Gonzales A, Golden G, Clark-Curtiss J, Curtiss R. Mucosal Delivery of a Self-destructing Salmonella-Based Vaccine Inducing Immunity Against Eimeria. Avian Dis 2020; 64:254-268. [PMID: 33112952 DOI: 10.1637/aviandiseases-d-19-00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2019] [Indexed: 11/05/2022]
Abstract
A programmed self-destructive Salmonella vaccine delivery system was developed to facilitate efficient colonization in host tissues that allows release of the bacterial cell contents after lysis to stimulate mucosal, systemic, and cellular immunities against a diversity of pathogens. Adoption and modification of these technological improvements could form part of an integrated strategy for cost-effective control and prevention of infectious diseases, including those caused by parasitic pathogens. Avian coccidiosis is a common poultry disease caused by Eimeria. Coccidiosis has been controlled by medicating feed with anticoccidial drugs or administering vaccines containing low doses of virulent or attenuated Eimeria oocysts. Problems of drug resistance and nonuniform administration of these Eimeria resulting in variable immunity are prompting efforts to develop recombinant Eimeria vaccines. In this study, we designed, constructed, and evaluated a self-destructing recombinant attenuated Salmonella vaccine (RASV) lysis strain synthesizing the Eimeria tenella SO7 antigen. We showed that the RASV lysis strain χ11791(pYA5293) with a ΔsifA mutation enabling escape from the Salmonella-containing vesicle (or endosome) successfully colonized chicken lymphoid tissues and induced strong mucosal and cell-mediated immunities, which are critically important for protection against Eimeria challenge. The results from animal clinical trials show that this vaccine strain significantly increased food conversion efficiency and protection against weight gain depression after challenge with 105E. tenella oocysts with concomitant decreased oocyst output. More importantly, the programmed regulated lysis feature designed into this RASV strain promotes bacterial self-clearance from the host, lessening persistence of vaccine strains in vivo and survival if excreted, which is a critically important advantage in a vaccine for livestock animals. Our approach should provide a safe, cost-effective, and efficacious vaccine to control coccidiosis upon addition of additional protective Eimeria antigens. These improved RASVs can also be modified for use to control other parasitic diseases infecting other animal species.
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Xiao Wang
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Emilia Fields
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Blessing Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Gary Wilkins
- Animal Parasitic Diseases Laboratory, the Agricultural Research Service, USDA, Beltsville, MD 20705-2359
| | - Matthew Brovold
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Tiana Golding
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Amanda Gonzales
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Greg Golden
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
| | - Josephine Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
5
|
Li G, Ma C, Wang D, Chen W, Ma D. Recombinant Lactococcus lactis co-expressing dendritic cell target peptide and E. tenella 3-1E protein: immune response and efficacy against homologous challenge. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1733495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Dian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
6
|
Zhao N, Lv J, Lu Y, Jiang Y, Li H, Liu Y, Zhang X, Zhao X. Prolonging and enhancing the protective efficacy of the EtMIC3-C-MAR against eimeria tenella through delivered by attenuated salmonella typhimurium. Vet Parasitol 2020; 279:109061. [PMID: 32143014 DOI: 10.1016/j.vetpar.2020.109061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/09/2023]
Abstract
The microneme adhesive repeats (MAR) of Eimeria tenella microneme protein 3 (EtMIC3) are associated with binding to and invasion of host cells. Adhesion and invasion-related proteins or domains are often strongly immunogenic, immune responses mounted against these factors that play a key role in blocking invasion. In the present study, an oral live vaccine consisting of attenuated Salmonella typhimurium X4550 carrying two MAR domains fragment (St-X4550-MAR) was constructed and its protective efficacies were evaluated. The results showed that St-X4550-MAR was more immunogenic and conferred a higher degree of protection than recombinant MAR polypeptide as reflected by increased body weight, decreased oocyst shedding and lesion scores, increased serum IgG and cecal sIgA antibody production, and increasing levels of interferon-γ and interleukin-10. Thus, MAR domains are highly immunogenic and St-X4550-MAR had moderate activity against E. tenella infection by stimulating humoral, mucosal and cellular immunity. Chickens immunized with our constructed live vaccine provided considerable protections as early as at 10 d post-immunization (ACI: 155.17), and maintained higher protection levels at 20 d post-immunization (ACI: 173.66), and at 30 d post-immunization (ACI: 162.4). While the protective efficacy of chickens immunized with the recombinant MAR peptides showed a decreased trend as the post immunization time prolonging. Thus, using live-attenuated S. typhimurium X4550 as a vaccine expression and delivery system can significantly improve the protective efficacy and duration of protective immunity of MAR of EtMIC3.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Junfeng Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yingying Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yumin Liu
- Shandong Huamutianyuan Agriculture and Animal Husbandry Co., Ltd., 1 Gangxing 3 Road, Jinan, Shandong Province, 250101, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
7
|
Clark-Curtiss JE, Curtiss R. Salmonella Vaccines: Conduits for Protective Antigens. THE JOURNAL OF IMMUNOLOGY 2018; 200:39-48. [PMID: 29255088 DOI: 10.4049/jimmunol.1600608] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/06/2017] [Indexed: 11/19/2022]
Abstract
Vaccines afford a better and more cost-effective approach to combatting infectious diseases than continued reliance on antibiotics or antiviral or antiparasite drugs in the current era of increasing incidences of diseases caused by drug-resistant pathogens. Recombinant attenuated Salmonella vaccines (RASVs) have been significantly improved to exhibit the same or better attributes than wild-type parental strains to colonize internal lymphoid tissues and persist there to serve as factories to continuously synthesize and deliver rAgs. Encoded by codon-optimized pathogen genes, Ags are selected to induce protective immunity to infection by that pathogen. After immunization through a mucosal surface, the RASV attributes maximize their abilities to elicit mucosal and systemic Ab responses and cell-mediated immune responses. This article summarizes many of the numerous innovative technologies and discoveries that have resulted in RASV platforms that will enable development of safe efficacious RASVs to protect animals and humans against a diversity of infectious disease agents.
Collapse
Affiliation(s)
- Josephine E Clark-Curtiss
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610.,Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and .,Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
8
|
Recombinant anticoccidial vaccines - a cup half full? INFECTION GENETICS AND EVOLUTION 2017; 55:358-365. [DOI: 10.1016/j.meegid.2017.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/27/2022]
|
9
|
Ma C, Zhang L, Gao M, Ma D. Construction of Lactococcus lactis expressing secreted and anchored Eimeria tenella 3-1E protein and comparison of protective immunity against homologous challenge. Exp Parasitol 2017; 178:14-20. [PMID: 28526337 DOI: 10.1016/j.exppara.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 11/17/2022]
Abstract
Two novel plasmids pTX8048-SP-Δ3-1E and pTX8048-SP-NAΔ3-1E-CWA were constructed. The plasmids were respectively electrotransformed into L. lactis NZ9000 to generate strain of L. lactis/pTX8048-SP-Δ3-1E in which 3-1E protein was expressed in secretion, and L. lactis/pTX8048-SP-NAΔ3-1E-CWA on which 3-1E protein was covalently anchored to the surface of bacteria cells. The expression of target proteins were examined by Western blot. The live lactococci expressing secreted 3-1E protein, anchored 3-1E protein, and cytoplasmic 3-1E protein was administered orally to chickens respectively, and the protective immunity and efficacy were compared by animal experiment. The results showed oral immunization to chickens with recombinant lactococci expressing anchored 3-1E protein elicited high 3-1E-specific serum IgG, increased high proportion of CD4+ and CD8α+ cells in spleen, alleviated average lesion score in cecum, decreased the oocyst output per chicken compared to lactococci expressing cytoplasmic or secreted 3-1E protein. Taken together, these findings indicated the surface anchored Eimeria protein displayed by L. lacits can induce protective immunity and partial protection against homologous infection.
Collapse
Affiliation(s)
- Chunli Ma
- College of Food Science, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China
| | - Lili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, NO. 59 Mucai Street, Harbin 150030, China
| | - Mingyang Gao
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, NO. 59 Mucai Street, Harbin 150030, China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, NO. 59 Mucai Street, Harbin 150030, China.
| |
Collapse
|
10
|
|
11
|
Rosche KL, Aljasham AT, Kipfer JN, Piatkowski BT, Konjufca V. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen. PLoS One 2015; 10:e0130092. [PMID: 26068006 PMCID: PMC4466801 DOI: 10.1371/journal.pone.0130092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 05/15/2015] [Indexed: 10/30/2022] Open
Abstract
Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.
Collapse
Affiliation(s)
- Kristin L Rosche
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Alanoud T Aljasham
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - James N Kipfer
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Bryan T Piatkowski
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Vjollca Konjufca
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| |
Collapse
|
12
|
Vishwakarma V, Sahoo SS, Das S, Ray S, Hardt WD, Suar M. Cholera toxin-B (ctxB) antigen expressing Salmonella Typhimurium polyvalent vaccine exerts protective immune response against Vibrio cholerae infection. Vaccine 2015; 33:1880-9. [PMID: 25701672 DOI: 10.1016/j.vaccine.2015.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/25/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022]
Abstract
Live attenuated vaccines are cost effective approach for preventing a broad range of infectious diseases, and thus are of great interest. However, immune-defects can predispose the patient to infections by the vaccine candidate itself. So far, few live vaccine candidates have been designed specifically for immune compromised individuals. Recently, we reported a new Salmonella Typhimurium Z234-vaccine strain (Periaswamy et al., PLoS ONE 2012;7:e45433), which was specifically attenuated in the NADPH-oxidase deficient host. In the present study, the Z234-vaccine strain was further engineered to express heterologous antigen (Vibrio cholerae toxin antigen subunit-B, i.e. CtxB) with the intention of creating a vector for simultaneous protection against Cholera and Salmonellosis. The primary aim of this study was to ensure the expression of CtxB antigen by the recombinant vaccine strain Z234-pMS101. The antigen CtxB was expressed through Z234 as a fusion protein with N-terminal signal sequence of Salmonella outer protein (SopE), an effector protein from Salmonella under the control of SopE promoter. The CtxB-expressing plasmid construct pMS101 (pM968-pSopE-ctxB) was found to be stable both in vitro and in vivo. In an oral mouse infection model, the vaccine strain Z234-pMS101 efficiently colonized the host gut. The extent of protection was confirmed after challenging the immunized hosts with live V. cholerae. Vaccinated mice showed reduced gut colonization by V. cholerae. Further assessment of immunological parameters supported the possibility of conferring effective immune response by Z234-pMS101 vaccine strain. Overall, the Z234-pMS101 vaccine strain showed potential as a promising polyvalent vaccine candidate to protect against S. Typhimurium and V. cholerae infection simultaneously.
Collapse
Affiliation(s)
- Vikalp Vishwakarma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
13
|
Shivaramaiah C, Barta JR, Hernandez-Velasco X, Téllez G, Hargis BM. Coccidiosis: recent advancements in the immunobiology of Eimeria species, preventive measures, and the importance of vaccination as a control tool against these Apicomplexan parasites. VETERINARY MEDICINE-RESEARCH AND REPORTS 2014; 5:23-34. [PMID: 32670843 PMCID: PMC7337151 DOI: 10.2147/vmrr.s57839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/05/2022]
Abstract
Coccidiosis, caused by parasites of the genus Eimeria, is probably the most expensive parasitic disease of poultry. Species of Eimeria are ubiquitous where poultry are raised and are known to cause drastic reductions in performance and induce mortality, thereby affecting the overall health status of poultry. Chemotherapy has been the predominant form of disease control for many years, even though vaccination is steadily gaining importance as a feasible control method. The objective of this review is to highlight recent advancements in understanding the role of host immunity against coccidiosis. In addition, pros and cons associated with chemotherapy and the role of vaccination as an increasingly popular disease control method are discussed. Finally, the role played by recombinant vaccines as a potential vaccination tool is highlighted. With interest growing rapidly in understanding host–parasite biology, recent developments in designing recombinant vaccines and potential epitopes that have shown promise are mentioned.
Collapse
Affiliation(s)
| | - John R Barta
- Department of Pathobiology, University of Guelph, ON, Canada
| | | | - Guillermo Téllez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
14
|
Abstract
Cryptosporidium spp is a ubiquitous parasite that has long been recognized as a frequent cause of protozoal diarrhea in humans. While infections in immunocompetent hosts are usually self-limiting, immunocompromised individuals can develop severe, chronic, and life-threatening illness. Vaccine development or immunotherapy that prevents disease or reduces the severity of infection is a relevant option since efficacious drug treatments are lacking. In particular, children in developing countries might benefit the most from a vaccine since cryptosporidiosis in early childhood has been reported to be associated with subsequent impairment in growth, physical fitness, and intellectual capacity. In this review, immunotherapies that have been used clinically are described as well as experimental vaccines and their evaluation in vivo.
Collapse
Affiliation(s)
- Jan R Mead
- Atlanta Veterans Affairs Medical Center; Decatur, GA USA; Department of Pediatrics; Emory University; Atlanta, GA USA
| |
Collapse
|
15
|
Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol 2014; 30:12-9. [DOI: 10.1016/j.pt.2013.10.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/16/2023]
|
16
|
Kong W, Clark-Curtiss J, Curtiss R. Utilizing Salmonella for antigen delivery: the aims and benefits of bacterial delivered vaccination. Expert Rev Vaccines 2013; 12:345-7. [PMID: 23560914 DOI: 10.1586/erv.13.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Li WC, Zhang XK, Du L, Pan L, Gong PT, Li JH, Yang J, Li H, Zhang XC. Eimeria maxima: efficacy of recombinant Mycobacterium bovis BCG expressing apical membrane antigen1 against homologous infection. Parasitol Res 2013; 112:3825-33. [PMID: 23949244 DOI: 10.1007/s00436-013-3570-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/01/2013] [Indexed: 01/18/2023]
Abstract
Coccidiosis is one of the most important protozoan diseases and inflicts severe economic losses on the poultry industry. The aim of this study was to evaluate the capacity of Bacillus Calmette-Guerin (BCG) to deliver apical membrane antigen1 (AMA1) of Eimeria maxima to stimulate specific cellular and humoral immune responses in chickens. Day-old birds were immunized twice with rBCG/pMV261-AMA1, rBCG/pMV361-AMA1, or BCG via oral, intranasal, and subcutaneous routes and then orally challenged with homologous E. maxima sporulated oocysts. Gain of body weight, fecal oocyst output, lesion scores, serum antibody responses, numbers of splenocyte CD4(+) and CD8(+) T cells, and gut cytokine transcript levels were assessed as measures of protective immunity. Challenge experiments demonstrated that rBCG vaccination via intranasal or subcutaneous routes could increase weight gain, decrease intestinal lesions, and reduce fecal oocyst shedding, and the subcutaneous and intranasal routes were superior to the oral route based on the immune effects. Furthermore, intranasal rBCG immunization could also lead to a significant increase in serum antibody, the percentage of CD4+ and CD8+ T lymphocyte cells, and the levels of IL-1β, IFN-γ, IL-15, and IL-10 mRNAs compared with the control group. These results suggested that intranasal rBCG immunization could induce a strong humoral and cellular response directed against homologous E. maxima infection. This study provides data for the use of rBCG to develop a prophylactic vaccine against coccidiosis.
Collapse
Affiliation(s)
- Wen-Chao Li
- College of Animal Medicine, Jilin University, Changchun, 130062, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Faisal SM, Yan F, Chen TT, Useh NM, Guo S, Yan W, Wang SJ, Glaser AL, McDonough SP, Singh B, Chang YF. Evaluation of a Salmonella vectored vaccine expressing Mycobacterium avium subsp. paratuberculosis antigens against challenge in a goat model. PLoS One 2013; 8:e70171. [PMID: 23950909 PMCID: PMC3739776 DOI: 10.1371/journal.pone.0070171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/14/2013] [Indexed: 12/21/2022] Open
Abstract
Johnes disease (JD), caused by Mycobacterium avium subsp paratuberculosis (MAP), occurs worldwide as chronic granulomatous enteritis of domestic and wild ruminants. To develop a cost effective vaccine, in a previous study we constructed an attenuated Salmonella strain that expressed a fusion product made up of partial fragments of MAP antigens (Ag85A, Ag85B and SOD) that imparted protection against challenge in a mouse model. In the current study we evaluated the differential immune response and protective efficacy of the Sal-Ag vaccine against challenge in a goat model as compared to the live attenuated vaccine MAP316F. PBMCs from goats vaccinated with Sal-Ag and challenged with MAP generated significantly lower levels of IFN-γ, following in vitro stimulation with either Antigen-mix or PPD jhonin, than PBMC from MAP316F vaccinated animals. Flow cytometric analysis showed the increase in IFN-γ correlated with a significantly higher level of proliferation of CD4, CD8 and γδT cells and an increased expression of CD25 and CD45R0 in MAP316F vaccinated animals as compared to control animals. Evaluation of a range of cytokines involved in Th1, Th2, Treg, and Th17 immune responses by quantitative PCR showed low levels of expression of Th1 (IFN-γ, IL-2, IL-12) and proinflammatory cytokines (IL-6, IL-8, IL-18, TNF-α) in the Sal-Ag immunized group. Significant levels of Th2 and anti-inflammatory cytokines transcripts (IL-4, IL-10, IL-13, TGF-β) were expressed but their level was low and with a pattern similar to the control group. Over all, Sal-Ag vaccine imparted partial protection that limited colonization in tissues of some animals upon challenge with wild type MAP but not to the level achieved with MAP316F. In conclusion, the data indicates that Sal-Ag vaccine induced only a low level of protective immunity that failed to limit the colonization of MAP in infected animals. Hence the Sal-Ag vaccine needs further refinement to increase its efficacy.
Collapse
Affiliation(s)
- Syed M Faisal
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chandra S, Faisal SM, Chen JW, Chen TT, McDonough SP, Liu S, Moreira MAS, Akey BL, Chang CF, Chang YF. Immune response and protective efficacy of live attenuated Salmonella vaccine expressing antigens of Mycobacterium avium subsp. paratuberculosis against challenge in mice. Vaccine 2012; 31:242-51. [PMID: 23000222 DOI: 10.1016/j.vaccine.2012.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 11/25/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes chronic granulomatous enteritis in ruminants that leads to diarrhea and eventually death. Existing vaccines have proven useful in limiting disease progression but have not been effective in preventing infection. To address this problem we constructed an attenuated Salmonella (ΔyejE; ΔssaV) strain harboring a plasmid that expressed a fusion protein comprised of the Salmonella Type III secretion system (T3SS) effector SopE and MAP antigens (85A, 85B, SOD, 74F) and evaluated its potential as vaccine candidate against MAP infection in mice. Of various SopE-MAP fusion proteins analyzed, only SopE104-Ag85A C-terminal(202-347)-SOD N-terminal(1-72)-Ag85B C-terminal(173-330) and SopE104-74F(1-148+669-786)were successfully expressed and secreted into culture media as revealed by western blot analysis. Mice immunized with attenuated Salmonella (ΔyejE; ΔssaV) harboring the SopE104-Ag85A C-terminal(202-347)-SOD N-terminal(1-72)-Ag85B C-terminal(173-330) and SopE104-74F(1-148+669-786)plasmid generated a potent and long lasting Th1 response characterized by production of IFN-γ. The cytokine profile varied at various time points after immunization and challenge, which showed down regulation of Th2 cytokines (IL-4, IL-10) and up-regulation of proinflammatory cytokines (IL-12 and IL-17). Further, the immune response correlated with protection as revealed by reduced bacterial load and improved histopathology of spleen and liver, which showed fewer granulomas and lower numbers of acid-fast bacilli as compared to PBS controls. Interestingly, vaccination with antigens mixed with Ribi adjuvant (Agmix+Ribi) imparted better protection than the attenuated salmonella vectored vaccine. Thus, priming with a live recombinant Salmonella strain that secretes MAP antigens represents a promising approach that could lead to development of an efficacious and cost effective vaccine for Johne's disease.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Population Medicine and Diagnostic Sciences, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Live attenuated Salmonella vaccines against Mycobacterium tuberculosis with antigen delivery via the type III secretion system. Infect Immun 2011; 80:798-814. [PMID: 22144486 DOI: 10.1128/iai.05525-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis remains a global health threat, and there is dire need to develop a vaccine that is safe and efficacious and confers long-lasting protection. In this study, we constructed recombinant attenuated Salmonella vaccine (RASV) strains with plasmids expressing fusion proteins consisting of the 80 amino-terminal amino acids of the type 3 secretion system effector SopE of Salmonella and the Mycobacterium tuberculosis antigens early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10). We demonstrated that the SopE-mycobacterial antigen fusion proteins were translocated into the cytoplasm of INT-407 cells in cell culture assays. Oral immunization of mice with RASV strains synthesizing SopE-ESAT-6-CFP-10 fusion proteins resulted in significant protection of the mice against aerosol challenge with M. tuberculosis H37Rv that was similar to the protection afforded by immunization with Mycobacterium bovis bacillus Calmette-Guérin (BCG) administered subcutaneously. In addition, oral immunization with the RASV strains specifying these mycobacterial antigens elicited production of significant antibody titers to ESAT-6 and production of ESAT-6- or CFP-10-specific gamma interferon (IFN-γ)-secreting and tumor necrosis factor alpha (TNF-α)-secreting splenocytes.
Collapse
|
21
|
Wieser A, Magistro G, Nörenberg D, Hoffmann C, Schubert S. First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS). Int J Med Microbiol 2011; 302:10-8. [PMID: 22000741 DOI: 10.1016/j.ijmm.2011.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/14/2011] [Accepted: 09/20/2011] [Indexed: 12/20/2022] Open
Abstract
Infections due to extraintestinal pathogenic E. coli (ExPEC) are very common in humans as well as in animals. In humans ExPEC infections include urinary tract infections (UTI), septicemia, and wound infections, which result in significant morbidity, mortality, and substantial healthcare costs. In view of the increasing number of ExPEC infections caused by more and more resistant strains, effective prevention would be desirable. Given the rising treatment costs, a vaccine may be cost-effective in selected patient groups, such as women with recurrent UTI, patients with neurologic disorders impairing bladder function and men with prostate hyperplasia. Previous vaccine studies used single target proteins or whole inactivated ExPEC cells. Here, we describe a vaccine system for oral application based on artificial multiple subunit vaccine proteins. Those multi-epitope proteins are composed of predicted epitopes derived from ExPEC virulence-associated proteins. As ExPEC are known to form intracellular biofilms in the urothelium and can also resist killing by non-activated macrophages, T-cell responses are supposed to be an important measure to counteract these stages of ExPEC during infection. Therefore, a live bacterial antigen delivery system based upon the Salmonella type-III secretion system (T3SS) was used in this study to directly deliver the vaccine proteins into the cytoplasm of the host cells. Epitope-rich domains of the proteins FyuA, IroN, ChuA, IreA, Iha, and Usp were expressed in an attenuated Salmonella enterica serovar Typhimurium strain and translocated into target cells for extended periods of time inducing a strong T-cell response. No significant antibody titre increase against the secreted vaccine proteins could be detected in vaginal wash or serum. Despite that, one of the vaccine proteins was able to significantly reduce bacterial load in the challenge model of intraperitoneal sepsis. This study shows that a vaccine encompassing distinct epitopes of virulence-associated ExPEC proteins (i) can be applied for a T3SS-dependent vaccination strategy, (ii) elicits T-cell responses and (iii) confers protection after a single application.
Collapse
Affiliation(s)
- Andreas Wieser
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Marchioninistr. 17, 81377 München, Germany
| | | | | | | | | |
Collapse
|
22
|
A stable plasmid system for heterologous antigen expression in attenuated Vibrio anguillarum. Vaccine 2011; 29:6986-93. [PMID: 21791231 DOI: 10.1016/j.vaccine.2011.07.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/16/2011] [Accepted: 07/11/2011] [Indexed: 11/21/2022]
Abstract
To stably synthesize heterologous protein in an attenuated Vibrio anguillarum strain (MVAV6203) for potential multivalent live vaccine application, plasmids with different replicons were used to construct protein expression systems in this work. The gfp fragment under control of a strict low-iron-regulated promoter P(viua) was inserted into seven plasmids with varied replicons derived from pAT153, pACYC184, pBBR1, pEC, pMW118, pRK2, and pSC101, to generate seven corresponding plasmids. Our results revealed that the plasmid pUTat with the replicon from pAT153 was retained by 100% of the host cells and mediated stable expression of heterologous protein in antibiotic-free medium within 250 generations. Further analyses in animal model (zebrafish larvae) demonstrated that the constructed plasmid pUTat was well retained by bacteria and continuously expressed GFP in vivo in zebrafish. The gapA40 gene, encoding Glyceraldehyde-3-phosphate dehydrogenase from the fish pathogen Edwardsiella tarda, was introduced into the pUTat-based protein expression system, and transformed into V. anguillarum MVAV6203. The resultant recombinant vector vaccine 6203/pUTatgap was evaluated in turbot (Scophtalmus maximus). After 30 days post vaccination, the fish showed an increased survival ratio by 80% and 67% under the challenge of wild V. anguillarum and E. tarda, respectively. Our results suggested that the pUTat-based antigen expression system had great potential with its efficiency and stability in the design of bacterial vector vaccine.
Collapse
|
23
|
Abstract
In order to develop novel solutions to avian disease problems, including novel vaccines and/or vaccine adjuvants, and the identification of disease resistance genes which can feed into conventional breeding programmes, it is necessary to gain a more thorough understanding of the avian immune response and how pathogens can subvert that response. Birds occupy the same habitats as mammals, have similar ranges of longevity and body mass, and face similar pathogen challenges, yet birds have a different repertoire of organs, cells, molecules and genes of the immune system compared to mammals. This review summarises the current state of knowledge of the chicken's immune response, highlighting differences in the bird compared to mammals, and discusses how the availability of the chicken genome sequence and the associated postgenomics technologies are contributing to theses studies and also to the development of novel intervention strategies againts avian and zoonotic disease.
Collapse
Affiliation(s)
- Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| |
Collapse
|
24
|
Zhang X, Wanda SY, Brenneman K, Kong W, Zhang X, Roland K, Curtiss R. Improving Salmonella vector with rec mutation to stabilize the DNA cargoes. BMC Microbiol 2011; 11:31. [PMID: 21303535 PMCID: PMC3047425 DOI: 10.1186/1471-2180-11-31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/08/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Salmonella has been employed to deliver therapeutic molecules against cancer and infectious diseases. As the carrier for target gene(s), the cargo plasmid should be stable in the bacterial vector. Plasmid recombination has been reduced in E. coli by mutating several genes including the recA, recE, recF and recJ. However, to our knowledge, there have been no published studies of the effect of these or any other genes that play a role in plasmid recombination in Salmonella enterica. RESULTS The effect of recA, recF and recJ deletions on DNA recombination was examined in three serotypes of Salmonella enterica. We found that (1) intraplasmid recombination between direct duplications was RecF-independent in Typhimurium and Paratyphi A, but could be significantly reduced in Typhi by a ΔrecA or ΔrecF mutation; (2) in all three Salmonella serotypes, both ΔrecA and ΔrecF mutations reduced intraplasmid recombination when a 1041 bp intervening sequence was present between the duplications; (3) ΔrecA and ΔrecF mutations resulted in lower frequencies of interplasmid recombination in Typhimurium and Paratyphi A, but not in Typhi; (4) in some cases, a ΔrecJ mutation could reduce plasmid recombination but was less effective than ΔrecA and ΔrecF mutations. We also examined chromosome-related recombination. The frequencies of intrachromosomal recombination and plasmid integration into the chromosome were 2 and 3 logs lower than plasmid recombination frequencies in Rec+ strains. A ΔrecA mutation reduced both intrachromosomal recombination and plasmid integration frequencies. CONCLUSIONS The ΔrecA and ΔrecF mutations can reduce plasmid recombination frequencies in Salmonella enterica, but the effect can vary between serovars. This information will be useful for developing Salmonella delivery vectors able to stably maintain plasmid cargoes for vaccine development and gene therapy.
Collapse
Affiliation(s)
- Xiangmin Zhang
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Shivaramai S, Barta J, Layton S, Lester C, Kwon Y, Berghman L, Hargis B, Tellez G. Development and Evaluation of an Δ aroA / Δ htrA Salmonella enteritidis Vector Expressing Eimeria maxima TRAP Family Protein EmTFP250 with CD 154 (CD 40L) as Candidate Vaccines against Coccidiosis in Broilers. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijps.2010.1031.1037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Studies on construction of a recombinant Eimeria tenella SO7 gene expressing Escherichia coli and its protective efficacy against homologous infection. Parasitol Int 2010; 59:517-23. [PMID: 20601103 DOI: 10.1016/j.parint.2010.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/07/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022]
Abstract
Eimeria spp. are the causative agents of coccidiosis, a major disease affecting the poultry industry. A recombinant non-antibiotic Escherichia coli that expresses the Eimeria tenella SO7 gene was constructed and its protective efficacy against homologous infection in chickens was determined. The three-day-old chickens were orally immunized with the recombinant non-antibiotic SO7 gene expressing E. coli and boosted two weeks later. Four weeks after the second immunization, the chickens were challenged with 5 × 10(4) homologous sporulated oocysts. The protective effects of the recombinant non-antibiotic E. coli were determined by measuring body weight change, mortality, histopathology, lesion scores, oocyst counts, the specific antibody response and the frequency of CD4(+) and CD8(+) lymphocytes in peripheral blood. The results showed that immunization with SO7 expressing E. coli resulted in significantly improved body weight gain, reduced lesion scores and oocyst shedding in immunized chickens compared to controls. Furthermore, administration of recombinant SO7 expressing E. coli leads to a significant increase in serum antibody, CD4(+) and CD8(+) T cells in peripheral blood of chickens. These results, therefore, suggest that the recombinant non-antibiotic E. coli that expresses the SO7 gene is able to effectively stimulate host protective immunity as evidenced by the induction of development of both humoral and cell-mediated immune responses against homologous challenge in chickens.
Collapse
|
27
|
Oral immunization with attenuated Salmonella enterica serovar Typhimurium encoding Cryptosporidium parvum Cp23 and Cp40 antigens induces a specific immune response in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1272-8. [PMID: 19605593 DOI: 10.1128/cvi.00089-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attenuated Salmonella enterica serovar Typhimurium vaccine strain SL3261 was used as an antigen delivery system for the oral immunization of mice against two Cryptosporidium parvum antigens, Cp23 and Cp40. Each antigen was subcloned into the pTECH1 vector system, which allows them to be expressed as fusion proteins with highly immunogenic fragment C of tetanus toxin under the control of the anaerobically inducible nirB promoter. The recombinant vector was introduced into Salmonella Typhimurium vaccine strain SL3261, and the stable soluble expression of the chimeric protein was evaluated and confirmed by Western blotting with polyclonal C. parvum antisera. Mice were inoculated orally with a single dose of SL3261/pTECH-Cp23 or Cp40, respectively, and plasmid stability was demonstrated both in vitro and in vivo. Specific serum immunoglobulin G (IgG) antibodies against the Cp23 or Cp40 antigen were detected by enzyme-linked immunosorbent assay 35 days after immunization. Also, serum IgA and mucosal (feces) IgA antibodies were detected in 30% of the mice immunized with Cp23. In addition, prime-boosting with Cp23 and Cp40 DNA vaccine vectors followed by Salmonella immunization significantly increased antibody responses to both antigens. Our data show that a single oral inoculation with recombinant S. Typhimurium SL3261 can induce specific antibody responses to the Cp23 or Cp40 antigen from C. parvum in mice, suggesting that recombinant Salmonella is a feasible delivery system for a vaccine against C. parvum infection.
Collapse
|
28
|
Abstract
SUMMARYEimeriaspp. are the causative agents of coccidiosis, a major disease affecting many intensively-reared livestock, especially poultry. The chicken is host to 7 species ofEimeriathat develop within intestinal epithelial cells and produce varying degrees of morbidity and mortality. Control of coccidiosis by the poultry industry is dominated by prophylactic chemotherapy but drug resistance is a serious problem. Strongly protective but species-specific immunity can be induced in chickens by infection with any of theEimeriaspp. At the Institute of Animal Health in Houghton, UK in the 1980s we showed that all 7Eimeriaspp. could be stably attenuated by serial passage in chickens of the earliest oocysts produced (i.e. the first parasites to complete their endogenous development) and this process resulted in the depletion of asexual development. Despite being highly attenuated, the precocious lines retained their immunizing capacity. Subsequent work led to the commercial introduction of the first live attenuated vaccine, Paracox®, that has now been in use for 20 years. As much work still remains to be done before the development of recombinant vaccines becomes a reality, it is likely that reliance upon live, attenuated vaccines will increase in years to come.
Collapse
|