1
|
Campuzano A, Pentakota KD, Liao YR, Zhang H, Wiederhold NP, Ostroff GR, Hung CY. A Recombinant Multivalent Vaccine (rCpa1) Induces Protection for C57BL/6 and HLA Transgenic Mice against Pulmonary Infection with Both Species of Coccidioides. Vaccines (Basel) 2024; 12:67. [PMID: 38250880 PMCID: PMC10819930 DOI: 10.3390/vaccines12010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Coccidioidomycosis is caused by Coccidioides posadasii (Cp) and Coccidioides immitis (Ci), which have a 4-5% difference in their genomic sequences. There is an urgent need to develop a human vaccine against both species. A previously created recombinant antigen (rCpa1) that contains multiple peptides derived from Cp isolate C735 is protective against the autologous isolate. The focus of this study is to evaluate cross-protective efficacy and immune correlates by the rCpa1-based vaccine against both species of Coccidioides. DNA sequence analyses of the homologous genes for the rCpa1 antigen were conducted for 39 and 17 clinical isolates of Cp and Ci, respectively. Protective efficacy and vaccine-induced immunity were evaluated for both C57BL/6 and human HLA-DR4 transgenic mice against five highly virulent isolates of Cp and Ci. There are total of seven amino acid substitutions in the rCpa1 antigen between Cp and Ci. Both C57BL/6 and HLA-DR4 mice that were vaccinated with an rCpa1 vaccine had a significant reduction of fungal burden and increased numbers of IFN-γ- and IL-17-producing CD4+ T cells in the first 2 weeks post challenge. These data suggest that rCpa1 has cross-protection activity against Cp and Ci pulmonary infection through activation of early Th1 and Th17 responses.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Komali Devi Pentakota
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Yu-Rou Liao
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Nathan P. Wiederhold
- Department of Pathology, Graduate School of Biomedical Sciences, UT Health, San Antonio, TX 78229, USA;
| | - Gary R. Ostroff
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| |
Collapse
|
2
|
Wangsanut T, Amsri A, Pongpom M. Antibody screening reveals antigenic proteins involved in Talaromyces marneffei and human interaction. Front Cell Infect Microbiol 2023; 13:1118979. [PMID: 37404721 PMCID: PMC10315666 DOI: 10.3389/fcimb.2023.1118979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Talaromycosis is a fungal infection that generally affects immunocompromised hosts and is one of the most frequent systemic mycoses in HIV patients, especially in endemic areas such as Southeast Asia. Talaromyces marneffei, the causative agent of talaromycosis, grows as a mold in the environment but adapts to the human body and host niches by transitioning from conidia to yeast-like cells. Knowledge of the human host and T. marneffei interaction has a direct impact on the diagnosis, yet studies are still lacking. The morbidity and mortality rates are high in taloromycosis patients if the diagnosis and treatments are delayed. Immunogenic proteins are excellent candidates for developing detection tools. Previously, we identified antigenic proteins that were recognized by antibodies from talaromycosis sera. Three of these identified proteins have been previously characterized in detail, while the others have not been explored. To expedite the progress of antigen discovery, the complete list of antigenic proteins and their features was fully reported in this study. Functional annotation and Gene Ontology examination revealed that these proteins showed a high association with membrane trafficking. Further bioinformatics analyses were performed to search for antigenic protein characteristics, including functional domains, critical residues, subcellular localization, secretory signals, and epitope peptide sequences. Expression profiling of these antigenic encoding genes was investigated using quantitative real-time PCR. The results demonstrated that most genes were expressed at low levels in the mold form, but were highly upregulated in the pathogenic yeast phase, consistent with the antigenic role of these genes during the human-host interaction. Most transcripts accumulated in the conidia, suggesting a role during phase transition. The collection of all antigen-encoding DNA sequences described here is freely accessible at GenBank, which could be useful for the research community to develop into biomarkers, diagnostic tests, research detection tools, and even vaccines.
Collapse
|
3
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Coccidioides Species: A Review of Basic Research: 2022. J Fungi (Basel) 2022; 8:jof8080859. [PMID: 36012847 PMCID: PMC9409882 DOI: 10.3390/jof8080859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Coccidioides immitis and posadasii are closely related fungal species that cause coccidioidomycosis. These dimorphic organisms cause disease in immunocompetent as well as immunocompromised individuals and as much as 40% of the population is infected in the endemic area. Although most infections resolve spontaneously, the infection can be prolonged and, in some instances, fatal. Coccidioides has been studied for more than 100 years and many aspects of the organism and the disease it causes have been investigated. There are over 500 manuscripts concerning Coccidioides (excluding clinical articles) referenced in PubMed over the past 50 years, so there is a large body of evidence to review. We reviewed the most accurate and informative basic research studies of these fungi including some seminal older studies as well as an extensive review of current research. This is an attempt to gather the most important basic research studies about this fungus into one publication. To focus this review, we will discuss the mycology of the organism exclusively rather than the studies of the host response or clinical studies. We hope that this review will be a useful resource to those interested in Coccidioides and coccidioidomycosis.
Collapse
|
5
|
Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022; 11:pathogens11050569. [PMID: 35631090 PMCID: PMC9143782 DOI: 10.3390/pathogens11050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic mycoses have been viewed as neglected diseases and they are responsible for deaths and disabilities around the world. Rapid, low-cost, simple, highly-specific and sensitive diagnostic tests are critical components of patient care, disease control and active surveillance. However, the diagnosis of fungal infections represents a great challenge because of the decline in the expertise needed for identifying fungi, and a reduced number of instruments and assays specific to fungal identification. Unfortunately, time of diagnosis is one of the most important risk factors for mortality rates from many of the systemic mycoses. In addition, phenotypic and biochemical identification methods are often time-consuming, which has created an increasing demand for new methods of fungal identification. In this review, we discuss the current context of the diagnosis of the main systemic mycoses and propose alternative approaches for the identification of new targets for fungal pathogens, which can help in the development of new diagnostic tests.
Collapse
|
6
|
Boro R, Iyer PC, Walczak MA. Current Landscape of Coccidioidomycosis. J Fungi (Basel) 2022; 8:413. [PMID: 35448644 PMCID: PMC9027852 DOI: 10.3390/jof8040413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Coccidioidomycosis, also known as Valley fever, is an endemic fungal infection commonly found in the southwestern parts of the United States. However, the disease has seen an increase in both in its area of residency and its prevalence. This review compiles some of the latest information on the epidemiology, current and in-development pharmaceutical approaches to treat the disease, trends and projections, diagnostic concerns, and the overlapping dynamics of coccidioidomycosis and COVID-19, including in special populations. This review provides an overview of the current diagnostic and therapeutic strategies and identifies areas of future development.
Collapse
Affiliation(s)
- Ryan Boro
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Prema C. Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Gorris ME, Caballero Van Dyke MC, Carey A, Hamm PS, Mead HL, Uehling JK. A Review of Coccidioides Research, Outstanding Questions in the Field, and Contributions by Women Scientists. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:114-128. [PMID: 34367880 PMCID: PMC8327307 DOI: 10.1007/s40588-021-00173-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/19/2022]
Abstract
Purpose of Review Coccidioidomycosis is an infectious disease that gained clinical significance in the early 20th century. Many of the foundational contributions to coccidioidomycosis research, including the discovery of the fungal disease agent, Coccidioides spp., were made by women. We review recent progress in Coccidioides research and big questions remaining in the field, while highlighting some of the contributions from women. Recent Findings New molecular-based techniques provide a promising method for detecting Coccidioides, which can help determine the dominate reservoir host and ideal environmental conditions for growth. Genetic and genomic analyses have allowed an understanding of population structure, species level diversity, and evolutionary histories. We present a current, comprehensive genome list, where women contributed many of these entries. Several efforts to develop a coccidioidomycosis vaccine are underway. Summary Women continue to pioneer research on Coccidioides, including the relationships between the fungi and the environment, genetics, and clinical observations. Significant questions remain in the field of Coccidioides, including the main host reservoir, the relationships between genotypic and phenotypic variation, and the underlying cause for chronic clinical coccidioidomycosis cases.
Collapse
Affiliation(s)
- Morgan E Gorris
- Los Alamos National Laboratory, Information Systems and Modeling & Center for Nonlinear Studies, Los Alamos, NM USA
| | | | - Adrienne Carey
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Paris S Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM USA
| | - Heather L Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ USA
| | - Jessie K Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR USA
| |
Collapse
|
8
|
Oliveira LVN, Wang R, Specht CA, Levitz SM. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 2021; 6:33. [PMID: 33658522 PMCID: PMC7930017 DOI: 10.1038/s41541-021-00294-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Despite the substantial global burden of human fungal infections, there are no approved fungal vaccines to protect at risk individuals. Here, we review the progress that has been made and the challenges that lie ahead in the quest towards efficacious fungal vaccines. In mouse studies, protection has been achieved with vaccines directed against fungal pathogens, including species of Candida, Cryptococcus, and Aspergillus, that most commonly cause life-threatening human disease. Encouraging results have been obtained with vaccines composed of live-attenuated and killed fungi, crude extracts, recombinant subunit formulations, and nucleic acid vaccines. Novel adjuvants that instruct the immune system to mount the types of protective responses needed to fight mycotic infections are under development. Candidate vaccines include those that target common antigens expressed on multiple genera of fungi thereby protecting against a broad range of mycoses. Encouragingly, three vaccines have reached human clinical trials. Still, formidable obstacles must be overcome before we will have fungal vaccines licensed for human use.
Collapse
Affiliation(s)
- Lorena V N Oliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ruiying Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Almeida MA, Almeida-Paes R, Guimarães AJ, Valente RH, Soares CMDA, Zancopé-Oliveira RM. Immunoproteomics Reveals Pathogen's Antigens Involved in Homo sapiens- Histoplasma capsulatum Interaction and Specific Linear B-Cell Epitopes in Histoplasmosis. Front Cell Infect Microbiol 2020; 10:591121. [PMID: 33251160 PMCID: PMC7673445 DOI: 10.3389/fcimb.2020.591121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Histoplasmosis is one of the most frequent systemic mycosis in HIV patients. In these patients, histoplasmosis has high rates of morbidity/mortality if diagnosis and treatment are delayed. Despite its relevance, there is a paucity of information concerning the interaction between Histoplasma capsulatum and the human host, especially regarding the B-cell response, which has a direct impact on the diagnosis. Culture-based “gold-standard” methods have limitations, making immunodiagnostic tests an attractive option for clinical decisions. Despite the continuous development of those tests, improving serological parameters is necessary to make these methods efficient tools for definitive diagnosis of histoplasmosis. This includes the determination of more specific and immunogenic antigens to improve specificity and sensitivity of assays. In this study, we performed a co-immunoprecipitation assay between a protein extract from the yeast form of H. capsulatum and pooled sera from patients with proven histoplasmosis, followed by shotgun mass spectrometry identification of antigenic targets. Sera from patients with other pulmonary infections or from healthy individuals living in endemic areas of histoplasmosis were also assayed to determine potentially cross-reactive proteins. The primary structures of H. capsulatum immunoprecipitated proteins were evaluated using the DNAStar Protean 7.0 software. In parallel, the online epitope prediction server, BCPREDS, was used to complement the B-epitope prediction analysis. Our approach detected 132 reactive proteins to antibodies present in histoplasmosis patients’ sera. Among these antigens, 127 were recognized also by antibodies in heterologous patients’ and/or normal healthy donors’ sera. Therefore, the only three antigens specifically recognized by antibodies of histoplasmosis patients were mapped as potential antigenic targets: the M antigen, previously demonstrated in the diagnosis of histoplasmosis, and the catalase P and YPS-3 proteins, characterized as virulence factors of H. capsulatum, with antigenic properties still unclear. The other two proteins were fragments of the YPS-3 and M antigen. Overlapping results obtained from the two aforementioned bioinformatic tools, 16 regions from these three proteins are proposed as putative B-cell epitopes exclusive to H. capsulatum. These data reveal a new role for these proteins on H. capsulatum interactions with the immune system and indicate their possible use in new methods for the diagnosis of histoplasmosis.
Collapse
Affiliation(s)
- Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Advances in Fungal Peptide Vaccines. J Fungi (Basel) 2020; 6:jof6030119. [PMID: 32722452 PMCID: PMC7558412 DOI: 10.3390/jof6030119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the greatest public health achievements in the past century, protecting and improving the quality of life of the population worldwide. However, a safe and effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available. The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of mortality and morbidity. With this in mind, many groups are working towards identifying effective and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work in individuals with compromised immunity who bear the major burden of infections from these microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi, and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that have led to new vaccine formulations, like peptide-based vaccines.
Collapse
|
11
|
Moreira ALE, Oliveira MAP, Silva LOS, Inácio MM, Bailão AM, Parente-Rocha JA, Cruz-Leite VRM, Paccez JD, de Almeida Soares CM, Weber SS, Borges CL. Immunoproteomic Approach of Extracellular Antigens From Paracoccidioides Species Reveals Exclusive B-Cell Epitopes. Front Microbiol 2020; 10:2968. [PMID: 32117076 PMCID: PMC7015227 DOI: 10.3389/fmicb.2019.02968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Fungi of the Paracoccidioides genus are the etiological agents of paracoccidioidomycosis (PCM), a systemic mycosis restricted to the countries of Latin America. Currently, the Paracoccidioides complex is represented by Paracoccidioides lutzii, Paracoccidioides americana, Paracoccidioides brasiliensis, Paracoccidioides restrepiensis, and Paracoccidioides venezuelensis. Even with advances in techniques used for diagnosing fungal diseases, high rates of false-positive results for PCM are still presented. Additionally, there is no efficient antigen that can be used to follow up the efficiency of patient treatment. The immunoproteomic is considered a powerful tool for the identification of antigens. In addition, antigens are molecules recognized by the immune system, which make them excellent targets for diagnostic testing of diseases caused by microorganisms. In this vein, we investigated which antigens are secreted by species representing Paracoccidioides complex to increase the spectrum of molecules that could be used for future diagnostic tests, patient follow-up, or PCM therapy. To identify the profile of antigens secreted by Paracoccidioides spp., immunoproteomic approaches were used combining immunoprecipitation, followed by antigen identification by nanoUPLC-MSE-based proteomics. Consequently, it was possible to verify differences in the exoantigen profiles present among the studied species. Through a mass spectrometry approach, it was possible to identify 79 exoantigens in Paracoccidioides species. Using bioinformatics tools, two unique exoantigens in P. lutzii species were identified, as well as 44 epitopes exclusive to the Paracoccidioides complex and 12 unique antigenic sequences that can differentiate between Paracoccidioides species. Therefore, these results demonstrate that Paracoccidioides species have a range of B-cell epitopes exclusive to the complex as well as specific to each Paracoccidioides species. In addition, these analyses allowed us the identification of excellent biomarker candidates for epidemiology screening, diagnosis, patient follow-up, as well as new candidates for PCM therapy.
Collapse
Affiliation(s)
- André Luís Elias Moreira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Milton Adriano Pelli Oliveira
- Laboratório de Citocinas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Moisés Morais Inácio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Simone Schneider Weber
- Laboratório de Biociência, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil.,Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
12
|
Van Dyke MCC, Thompson GR, Galgiani JN, Barker BM. The Rise of Coccidioides: Forces Against the Dust Devil Unleashed. Front Immunol 2019; 10:2188. [PMID: 31572393 PMCID: PMC6749157 DOI: 10.3389/fimmu.2019.02188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Coccidioidomycosis (Valley fever) is a fungal disease caused by the inhalation of Coccidioides posadasii or C. immitis. This neglected disease occurs in the desert areas of the western United States, most notably in California and Arizona, where infections continue to rise. Clinically, coccidioidomycosis ranges from asymptomatic to severe pulmonary disease and can disseminate to the brain, skin, bones, and elsewhere. New estimates suggest as many as 350,000 new cases of coccidioidomycosis occur in the United States each year. Thus, there is an urgent need for the development of a vaccine and new therapeutic drugs against Coccidioides infection. In this review, we discuss the battle against Coccidioides including the development of potential vaccines, the quest for new therapeutic drugs, and our current understanding of the protective host immune response to Coccidioides infection.
Collapse
Affiliation(s)
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - John N Galgiani
- Valley Fever Center for Excellence, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
13
|
Vaccine Development to Systemic Mycoses by Thermally Dimorphic Fungi. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Hung CY, Hsu AP, Holland SM, Fierer J. A review of innate and adaptive immunity to coccidioidomycosis. Med Mycol 2019; 57:S85-S92. [PMID: 30690602 DOI: 10.1093/mmy/myy146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Coccidioidomycosis is a human fungal disease cause by inhalation of aerosol spores produced by Coccidioides posadasii or Coccidioides immitis. This disease is a common cause of community-acquired pneumonia in the endemic areas of the Southwestern United States. It also can present as a life-threatening disease as the fungal cells disseminate to skin, bone, and central nervous system. The outcome of coccidioidomycosis is largely determined by the nature of host immune response to the infection. Escalation of symptomatic infections and increased cost of long-term antifungal treatment warrant a concerted effort to better understand the innate and adaptive immune responses and the genetics associated with coccidioidomycosis susceptibility. This knowledge can be harnessed for development of a human vaccine against Coccidioides and advance clinic management of this disease. This review discusses recently reported studies on innate and adaptive immunity to Coccidioides infection, Mendelian susceptibility to disseminated disease and progress toward a human vaccine against this formidable disease.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Fierer
- Infectious Diseases Section, VA Healthcare San Diego, California, USA.,Department of Medicine, Division of Infectious Diseases, University of California San Diego School of Medicine, San Diego, California, USA
| |
Collapse
|
15
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Glucan-Chitin Particles Enhance Th17 Response and Improve Protective Efficacy of a Multivalent Antigen (rCpa1) against Pulmonary Coccidioides posadasii Infection. Infect Immun 2018; 86:IAI.00070-18. [PMID: 30104216 DOI: 10.1128/iai.00070-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Developing an effective and safe recombinant vaccine requires microbe-specific antigens combined with an adjuvant/delivery system to strengthen protective immunity. In this study, we designed and expressed a multivalent recombinant Coccidioides polypeptide antigen (rCpa1) that consists of three previously identified antigens (i.e., Ag2/Pra, Cs-Ag, and Pmp1) and five pathogen-derived peptides with high affinity for human major histocompatibility complex class II (MHC-II) molecules. The purified rCpa1 was encapsulated into four types of yeast cell wall particles containing β-glucan, mannan, and chitin in various proportions or was mixed with an oligonucleotide (ODN) containing two methylated dinucleotide CpG motifs. This multivalent antigen encapsulated into glucan-chitin particles (GCP-rCpa1) showed significantly greater reduction of fungal burden for human HLA-DR4 transgenic mice than the other adjuvant-rCpa1 formulations tested. Among the adjuvants tested, both GCPs and β-glucan particles (GPs) were capable of stimulating a mixed Th1 and Th17 response. Mice vaccinated with GCP-rCpa1 showed higher levels of interleukin 17 (IL-17) production in T-cell recall assays and earlier lung infiltration by activated Th1 and Th17 cells than GP-rCpa1-vaccinated mice. Both C57BL/6 and HLA-DR4 transgenic mice that were vaccinated with the GCP-rCpa1 vaccine showed higher survival rates than mice that received GCPs alone. Concurrently, the GCP-rCpa1 vaccine stimulated greater infiltration of the injection sites by macrophages, which engulf and process the vaccine for antigen presentation, than the GP-rCpa1 vaccine. This is the first attempt to systematically characterize the presentation of a multivalent coccidioidomycosis vaccine encapsulated with selected adjuvants that enhance the protective cellular immune response to infection.
Collapse
|
17
|
Immune Response to Coccidioidomycosis and the Development of a Vaccine. Microorganisms 2017; 5:microorganisms5010013. [PMID: 28300772 PMCID: PMC5374390 DOI: 10.3390/microorganisms5010013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Coccidioidomycosis is a fungal infection caused by Coccidioides posadasii and Coccidioides immitis. It is estimated that 150,000 new infections occur in the United States each year. The incidence of this infection continues to rise in endemic regions. There is an urgent need for the development of better therapeutic drugs and a vaccine against coccidioidomycosis. This review discusses the features of host innate and adaptive immune responses to Coccidioides infection. The focus is on the recent advances in the immune response and host-pathogen interactions, including the recognition of spherules by the host and defining the signal pathways that guide the development of the adaptive T-cell response to Coccidioides infection. Also discussed is an update on progress in developing a vaccine against these fungal pathogens.
Collapse
|
18
|
Abstract
Coccidioidomycosis is a potentially life-threatening mycosis endemic to the Southwestern USA and some arid regions of Central and South America. A vaccine against Coccidioides infection would benefit over 30-million people who reside in or visit the endemic regions. Vaccine candidates against systemic fungal infections come in many forms. Live attenuated vaccines are derived from disease-causing pathogens and generally stimulate excellent protective immunity. Since attenuated vaccines contain living microbes, there is a degree of unpredictability raising concerns regarding safety and stability. Generation of a subunit vaccine has initiated efforts to design a safe reagent suitable for administration to humans at risk of coccidioidomycosis. Epitope-based vaccines allow for eliciting specific protective immune responses and removal of potentially detrimental sequences to improve safety. This chapter describes methods for the identification of T cell epitopes derived from Coccidioides antigens, design, and production of a recombinant vaccine containing multiple T cell epitopes, and evaluation of its protective efficacy and vaccine immunity against pulmonary Coccidioides infection using a strain of transgenic mice that express a human MHC II molecule.
Collapse
|
19
|
Abstract
Dendritic cells are the most potent antigen-presenting cells, and are critical for the generation of an antigen-specific immune response and protective immunity. These unique features have been applied to dendritic cell-based immunization in a number of disease conditions. Our published results have demonstrated that the immunity induced by intranasal immunization with DNA-transfected dendritic cells results in reduced fungal burden, and alleviated lung tissue damage in a mouse model of pulmonary fungal infection. In this article, approaches for the preparation and characterization of DNA-transfected dendritic cells and intranasal immunization in mice are described.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
20
|
Kirkland TN. The Quest for a Vaccine Against Coccidioidomycosis: A Neglected Disease of the Americas. J Fungi (Basel) 2016; 2:E34. [PMID: 29376949 PMCID: PMC5715932 DOI: 10.3390/jof2040034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 12/04/2022] Open
Abstract
Coccidioidomycosis (Valley Fever) is a disease caused by inhalation of Coccidioides spp. This neglected disease has substantial public health impact despite its geographic restriction to desert areas of the southwestern U.S., Mexico, Central and South America. The incidence of this infection in California and Arizona has been increasing over the past fifteen years. Several large cities are within the endemic region in the U.S. Coccidioidomycosis accounts for 25,000 hospital admissions per year in California. While most cases of coccidioidomycosis resolve spontaneously, up to 40% are severe enough to require anti-fungal treatment, and a significant number disseminate beyond the lungs. Disseminated infection involving the meninges is fatal without appropriate treatment. Infection with Coccidioides spp. is protective against a second infection, so vaccination seems biologically plausible. This review of efforts to develop a vaccine against coccidioidomycosis focuses on vaccine approaches and the difficulties in identifying protein antigen/adjuvant combinations that protect in experimental mouse models. Although the quest for a vaccine is still in the early stage, scientific efforts for vaccine development may pave the way for future success.
Collapse
Affiliation(s)
- Theo N Kirkland
- Departments of Pathology and Medicine, University of California, San Diego, School of Medicine, San Diego, CA 92161, USA.
| |
Collapse
|
21
|
Hurtgen BJ, Castro-Lopez N, Jiménez-Alzate MDP, Cole GT, Hung CY. Preclinical identification of vaccine induced protective correlates in human leukocyte antigen expressing transgenic mice infected with Coccidioides posadasii. Vaccine 2016; 34:5336-5343. [PMID: 27622300 DOI: 10.1016/j.vaccine.2016.08.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 01/19/2023]
Abstract
There is an emerging interest to develop human vaccines against medically-important fungal pathogens and a need for a preclinical animal model to assess vaccine efficacies and protective correlates. HLA-DR4 (DRB1∗0401 allele) transgenic mice express a human major histocompatibility complex class II (MHC II) receptor in such a way that CD4+ T-cell response is solely restricted by this human molecule. In this study HLA-DR4 transgenic mice were immunized with a live-attenuated vaccine (ΔT) and challenged by the intranasal route with 50-70 Coccidioides posadasii spores, a potentially lethal dose. The same vaccination regimen offers 100% survival for C57BL/6 mice. Conversely, ΔT-vaccinated HLA-DR4 mice displayed 3 distinct manifestations of Coccidioides infection including 40% fatal acute (FAD), 30% disseminated (DD) and 30% pulmonary disease (PD). The latter 2 groups of mice had reduced loss of body weight and survived to at least 50days postchallenge (dpc). These results suggest that ΔT vaccinated HLA-DR4 mice activated heterogeneous immunity against pulmonary Coccidioides infection. Vaccinated HLA-DR4 mice displayed early expansion of Th1 and Th17 cells and recruitment of inflammatory innate cells into Coccidioides-infected lungs during the first 9dpc. While contraction rates of Th cells and the inflammatory response during 14-35dpc significantly differed among the 3 groups of vaccinated HLA-DR4 mice. The FAD group displayed a sharply reduced Th1 and Th17 response, while overwhelmingly recruiting neutrophils into lungs during 9-14days. The FAD group approached moribund by 14dpc. In contrast, vaccinated HLA-DR4 survivors gradually contracted Th cells and inflammatory response with the greatest rate in the PD group. While vaccinated HLA-DR4 mice are susceptible to Coccidioides infection, they are useful for evaluation of vaccine efficacy and identification of immunological correlates against this mycosis.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Natalia Castro-Lopez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA
| | - Maria Del Pilar Jiménez-Alzate
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Grupo de Micología Médica, Department of Microbiology and Parasitology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Immune Defense Core, University of Texas, San Antonio, TX, USA.
| |
Collapse
|
22
|
Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis. PLoS One 2016; 11:e0149894. [PMID: 26906226 PMCID: PMC4764335 DOI: 10.1371/journal.pone.0149894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests.
Collapse
|
23
|
Abstract
We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MSE (Mass Spectrometry-Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here.
Collapse
|
24
|
Hung CY, Wozniak KL, Cole GT. Flow Cytometric Analysis of Protective T-Cell Response Against Pulmonary Coccidioides Infection. Methods Mol Biol 2016; 1403:551-66. [PMID: 27076153 PMCID: PMC11521025 DOI: 10.1007/978-1-4939-3387-7_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incidence of systemic fungal infections has increased throughout the world, spurring much interest in developing effective vaccines. Coccidioidomycosis, also known as San Joaquin Valley fever, is a potentially life-threatening respiratory mycosis. A vaccine against Coccidioides infection would contribute significantly to the well-being of the approx. 30 million residents in the Southwestern USA as well as the multitude of travelers who annually visit the endemic regions. We have applied a live, attenuated vaccine (∆T) to explore the nature of vaccine immunity in mice after intranasal challenge with a potentially lethal dose of Coccidioides spores. Coccidioides spores are airborne and highly infectious for mammalian hosts and classified as a biosafety level 3 agent. T cells are critical in the development of protective immunity against a variety of microorganisms as well as the development of autoimmune disease and allergic responses. Profiles of cytokines detected in lung homogenates of ∆T-vaccinated mice were indicative of a mixed Th1, Th2, and Th17 immune response. We have developed an intracellular cytokine staining and flow cytometric (ICS) technique to measure activated CD4(+) and CD8(+) T cells and IFN-γ-, IL-4-, IL-5-, and IL-17A-producing T cells in the lungs of mice that are challenged with a potentially lethal dose of Coccidioides spores. The numbers of pulmonary Th1 and Th17 cells during the first 2 weeks post-challenge showed a progressive increase in vaccinated mice and corresponded with reduction of fungal burden. In this protocol, we describe the methodology for culture and isolation of the live, attenuated ΔT spores of Coccidioides used to vaccinate mice, preparation of pulmonary cells, and staining protocol for cell surface markers and intracellular cytokines. This is the most reliable and robust procedure to measure frequencies and numbers of each selected T-cell subsets in lungs of vaccinated versus control mice and can be readily applied to evaluate T-cell response against other microbial infections.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
- Biology Department, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0662, USA.
| | - Karen L Wozniak
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|
25
|
Johnson L, Gaab EM, Sanchez J, Bui PQ, Nobile CJ, Hoyer KK, Peterson MW, Ojcius DM. Valley fever: danger lurking in a dust cloud. Microbes Infect 2014; 16:591-600. [PMID: 25038397 DOI: 10.1016/j.micinf.2014.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/01/2022]
Abstract
Coccidioides immitis and Coccidioides posadasii contribute to the development of Valley Fever. The ability of these fungal pathogens to evade the host immune system creates difficulty in recognition and treatment of this debilitating infection. In this review, we describe the current knowledge of Valley Fever and approaches to improve prevention, detection, and treatment.
Collapse
Affiliation(s)
- Larry Johnson
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Erin M Gaab
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Javier Sanchez
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Phuong Q Bui
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Clarissa J Nobile
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Katrina K Hoyer
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Michael W Peterson
- Department of Internal Medicine, University of California San Francisco - Fresno, Fresno, CA 93703, USA
| | - David M Ojcius
- Department of Molecular Cell Biology, University of California, Merced, CA 95343, USA; Health Sciences Research Institute, University of California, Merced, CA 95343, USA.
| |
Collapse
|
26
|
Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev 2014; 26:505-25. [PMID: 23824371 DOI: 10.1128/cmr.00005-13] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coccidioidomycosis is the endemic mycosis caused by the fungal pathogens Coccidioides immitis and C. posadasii. This review is a summary of the recent advances that have been made in the understanding of this pathogen, including its mycology, genetics, and niche in the environment. Updates on the epidemiology of the organism emphasize that it is a continuing, significant problem in areas of endemicity. For a variety of reasons, the number of reported coccidioidal infections has increased dramatically over the past decade. While continual improvements in the fields of organ transplantation and management of autoimmune disorders and patients with HIV have led to dilemmas with concurrent infection with coccidioidomycosis, they have also led to advances in the understanding of the human immune response to infection. There have been some advances in therapeutics with the increased use of newer azoles. Lastly, there is an overview of the ongoing search for a preventative vaccine.
Collapse
|
27
|
|
28
|
Cole GT, Hurtgen BJ, Hung CY. Progress Toward a Human Vaccine Against Coccidioidomycosis. CURRENT FUNGAL INFECTION REPORTS 2012; 6:235-244. [PMID: 23585916 DOI: 10.1007/s12281-012-0105-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Coccidioidomycosis (San Joaquin Valley fever) is a human respiratory disease caused by a soil-borne mold, and is recognized as an intransigent microbial infection by physicians who treat patients with the potentially life-threatening, disseminated form of this mycosis. Epidemiological studies based on surveys of skin-test reactivity of people who reside in the endemic regions of the Southwestern US have shown that at least 150,000 new infections occur annually. The clinical spectrum of coccidioidomycosis ranges from an asymptomatic insult to a severe pulmonary disease in which the pathogen may spread from the lungs to the skin, bones, brain and other body organs. Escalation of symptomatic infections and increased cost of long-term antifungal treatment warrant a concerted effort to develop a vaccine against coccidioidomycosis. This review examines recently reported strategies used to generate such a vaccine and summarizes current understanding of the nature of protective immunity to this formidable disease.
Collapse
Affiliation(s)
- Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases (STCEID), University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
29
|
Construction and evaluation of a novel recombinant T cell epitope-based vaccine against Coccidioidomycosis. Infect Immun 2012; 80:3960-74. [PMID: 22949556 DOI: 10.1128/iai.00566-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clinical and animal studies of coccidioidomycosis have demonstrated that activated CD4(+) T lymphocytes are essential for protection against this fungal respiratory disease. We previously reported a vaccine against Coccidioides infection which contained three recombinant CD4(+) T cell-reactive proteins and induced a robust, protective immune response in mice. Due to the anticipated high cost of production and clinical assessment of this multivalent vaccine, we generated a single protein which contained immunodominant T cell epitopes of the three polypeptides. Epitopes were initially identified by computational prediction of their ability to bind promiscuously to human major histocompatibility complex class II (MHC II) molecules. Cellular immunoassays confirmed the immunogenicity of the synthesized epitope peptides, while in vitro binding assays revealed a range of peptide affinity for MHC II. A DNA construct was synthesized for bacterial expression of a recombinant protein vaccine which contained five epitopes with the highest affinity for human MHC II, each fused with leader and spacer peptides proposed to optimize epitope processing and presentation to T cell receptors. Recall assays of immune T lymphocytes obtained from human MHC II-expressing HLA-DR4 transgenic mice confirmed that 4 of the 5 epitope peptides were processed. Mice immunized with the epitope-based vaccine admixed with a synthetic oligodeoxynucleotide adjuvant or loaded into yeast glucan particles and then challenged intranasally with Coccidioides showed early lung infiltration of activated T helper-1 (Th1), Th2, and Th17 cells, elevated gamma interferon (IFN-γ) and interleukin (IL)-17 production, significant reduction of fungal burden, and prolongation of survival compared to nonvaccinated mice. This is the first report of an epitope-based vaccine against coccidioidomycosis.
Collapse
|
30
|
Hamad M. Universal fungal vaccines: could there be light at the end of the tunnel? Hum Vaccin Immunother 2012; 8:1758-63. [PMID: 22922769 DOI: 10.4161/hv.21838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complex nature of fungal pathogens, the intricate host-pathogen relationship and the health status of subjects in need of antifungal vaccination continue to hamper efforts to develop fungal vaccines for clinical use. That said, the rise of the universal vaccine concept is hoped to revive fungal vaccine research by expanding the pool of vaccine candidates worthy of clinical evaluation. It can do so through antigenic commonality-based screening for vaccine candidates from a wide range of pathogens and by reassessing the sizable collection of already available experimental and approved vaccines. Development of experimental vaccines protective against multiple fungal pathogens is evidence of the utility of this concept in fungal vaccine research. However, universal fungal vaccines are not without difficulties; for instance, development of vaccines with differential effectiveness is an issue that should be addressed. Additionally, rationalizing the development of universal fungal vaccines on health or economic basis could be contentious. Herein, universal fungal vaccines are discussed in terms of their potential usefulness and possible drawbacks.
Collapse
Affiliation(s)
- Mawieh Hamad
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
31
|
Abstract
This discussion is intended to be an overview of current advances in the development of fungal cell wall vaccines with an emphasis on Candida; it is not a comprehensive historical review of all fungal cell wall vaccines. Selected, more recent, innovative strategies for developing fungal vaccines will be highlighted. Both scientific and logistical obstacles related to the development of, and clinical use of, fungal vaccines will be discussed.
Collapse
Affiliation(s)
- John E Edwards
- Harbor/UCLA Medical Center and Los Angeles Biomedical Research Institute, 1124 West Carson Street, Torrance, CA 90502, USA
| |
Collapse
|
32
|
Abstract
Switching from conventional strain-specific vaccines to multi-strain or multi-species universal vaccines is both justified and scientifically merited. Long-term cross-protective universal vaccines eliminate the need for repetitive short-term vaccination campaigns and short-notice vaccine redesign during impending epidemics. They also have the potential to be cost-effective, convenient, and amenable to stockpiling. Ongoing advances in genomics and reverse vaccinology along with the perceived ability of vaccines, if properly formulated, to induce cross-protective adaptive immunity and long-term T cell memory are at the heart of this trend. Consequently, the search for universal vaccines against influenza, HIV, and many other viral, bacterial, and fungal pathogens has intensified in recent years. Currently, several universal influenza vaccines are at different phases of clinical evaluation. That said, vaccine-related differential effectiveness, escape mutants, pathogen strain replacement, limited scope of cross-protective immunity, and diminished potential to reach optimal herd immunity thresholds present serious challenges to the concept and applicability of universal vaccines. Herein, the case for and the case against universal vaccines are investigated to realistically appreciate their prospects of success.
Collapse
Affiliation(s)
- Mawieh Hamad
- Research and Development Unit, JMS Medicals, Amman, Jordan
| |
Collapse
|
33
|
Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17). Infect Immun 2011; 79:4511-22. [PMID: 21859851 DOI: 10.1128/iai.05726-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that C57BL/6 mice vaccinated with a live, attenuated mutant of Coccidioides posadasii, referred to as the ΔT vaccine, are fully protected against pulmonary coccidioidomycosis. This model was used here to explore the nature of vaccine immunity during the initial 2-week period after intranasal challenge. Elevated neutrophil and eosinophil infiltration into the lungs of nonvaccinated mice contrasted with markedly reduced recruitment of these cells in vaccinated animals. The numbers of lung-infiltrated macrophages and dendritic cells showed a progressive increase in vaccinated mice and corresponded with reduction of the lung infection. Concentrations of selected inflammatory cytokines and chemokines were initially higher in lung homogenates of vaccinated mice but then generally decreased at 14 days postchallenge in correlation with containment of the organism and apparent dampening of the inflammation of host tissue. Profiles of cytokines detected in lung homogenates of ΔT-vaccinated mice were indicative of a mixed T helper 1 (Th1)-, Th2-, and Th17-type immune response, a conclusion which was supported by detection of lung infiltration of activated T cells with the respective CD4(+) gamma interferon (IFN-γ)(+), CD4(+) interleukin-5 (IL-5)(+), and CD4(+) IL-17A(+) phenotypes. While Th1 and Th2 immunity was separately dispensed of by genetic manipulation without loss of ΔT vaccine-mediated protection, loss of functional Th17 cells resulted in increased susceptibility to infection in immunized mice. Characterization of the early events of protective immunity to Coccidioides infection in vaccinated mice contributes to the identification of surrogates of immune defense and provides potential insights into the design of immunotherapeutic protocols for treatment of coccidioidomycosis.
Collapse
|
34
|
Gonzalez A, Hung CY, Cole GT. Nitric oxide synthase activity has limited influence on the control of Coccidioides infection in mice. Microb Pathog 2011; 51:161-8. [PMID: 21513788 DOI: 10.1016/j.micpath.2011.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The functions of inducible nitric oxide synthase (iNOS) activity in protection against microbial insults are still controversial. In this study, we explored the role of iNOS in protection against Coccidioides infection in mice. We observed that wild type (WT) and iNOS(-/-) mice showed similar percent survival and fungal burden in their lungs at days 7 and 11 after intranasal challenge with Coccidioides. Vaccinated WT and iNOS(-/-) mice revealed comparable fungal burden in their lungs and spleen at 7 and 11 days postchallenge. However, at 11 days the non-vaccinated, iNOS-deficient mice had significantly higher fungal burden in their spleen compared to WT mice. Additionally, higher numbers of lung-infiltrated neutrophils, macrophages and dendritic cells were observed in WT mice at day 11 postchallenge compared to iNOS(-/-) mice. Moreover, no difference in numbers of T, B, NK or regulatory T cells, or concentrations of selected cytokines and chemokines were detected in lungs of both mouse strains at 7 and 11 days postchallenge. Although iNOS-derived NO production appears to influence the inflammatory response and dissemination of the fungal pathogen, our results suggest that iNOS activity does not play a significant role in the control of coccidioidal infection in mice and that other, still undefined mechanisms of host protection are involved.
Collapse
Affiliation(s)
- Angel Gonzalez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
35
|
Hector RF, Rutherford GW, Tsang CA, Erhart LM, McCotter O, Anderson SM, Komatsu K, Tabnak F, Vugia DJ, Yang Y, Galgiani JN. The public health impact of coccidioidomycosis in Arizona and California. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:1150-73. [PMID: 21695034 PMCID: PMC3118883 DOI: 10.3390/ijerph8041150] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 01/01/2023]
Abstract
The numbers of reported cases of coccidioidomycosis in Arizona and California have risen dramatically over the past decade, with a 97.8% and 91.1% increase in incidence rates from 2001 to 2006 in the two states, respectively. Of those cases with reported race/ethnicity information, Black/African Americans in Arizona and Hispanics and African/Americans in California experienced a disproportionately higher frequency of disease compared to other racial/ethnic groups. Lack of early diagnosis continues to be a problem, particularly in suspect community-acquired pneumonia, underscoring the need for more rapid and sensitive tests. Similarly, the inability of currently available therapeutics to reduce the duration and morbidity of this disease underscores the need for improved therapeutics and a preventive vaccine.
Collapse
Affiliation(s)
- Richard F Hector
- Global Health Sciences, University of California, San Francisco,1200 Beale St, #1200, San Francisco, CA 94105, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Borchers AT, Gershwin ME. The immune response in Coccidioidomycosis. Autoimmun Rev 2010; 10:94-102. [DOI: 10.1016/j.autrev.2010.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/13/2010] [Indexed: 12/20/2022]
|
37
|
A genetically engineered live attenuated vaccine of Coccidioides posadasii protects BALB/c mice against coccidioidomycosis. Infect Immun 2009; 77:3196-208. [PMID: 19487479 DOI: 10.1128/iai.00459-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.
Collapse
|
38
|
|
39
|
Capilla J, Clemons KV, Liu M, Levine HB, Stevens DA. Saccharomyces cerevisiae as a vaccine against coccidioidomycosis. Vaccine 2009; 27:3662-8. [PMID: 19464548 DOI: 10.1016/j.vaccine.2009.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/02/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
Disseminated coccidioidomycosis is a life-threatening infection. In these studies, we examined protection against systemic murine coccidioidomycosis by vaccination with heat-killed Saccharomyces cerevisiae (HKY). CD-1 mice received HKY subcutaneously or by oral gavage with or without adjuvants once weekly beginning 3 or 4 weeks prior to infection; oral live Saccharomyces was also studied. All HKY sc regimens were equivalent, prolonging survival (P<or=0.005) and reducing fungal burden versus controls. Oral live Saccharomyces, but not HKY, prolonged survival (P=0.03), but did not reduce fungal burden. Survival of mice given HKY was equivalent to vaccination with formalin-killed spherules, but inferior in reduction of fungal burden. HKY was superior to a successful recombinant vaccine, PRA plus adjuvant. This novel heterologous protection afforded by HKY vaccination offers a new approach to a vaccine against coccidioidomycosis.
Collapse
Affiliation(s)
- Javier Capilla
- California Inst. for Med. Res., San Jose, CA, United States
| | | | | | | | | |
Collapse
|
40
|
Kawamura K, Yao K, Shukaliak-Quandt JA, Huh J, Baig M, Quigley L, Ito N, Necker A, McFarland HF, Muraro PA, Martin R, Ito K. Different development of myelin basic protein agonist- and antagonist-specific human TCR transgenic T cells in the thymus and periphery. THE JOURNAL OF IMMUNOLOGY 2008; 181:5462-72. [PMID: 18832703 DOI: 10.4049/jimmunol.181.8.5462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin basic protein (MBP)-specific T cells are thought to play a role in the development of multiple sclerosis. MBP residues 111-129 compose an immunodominant epitope cluster restricted by HLA-DRB1*0401. The sequence of residues 111-129 of MBP (MBP(111-129)) differs in humans (MBP122:Arg) and mice (MBP122:Lys) at aa 122. We previously found that approximately 50% of human MBP(111-129) (MBP122:Arg)-specific T cell clones, including MS2-3C8 can proliferate in response to mouse MBP(111-129) (MBP122:Lys). However, the other half of T cell clones, including HD4-1C2, cannot proliferate in response to MBP(111-129) (MBP122:Lys). We found that MBP(111-129) (MBP122:Lys) is an antagonist for HD4-1C2 TCR, therefore, MS2-3C8 and HD4-1C2 TCRs are agonist- and antagonist-specific TCRs in mice, respectively. Therefore, we examined the development of HD4-1C2 TCR and MS2-3C8 TCR transgenic (Tg) T cells in the thymus and periphery. We found that dual TCR expression exclusively facilitates the development of MBP(111-129) TCR Tg T cells in the periphery of HD4-1C2 TCR/HLA-DRB1*0401 Tg mice although it is not required for their development in the thymus. We also found that MS2-3C8 TCR Tg CD8(+) T cells develop along with MS2-3C8 TCR Tg CD4(+) T cells, and that dual TCR expression was crucial for the development of MS2-3C8 TCR Tg CD4(+) and CD8(+) T cells in the thymus and periphery, respectively. These results suggest that thymic and peripheral development of MBP-specific T cells are different; however, dual TCR expression can facilitate their development.
Collapse
Affiliation(s)
- Kazuyuki Kawamura
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Galgiani JN. Vaccines to prevent systemic mycoses: holy grails meet translational realities. J Infect Dis 2008; 197:938-40. [PMID: 18419469 DOI: 10.1086/529205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- John N Galgiani
- Valley Fever Center for Excellence, University of Arizona College of Medicine, Tucson, Arizona 85724, USA.
| |
Collapse
|
42
|
Yin QY, de Groot PW, de Koster CG, Klis FM. Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 2008; 16:20-6. [DOI: 10.1016/j.tim.2007.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 10/30/2007] [Accepted: 10/30/2007] [Indexed: 11/26/2022]
|
43
|
Herr RA, Hung CY, Cole GT. Evaluation of two homologous proline-rich proteins of Coccidioides posadasii as candidate vaccines against coccidioidomycosis. Infect Immun 2007; 75:5777-87. [PMID: 17875631 PMCID: PMC2168353 DOI: 10.1128/iai.00807-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evaluation of the protective efficacy of recombinant T-cell-reactive proteins of Coccidioides posadasii in a murine model of coccidioidomycosis has led to the discovery of potential vaccines against this respiratory disease. A recombinant proline-rich antigen (rAg2/Pra) has been reported to be a leading vaccine candidate. However, contradictory results exist on the protection afforded by this antigen. Subcutaneous vaccination of either C57BL/6 or BALB/c mice with rAg2/Pra plus adjuvant followed by intraperitoneal challenge with C. posadasii resulted in a significant reduction of the fungal burden at 12 to 14 days postchallenge compared to that in nonvaccinated animals. Use of the same vaccination protocol followed by intranasal (i.n.) challenge of C57BL/6 mice with an equal number of organisms culminated in chronic pulmonary infection or death over a 90-day period. Early studies of Ag2/Pra suggested that it is a component of an immunogenic complex. We reveal in this study that C. posadasii produces a homolog of the reported proline-rich antigen, designated Prp2, which shows 69% protein sequence identity and 86% similarity to Ag2/Pra. Protection against i.n. challenge of C57BL/6 mice was evaluated by vaccination with the single bacterially expressed homolog, rAg2/Pra, or rPrp2 in combination with rAg2/Pra, each in the presence of the same adjuvant. The combined vaccine provided significantly better protection than either of the single recombinant protein vaccines. Results of enzyme-linked immunospot assays of the immunized mice revealed that the two proline-rich homologs contain unique T-cell epitopes. In combination, the recombinant proteins stimulate a more heterogeneous and protective T-cell repertoire than the monovalent vaccines.
Collapse
Affiliation(s)
- Roger A Herr
- Department of Medical Microbiology and Immunology, University of Toledo Health Science Campus, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
44
|
Abstract
The human immune response during coccidioidomycosis is intimately involved with the development of delayed-type hypersensitivity and cellular immunity. Sixty percent of those infected have no symptoms and benign outcome is generally associated with a specific cellular immune response to coccidioidal antigens. We have recently teased out the human pulmonary granulomatous response during coccidioidomycosis and noted that there are perigranulomatous clusters of lymphocytes consisting predominantly of B lymphocytes and CD4(+) T lymphocytes. In other work, we have found that the mannose receptor as well as the toll-like receptors TLR2 and TLR4 may have a role in recognizing glycosylated coccidioidal antigens. In addition, the IL-12 receptor axis appears to be operative during antigen recognition and IL-12p40 may be the active moiety. Finally, peripheral blood mononuclear cells from persons with disseminated coccidioidomycosis are able to respond to coccidioidal antigen when it is presented by a mature monocyte-derived IL-4-generated dendritic cell (DC). These observations could be useful in the development of a human vaccine against coccidiodomycosis.
Collapse
Affiliation(s)
- Neil M Ampel
- Medical Service, 1-111, SAVAHCS, 3601 S. Sixth Avenue, Tucson, AZ 85723, USA.
| |
Collapse
|
45
|
Abstract
Experimental models of coccidioidomycosis performed using various laboratory animals have been, and remain, a critical component of elucidation and understanding of the pathogenesis and host resistance to infection with Coccidioides spp., as well as to development of more efficacious antifungal therapies. The general availability of genetically defined strains, immunological reagents, ease of handling, and costs all contribute to the use of mice as the primary laboratory animal species for models of this disease. Five types of murine models are studied and include primary pulmonary disease, intraperitoneal with dissemination, intravenous infection emulating systemic disease, and intracranial or intrathecal infection emulating meningeal disease. Each of these models has been used to examine various aspects of host resistance, pathogenesis, or antifungal therapy. Other rodent species, such as rat, have been used much less frequently. A rabbit model of meningeal disease, established by intracisternal infection, has proven to model human meningitis well. This model is useful in studies of host response, as well as in therapy studies. A variety of other animal species including dogs, primates, and guinea pigs have been used to study host response and vaccine efficacy. However, cost and increased needs of animal care and husbandry are limitations that influence the use of the larger animal species.
Collapse
Affiliation(s)
- Karl V Clemons
- Division of Infectious Diseases, Santa Clara Valley Medical Center, 751 South Bascom Ave., San Jose, CA 95128-2699, USA.
| | | | | |
Collapse
|
46
|
Rohrbough JG, Galgiani JN, Wysocki VH. The Application of Proteomic Techniques to Fungal Protein Identification and Quantification. Ann N Y Acad Sci 2007; 1111:133-46. [PMID: 17344531 DOI: 10.1196/annals.1406.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The number of sequenced genomes has increased rapidly in the last few years, supporting a revolution in bioinformatics that has been leveraged by scientists seeking to analyze the proteomes of numerous biological systems. The primary technique employed for the identification of peptides and proteins from biological sources is mass spectrometry (MS). This analytical process is usually in the form of whole-protein analysis (termed "top-down" proteomics) or analysis of enzymatically produced peptides (known as the "bottom-up" approach). This article will focus primarily on the more common bottom-up proteomics to include topics such as sample preparation, separation strategies, MS instrumentation, data analysis, and techniques for protein quantification. Strategies for preparation of samples for proteomic analysis, as well as tools for protein and peptide separation will be discussed. A general description of common MS instruments along with tandem mass spectrometry (MS/MS) will be given. Different methodologies of sample ionization including matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) will be discussed. Data analysis methods including database search algorithms and tools for protein sequence analysis will be introduced. We will also discuss experimental strategies for MS protein quantification using stable isotope labeling techniques and fluorescent labeling. We will introduce several fungal proteomic studies to illustrate the use of these methods. This article will allow investigators to gain a working knowledge of proteomics along with some strengths and weaknesses associated with the techniques presented.
Collapse
|
47
|
Cutler JE, Deepe GS, Klein BS. Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 2007; 5:13-28. [PMID: 17160002 PMCID: PMC2214303 DOI: 10.1038/nrmicro1537] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dramatic increase in fungal diseases in recent years can be attributed to the increased aggressiveness of medical therapy and other human activities. Immunosuppressed patients are at risk of contracting fungal diseases in healthcare settings and from natural environments. Increased prescribing of antifungals has led to the emergence of resistant fungi, resulting in treatment challenges. These concerns, together with the elucidation of the mechanisms of protective immunity against fungal diseases, have renewed interest in the development of vaccines against the mycoses. Most research has used murine models of human disease and, as we review in this article, the knowledge gained from these studies has advanced to the point where the development of vaccines targeting human fungal pathogens is now a realistic and achievable goal.
Collapse
Affiliation(s)
- Jim E. Cutler
- Departments of Pediatrics and Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences, and Research Institute for Children at Children’s Hospital, New Orleans, Louisiana, 70118 USA
| | - George S. Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267–0560 USA
| | - Bruce S. Klein
- Departments of Pediatrics, Internal Medicine, and Medical Microbiology and Immunology and the University of Wisconsin Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792 USA
| |
Collapse
|