1
|
Omole Z, Dorrell N, Elmi A, Nasher F, Gundogdu O, Wren BW. Pathogenicity and virulence of Campylobacter jejuni: What do we really know? Virulence 2024; 15:2436060. [PMID: 39648291 PMCID: PMC11633169 DOI: 10.1080/21505594.2024.2436060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and is a major public health concern worldwide. Despite its importance, our understanding of how C. jejuni causes diarrhoea and interacts with its hosts is limited due to the absence of appropriate infection models and established virulence factors found in other enteric pathogens. Additionally, despite its genetic diversity, non-pathogenic C. jejuni strains are unknown. Regardless of these limitations, significant progress has been made in understanding how C. jejuni uses a complex array of factors which aid the bacterium to survive and respond to host defences. This review provides an update on fitness and virulence determinants of this important pathogen and questions our knowledge on these determinants that are often based on inferred genomics knowledge and surrogate infection models.
Collapse
Affiliation(s)
- Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Pavlinjek N, Klančnik A, Sabotič J. Evaluation of physical and chemical isolation methods to extract and purify Campylobacter jejuni extracellular polymeric substances. Front Microbiol 2024; 15:1488114. [PMID: 39526143 PMCID: PMC11543439 DOI: 10.3389/fmicb.2024.1488114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenic bacterium Campylobacter jejuni is a major food safety concern as it can form biofilms that increase its survival and infective potential. Biofilms consist of microbial cells and extracellular matrix (ECM), which is made of water and extracellular polymeric substances (EPS), which are critical for structural integrity and pathogenicity. The aim of this study was to optimize a protocol for the isolation of C. jejuni ECM. We employed eight physical and chemical isolation methods to extract and purify ECM, followed by different qualitative and quantitative analyses using gel electrophoresis and spectroscopy. This comprehensive approach enabled the evaluation of ECM composition in terms of polysaccharides, proteins, and extracellular DNA. The isolation methods resulted in different yields and purities of the extracted ECM components. Centrifugation in combination with chemical treatments proved to be most effective, isolating higher concentrations of polysaccharides and proteins. Additionally, extraction with ether solution facilitated the recovery of high-molecular-weight extracellular DNA. Overall, we provide a refined methodology for ECM extraction from C. jejuni. As polysaccharides and proteins participate in biofilm stability and microbial communication, and extracellular DNA participates in genetic exchange and virulence, our study contributes towards a better understanding of the persistence of this pathogen in the food industry.
Collapse
Affiliation(s)
- Natalija Pavlinjek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
3
|
Linz B, Sharafutdinov I, Tegtmeyer N, Backert S. Evolution and Role of Proteases in Campylobacter jejuni Lifestyle and Pathogenesis. Biomolecules 2023; 13:biom13020323. [PMID: 36830692 PMCID: PMC9953165 DOI: 10.3390/biom13020323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Infection with the main human food-borne pathogen Campylobacter jejuni causes campylobacteriosis that accounts for a substantial percentage of gastrointestinal infections. The disease usually manifests as diarrhea that lasts for up to two weeks. C. jejuni possesses an array of peptidases and proteases that are critical for its lifestyle and pathogenesis. These include serine proteases Cj1365c, Cj0511 and HtrA; AAA+ group proteases ClpP, Lon and FtsH; and zinc-dependent protease PqqE, proline aminopeptidase PepP, oligopeptidase PepF and peptidase C26. Here, we review the numerous critical roles of these peptide bond-dissolving enzymes in cellular processes of C. jejuni that include protein quality control; protein transport across the inner and outer membranes into the periplasm, cell surface or extracellular space; acquisition of amino acids and biofilm formation and dispersal. In addition, we highlight their role as virulence factors that inflict intestinal tissue damage by promoting cell invasion and mediating cleavage of crucial host cell factors such as epithelial cell junction proteins. Furthermore, we reconstruct the evolution of these proteases in 34 species of the Campylobacter genus. Finally, we discuss to what extent C. jejuni proteases have initiated the search for inhibitor compounds as prospective novel anti-bacterial therapies.
Collapse
Affiliation(s)
- Bodo Linz
- Correspondence: ; Tel.: +49-(0)-9131-8528988
| | | | | | | |
Collapse
|
4
|
Bojanić K, Acke E, Roe WD, Marshall JC, Cornelius AJ, Biggs PJ, Midwinter AC. Comparison of the Pathogenic Potential of Campylobacter jejuni, C. upsaliensis and C. helveticus and Limitations of Using Larvae of Galleria mellonella as an Infection Model. Pathogens 2020; 9:pathogens9090713. [PMID: 32872505 PMCID: PMC7560178 DOI: 10.3390/pathogens9090713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Campylobacter enteritis in humans is primarily associated with C. jejuni/coli infection. Other species cause campylobacteriosis relatively infrequently; while this could be attributed to bias in diagnostic methods, the pathogenicity of non-jejuni/coli Campylobacter spp. such as C. upsaliensis and C. helveticus (isolated from dogs and cats) is uncertain. Galleria mellonella larvae are suitable models of the mammalian innate immune system and have been applied to C. jejuni studies. This study compared the pathogenicity of C. jejuni, C. upsaliensis, and C. helveticus isolates. Larvae inoculated with either C. upsaliensis or C. helveticus showed significantly higher survival than those inoculated with C. jejuni. All three Campylobacter species induced indistinguishable histopathological changes in the larvae. C. jejuni could be isolated from inoculated larvae up to eight days post-inoculation whereas C. upsaliensis and C. helveticus could only be isolated in the first two days. There was a significant variation in the hazard rate between batches of larvae, in Campylobacter strains, and in biological replicates as random effects, and in species and bacterial dose as fixed effects. The Galleria model is applicable to other Campylobacter spp. as well as C. jejuni, but may be subject to significant variation with all Campylobacter species. While C. upsaliensis and C. helveticus cannot be considered non-pathogenic, they are significantly less pathogenic than C. jejuni.
Collapse
Affiliation(s)
- Krunoslav Bojanić
- EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (J.C.M.); (P.J.B.); (A.C.M.)
- Correspondence: ; Tel.: +38-514571391
| | - Els Acke
- Klinik für Kleintiere, Veterinärmedizinische Fakultät der Universität Leipzig, 04103 Leipzig, Germany;
| | - Wendi D. Roe
- Department of Pathology, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand;
| | - Jonathan C. Marshall
- EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (J.C.M.); (P.J.B.); (A.C.M.)
| | - Angela J. Cornelius
- Institute of Environmental Science and Research Limited, Christchurch 8540, New Zealand;
| | - Patrick J. Biggs
- EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (J.C.M.); (P.J.B.); (A.C.M.)
| | - Anne C. Midwinter
- EpiLab, Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (J.C.M.); (P.J.B.); (A.C.M.)
| |
Collapse
|
5
|
Elmi A, Dorey A, Watson E, Jagatia H, Inglis NF, Gundogdu O, Bajaj-Elliott M, Wren BW, Smith DGE, Dorrell N. The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity. Cell Microbiol 2017; 20. [PMID: 29205766 DOI: 10.1111/cmi.12814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence-associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511, and Cj1365c) that cleave the intestinal epithelial cell (IEC) tight and adherens junction proteins occludin and E-cadherin, promoting enhanced C. jejuni adhesion to and invasion of IECs. C. jejuni OMVs also induce IECs innate immune responses. The bile salt sodium taurocholate (ST) is sensed as a host signal to coordinate the activation of virulence-associated genes in the enteric pathogen Vibrio cholerae. In this study, the effect of ST on C. jejuni OMVs was investigated. Physiological concentrations of ST do not have an inhibitory effect on C. jejuni growth until the early stationary phase. Coculture of C. jejuni with 0.1% or 0.2% (w/v) ST stimulates OMV production, increasing both lipid and protein concentrations. C. jejuni ST-OMVs possess increased proteolytic activity and exhibit a different protein profile compared to OMVs isolated in the absence of ST. ST-OMVs exhibit enhanced cytotoxicity and immunogenicity to T84 IECs and enhanced killing of Galleria mellonella larvae. ST increases the level of mRNA transcripts of the OMVs-associated serine protease genes and the cdtABC operon that encodes the cytolethal distending toxin. Coculture with ST significantly enhances the OMVs-induced cleavage of E-cadherin and occludin. C. jejuni OMVs also cleave the major endoplasmic reticulum chaperone protein BiP/GRP78 and this activity is associated with the Cj1365c protease. These data suggest that C. jejuni responds to the presence of physiological concentrations of the bile salt ST that increases OMV production and the synthesis of virulence-associated factors that are secreted within the OMVs. We propose that these events contribute to pathogenesis.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amber Dorey
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Heena Jagatia
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mona Bajaj-Elliott
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David G E Smith
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Nick Dorrell
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
6
|
Vegge CS, Jansen van Rensburg MJ, Rasmussen JJ, Maiden MCJ, Johnsen LG, Danielsen M, MacIntyre S, Ingmer H, Kelly DJ. Glucose Metabolism via the Entner-Doudoroff Pathway in Campylobacter: A Rare Trait that Enhances Survival and Promotes Biofilm Formation in Some Isolates. Front Microbiol 2016; 7:1877. [PMID: 27920773 PMCID: PMC5118423 DOI: 10.3389/fmicb.2016.01877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
Isolates of the zoonotic pathogen Campylobacter are generally considered to be unable to metabolize glucose due to lack of key glycolytic enzymes. However, the Entner-Doudoroff (ED) pathway has been identified in Campylobacter jejuni subsp. doylei and a few C. coli isolates. A systematic search for ED pathway genes in a wide range of Campylobacter isolates and in the C. jejuni/coli PubMLST database revealed that 1.7% of >6,000 genomes encoded a complete ED pathway, including both C. jejuni and C. coli from diverse clinical, environmental and animal sources. In rich media, glucose significantly enhanced stationary phase survival of a set of ED-positive C. coli isolates. Unexpectedly, glucose massively promoted floating biofilm formation in some of these ED-positive isolates. Metabolic profiling by gas chromatography–mass spectrometry revealed distinct responses to glucose in a low biofilm strain (CV1257) compared to a high biofilm strain (B13117), consistent with preferential diversion of hexose-6-phosphate to polysaccharide in B13117. We conclude that while the ED pathway is rare amongst Campylobacter isolates causing human disease (the majority of which would be of agricultural origin), some glucose-utilizing isolates exhibit specific fitness advantages, including stationary-phase survival and biofilm production, highlighting key physiological benefits of this pathway in addition to energy conservation.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Melissa J Jansen van Rensburg
- Department of Zoology, University of OxfordOxford, UK; NIHR Health Protection Research Unit in Gastrointestinal InfectionsOxford, UK
| | - Janus J Rasmussen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Martin C J Maiden
- Department of Zoology, University of OxfordOxford, UK; NIHR Health Protection Research Unit in Gastrointestinal InfectionsOxford, UK
| | | | | | - Sheila MacIntyre
- School of Biological Sciences, University of Reading Reading, UK
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
| |
Collapse
|
7
|
Oh E, Kim JC, Jeon B. Stimulation of biofilm formation by oxidative stress in Campylobacter jejuni under aerobic conditions. Virulence 2016; 7:846-51. [PMID: 27268722 DOI: 10.1080/21505594.2016.1197471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Euna Oh
- a School of Public Health, University of Alberta , Edmonton , AB , Canada
| | - Jong-Chul Kim
- a School of Public Health, University of Alberta , Edmonton , AB , Canada
| | - Byeonghwa Jeon
- a School of Public Health, University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
8
|
Fields JA, Li J, Gulbronson CJ, Hendrixson DR, Thompson SA. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization. PLoS One 2016; 11:e0156932. [PMID: 27257952 PMCID: PMC4892619 DOI: 10.1371/journal.pone.0156932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.
Collapse
Affiliation(s)
- Joshua A. Fields
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
- Department of Natural Sciences, Georgia Military College - Augusta, Augusta, GA, 30907, United States of America
| | - Jiaqi Li
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
| | - Connor J. Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
- * E-mail:
| |
Collapse
|