1
|
Doritchamou J, Nielsen MA, Chêne A, Viebig NK, Lambert LE, Sander AF, Semblat JP, Hundt S, Orr-Gonzalez S, Janitzek CM, Spiegel AJ, Clemmensen SB, Thomas ML, Nason MC, Snow-Smith M, Barnafo EK, Shiloach J, Chen BB, Nadakal S, Highsmith K, Ouahes T, Conteh S, Sharma A, Torano H, Butler B, Reiter K, Rausch KM, Scaria PV, Anderson C, Narum DL, Salanti A, Fried M, Theander TG, Gamain B, Duffy PE. Aotus nancymaae model predicts human immune response to the placental malaria vaccine candidate VAR2CSA. Lab Anim (NY) 2023; 52:315-323. [PMID: 37932470 PMCID: PMC10689237 DOI: 10.1038/s41684-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.
Collapse
Affiliation(s)
- Justin Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Arnaud Chêne
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Mikkel Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alicia J Spiegel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maryonne Snow-Smith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Shiloach
- Biotechnology Unit, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven Nadakal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kendrick Highsmith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ankur Sharma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly Torano
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Benoit Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Ranade D, Jena R, Patil K, Dogar V, Sancheti S, Deore V, Ashtagi S, Gairola S. A novel high throughput plate-based method for 2-PE quantification in novel multidose vaccines (R21 malaria, Covishield and Covovax) and combination vaccines (Hexavalent). Vaccine 2023; 41:1979-1988. [PMID: 36803871 DOI: 10.1016/j.vaccine.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Multidose presentation of vaccines is the most preferred choice, for mass immunization particularly during pandemics. WHO also recommends multidose containers of fill finished vaccines for programmatic suitability and global immunizations programmes. However, multidose vaccine presentations requires inclusion of preservatives to prevent contaminations. 2-Phenoxy ethanol (2-PE) is one such preservative which is being used in numerous cosmetics and many vaccines recently. Estimation of 2-PE content in multidose vials is a crucial quality control parameter to ensure in use stability of the vaccines. Presently available conventional methods, have their own limitation in terms of being time consuming, requiring sample extraction, large sample volume requirement etc. Therefore, a robust, simple, high-throughput method with a low turnaround time was required, which can quantitate 2-PE content in the conventional combination vaccines as well as new generation complex VLP based vaccines. In order to address this issue, a novel absorbance-based method has been developed. This novel method specifically detects 2-PE content in Matrix M1 adjuvanted R21 malaria vaccine, nano particle and viral vector based covid vaccines and combination vaccines like Hexavalent vaccine. The method has been validated for parameters such as linearity, accuracy and precision. Importantly, this method works even in presence of high amounts of proteins and residual DNA. Considering the advantages associated with method under study, this method can be used as an important in process or release quality parameter to estimate the 2-PE content in various vaccines containing 2-PE in multidose presentations.
Collapse
Affiliation(s)
- Dnyanesh Ranade
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Rajender Jena
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Kundan Patil
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Vikas Dogar
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Shubham Sancheti
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Vicky Deore
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Siddharam Ashtagi
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India
| | - Sunil Gairola
- Quality Control Department, Serum Institute of India Pvt. Ltd, 212/2, Soli Poonawalla Rd, JJC Colony, Suryalok Nagari, Hadapsar, Pune, Maharashtra 411028 India.
| |
Collapse
|
3
|
Doritchamou JY, Renn JP, Jenkins B, Fried M, Duffy PE. A single full-length VAR2CSA ectodomain variant purifies broadly neutralizing antibodies against placental malaria isolates. eLife 2022; 11:76264. [PMID: 35103596 PMCID: PMC8959597 DOI: 10.7554/elife.76264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of Plasmodium falciparum-infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti-adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate. However, the first VAR2CSA subunit vaccines failed to induce broadly neutralizing antibody and it is known that naturally acquired antibodies target both variant-specific and conserved epitopes. It is crucial to determine whether effective vaccines will require incorporation of many or only a single VAR2CSA variants. Here, IgG from multigravidae was sequentially purified on five full-length VAR2CSA ectodomain variants, thereby depleting IgG reactivity to each. The five VAR2CSA variants purified ~0.7% of total IgG and yielded both strain-transcending and strain-specific reactivity to VAR2CSA and IE-surface antigen. In two independent antibody purification/depletion experiments with permutated order of VAR2CSA variants, IgG purified on the first VAR2CSA antigen displayed broad cross-reactivity to both recombinant and native VAR2CSA variants, and inhibited binding of all isolates to CSA. IgG remaining after depletion on all variants showed significantly reduced binding-inhibition activity compared to initial total IgG. These findings demonstrate that a single VAR2CSA ectodomain variant displays conserved epitopes that are targeted by neutralizing (or binding-inhibitory) antibodies shared by multiple parasite strains, including maternal isolates. This suggests that a broadly effective PM-vaccine can be achieved with a limited number of VAR2CSA variants. Contracting malaria during pregnancy – especially a first pregnancy – can lead to a severe, placental form of the disease that is often fatal. Red blood cells infected with the malaria parasite Plasmodium falciparum display a protein, VAR2CSA, which can recognize and bind CSA molecules present on placental cells and in placental blood spaces. This leads to the infected blood cells accumulating in the placenta and inducing harmful inflammation. Having been exposed to the parasite in prior pregnancies generates antibodies that target VAR2CSA, stopping the infected blood cells from latching onto placental CSA or tagging them for immune destruction. Overall, this makes placental malaria less severe in following pregnancies, and suggests that vaccines could be developed based on VAR2CSA. However, this protein has regions that can vary in structure, meaning that P. falciparaum can generate many VAR2CSA variants. Individuals exposed to the parasite naturally generate antibodies that block a wide array of variants from attaching to CSA. In contrast, first-generation vaccines based on VAR2CSA fragments have only induced variant-specific antibodies, therefore offering limited protection against infection. As a response, Doritchamou et al. set out to find VAR2CSA structures that could be recognized by antibodies targeting an array of variants. Blood was obtained from women who had had multiple pregnancies and were immune to malaria. Their plasma was passed over five different large VAR2CSA variants in order to isolate and purify antibodies that attached to these structures. Doritchamou et al. found that antibodies binding to individual VAR2CSA structures could also recognise a wide array of VAR2CSA variants and blocked all tested parasites from sticking to CSA. While further research is needed, these findings highlight antibodies that cross-react to diverse VAR2CSA variants and could be used to design more effective vaccines targeting placental malaria.
Collapse
Affiliation(s)
- Justin Ya Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jonathan P Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Bethany Jenkins
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, United States
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|
4
|
Oleinikov AV. Malaria Parasite Plasmodium falciparum Proteins on the Surface of Infected Erythrocytes as Targets for Novel Drug Discovery. BIOCHEMISTRY (MOSCOW) 2022; 87:S192-S177. [PMID: 35501996 PMCID: PMC8802247 DOI: 10.1134/s0006297922140152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Specific adhesion (sequestration) of Plasmodium falciparum parasite-infected erythrocytes (IEs) in deep vascular beds can cause severe complications resulting in death. This review describes our work on the discovery, characterization, and optimization of novel inhibitors that specifically prevent adhesion of IEs to the host vasculature during severe malaria, especially its placental and cerebral forms. The main idea of using anti-adhesion drugs in severe malaria is to release sequestered parasites (or prevent additional sequestration) as quickly as possible. This may significantly improve the outcomes for patients with severe malaria by decreasing local and systemic inflammation associated with the disease and reestablishing the microvascular blood flow. To identify anti-malarial adhesion-inhibiting molecules, we have developed a high-throughput (HT) screening approach and found a number of promising leads that can be further developed into anti-adhesion drugs providing an efficient adjunct therapy against severe forms of malaria.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA.
| |
Collapse
|
5
|
Keitany GJ, Jenkins BJ, Obiakor HT, Daniel S, Muehlenbachs A, Semblat JP, Gamain B, Doritchamou JYA, Desai SA, MacDonald NJ, Narum DL, Morrison R, Saveria T, Vignali M, Oleinikov AV, Fried M, Duffy PE. An invariant protein that co-localizes with VAR2CSA on Plasmodium falciparum-infected red cells binds to chondroitin sulfate A. J Infect Dis 2021; 225:2011-2022. [PMID: 34718641 DOI: 10.1093/infdis/jiab550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Plasmodium falciparum-infected red blood cells (iRBCs) bind and sequester in deep vascular beds, causing malaria-related disease and death. In pregnant women, VAR2CSA binds to chondroitin sulfate A (CSA) and mediates placental sequestration, making it the major placental malaria (PM) vaccine target. Here, we characterize an invariant protein associated with PM called Plasmodium falciparum chondroitin sulfate A ligand (PfCSA-L). Recombinant PfCSA-L binds both placental CSA and VAR2CSA with nanomolar affinity, and is coexpressed on the iRBC surface with VAR2CSA. Unlike VAR2CSA, which is anchored by a transmembrane domain, PfCSA-L is peripherally associated with the outer surface of knobs through high affinity protein-protein interactions with VAR2CSA. This suggests iRBC sequestration involves complexes of invariant and variant surface proteins, allowing parasites to maintain both diversity and function at the iRBC surface. PfCSA-L is a promising target for intervention because it is well conserved, exposed on infected cells, and expressed and localized with VAR2CSA.
Collapse
Affiliation(s)
- Gladys J Keitany
- Center for Infectious Disease Research, Seattle, WA, USA.,University of Washington, Department of Pathobiology, Seattle, WA, USA
| | - Bethany J Jenkins
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Harold T Obiakor
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Shaji Daniel
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Atis Muehlenbachs
- University of Washington Medical Center, Anatomic Pathology, Seattle, WA, USA
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, Inserm, F-75015, Paris, France
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, Inserm, F-75015, Paris, France
| | | | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD
| | | | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | | | - Tracy Saveria
- Center for Infectious Disease Research, Seattle, WA, USA
| | | | | | - Michal Fried
- Center for Infectious Disease Research, Seattle, WA, USA.,University of Washington, Department of Pathobiology, Seattle, WA, USA.,Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| | - Patrick E Duffy
- Center for Infectious Disease Research, Seattle, WA, USA.,University of Washington, Department of Pathobiology, Seattle, WA, USA.,Laboratory of Malaria Immunology and Vaccinology, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Gamain B, Chêne A, Viebig NK, Tuikue Ndam N, Nielsen MA. Progress and Insights Toward an Effective Placental Malaria Vaccine. Front Immunol 2021; 12:634508. [PMID: 33717176 PMCID: PMC7947914 DOI: 10.3389/fimmu.2021.634508] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
In areas where Plasmodium falciparum transmission is endemic, clinical immunity against malaria is progressively acquired during childhood and adults are usually protected against the severe clinical consequences of the disease. Nevertheless, pregnant women, notably during their first pregnancies, are susceptible to placental malaria and the associated serious clinical outcomes. Placental malaria is characterized by the massive accumulation of P. falciparum infected erythrocytes and monocytes in the placental intervillous spaces leading to maternal anaemia, hypertension, stillbirth and low birth weight due to premature delivery, and foetal growth retardation. Remarkably, the prevalence of placental malaria sharply decreases with successive pregnancies. This protection is associated with the development of antibodies directed towards the surface of P. falciparum-infected erythrocytes from placental origin. Placental sequestration is mediated by the interaction between VAR2CSA, a member of the P. falciparum erythrocyte membrane protein 1 family expressed on the infected erythrocytes surface, and the placental receptor chondroitin sulfate A. VAR2CSA stands today as the leading candidate for a placental malaria vaccine. We recently reported the safety and immunogenicity of two VAR2CSA-derived placental malaria vaccines (PRIMVAC and PAMVAC), spanning the chondroitin sulfate A-binding region of VAR2CSA, in both malaria-naïve and P. falciparum-exposed non-pregnant women in two distinct Phase I clinical trials (ClinicalTrials.gov, NCT02658253 and NCT02647489). This review discusses recent advances in placental malaria vaccine development, with a focus on the recent clinical data, and discusses the next clinical steps to undertake in order to better comprehend vaccine-induced immunity and accelerate vaccine development.
Collapse
Affiliation(s)
- Benoît Gamain
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Arnaud Chêne
- Université de Paris, Inserm, Biologie Intégrée du Globule Rouge, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | | | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Doritchamou JYA, Suurbaar J, Tuikue Ndam N. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev Vaccines 2021; 20:215-226. [PMID: 33472449 DOI: 10.1080/14760584.2021.1878029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Several malaria vaccines are under various phases of development with some promising results. In placental malaria (PM) a deliberately anti-disease approach is considered as many studies have underlined the key role of VAR2CSA protein, which therefore represents the leading vaccine candidate. However, evidence indicates that VAR2CSA antigenic polymorphism remains an obstacle to overcome.Areas covered: This review analyzes the progress made thus far in developing a VAR2CSA-based vaccine, and addresses the current issues and challenges that must be overcome to develop an effective PM vaccine.Expert opinion: Phase I trials of PAMVAC and PRIMVAC VAR2CSA vaccines have shown more or less satisfactory results with regards to safety and immunogenicity. The second generation of VAR2CSA-based vaccines could benefit from optimization approaches to broaden the activity spectrum against various placenta-binding isolates through continued advances in the structural understanding of the interaction with CSA.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Suurbaar
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
8
|
Mordmüller B, Sulyok M, Egger-Adam D, Resende M, de Jongh WA, Jensen MH, Smedegaard HH, Ditlev SB, Soegaard M, Poulsen L, Dyring C, Calle CL, Knoblich A, Ibáñez J, Esen M, Deloron P, Ndam N, Issifou S, Houard S, Howard RF, Reed SG, Leroy O, Luty AJF, Theander TG, Kremsner PG, Salanti A, Nielsen MA. First-in-human, Randomized, Double-blind Clinical Trial of Differentially Adjuvanted PAMVAC, A Vaccine Candidate to Prevent Pregnancy-associated Malaria. Clin Infect Dis 2020; 69:1509-1516. [PMID: 30629148 PMCID: PMC6792113 DOI: 10.1093/cid/ciy1140] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/03/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Malaria in pregnancy has major impacts on mother and child health. To complement existing interventions, such as intermittent preventive treatment and use of impregnated bed nets, we developed a malaria vaccine candidate with the aim of reducing sequestration of asexual "blood-stage" parasites in the placenta, the major virulence mechanism. METHODS The vaccine candidate PAMVAC is based on a recombinant fragment of VAR2CSA, the Plasmodium falciparum protein responsible for binding to the placenta via chondroitin sulfate A (CSA). Healthy, adult malaria-naive volunteers were immunized with 3 intramuscular injections of 20 μg (n = 9) or 50 μg (n = 27) PAMVAC, adjuvanted with Alhydrogel or glucopyranosyl lipid adjuvant in stable emulsion (GLA-SE) or in a liposomal formulation with QS21 (GLA-LSQ). Allocation was random and double blind. The vaccine was given every 4 weeks. Volunteers were observed for 6 months following last immunization. RESULTS All PAMVAC formulations were safe and well tolerated. A total of 262 adverse events (AEs) occurred, 94 (10 grade 2 and 2 grade 3) at least possibly related to the vaccine. No serious AEs occurred. Distribution and severity of AEs were similar in all arms. PAMVAC was immunogenic in all participants. PAMVAC-specific antibody levels were highest with PAMVAC-GLA-SE. The antibodies inhibited binding of VAR2CSA expressing P. falciparum-infected erythrocytes to CSA in a standardized functional assay. CONCLUSIONS PAMVAC formulated with Alhydrogel or GLA-based adjuvants was safe, well tolerated, and induced functionally active antibodies. Next, PAMVAC will be assessed in women before first pregnancies in an endemic area. CLINICAL TRIALS REGISTRATION EudraCT 2015-001827-21; ClinicalTrials.gov NCT02647489.
Collapse
Affiliation(s)
- Benjamin Mordmüller
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Mihály Sulyok
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Diane Egger-Adam
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | | | - Mette H Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Helle Holm Smedegaard
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Sisse B Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | | | | | | | - Carlos Lamsfus Calle
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Annette Knoblich
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Javier Ibáñez
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany
| | - Meral Esen
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Philippe Deloron
- Mère et Enfant face aux Infections Tropicales, Institut de Recherche pour le Développement, Université Paris 5, Sorbonne Paris Cité, France
| | - Nicaise Ndam
- Mère et Enfant face aux Infections Tropicales, Institut de Recherche pour le Développement, Université Paris 5, Sorbonne Paris Cité, France
| | - Saadou Issifou
- Fondation pour la Recherche Scientifique and Institut de Recherche Clinique du Bénin, Cotonou
| | | | | | - Steven G Reed
- Infectious Disease Research Institute, Seattle, Washington
| | - Odile Leroy
- European Vaccine Initiative, Heidelberg, Germany
| | - Adrian J F Luty
- Mère et Enfant face aux Infections Tropicales, Institut de Recherche pour le Développement, Université Paris 5, Sorbonne Paris Cité, France
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen and Deutsches Zentrum für Infektionsforschung, Germany.,Centre de Recherches Médicales de Lambaréné, Gabon
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital
| |
Collapse
|
9
|
Wahdi N, Widjiati W, Widyawaruyanti A, Prasetyo B. The effect of sambiloto tablet (AS201-01) on placental Chondroitin Sulfate A (CSA) expression of pregnant mice infected by Plasmodium berghei. ACTA ACUST UNITED AC 2018. [DOI: 10.20473/mog.v26i22018.83-90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objectives: To determine the effect of Sambiloto tablet (AS201-01) in reducing the placental Chondroitin Sulfate A (CSA) Expression of pregnant mice infected Plasmodiumberghei.Materials and Methods: Experimental study using 24 pregnant mice were divided into 4 groups with randomization. Uninfected group, the placebo group, the Sambiloto tablet (AS201-01) group and the DHP tablet (as a standart drug) group. The last three groups, were infected with P. bergheion day 9th of pregnancy, and the treatment was started at day 11th of pregnancy, and samples were terminated at day 15th of pregnancy by surgery. Placental sampling were stained with Tunnel assay to measure placental CSA antibodies.Results: The placental Chondroitin Sulfate A (CSA) expression. Uninfected group compared to Sambiloto tablet (AS201-01) groups was not significantly different (p>0.05), uninfected group compared with the other treatment groups differ meaningfully (p<0.05). Placebo group compared with all groups significantly different (p<0.05). Sambiloto tablet (AS201-01) group compared to uninfected group (p>0.05) was not significantly different, with another group was significantly different (p<0.05). DHP tablet group compared to all the groups was significantly different (p<0.05).Conclusion: Placental Chondroitin Sulfate A (CSA)expression of mice infected by Plasmodium berghei treated with Sambiloto tablet (AS201-01) lower than DHP tablet.
Collapse
|
10
|
Hommel M, Chan JA, Umbers AJ, Langer C, Rogerson SJ, Smith JD, Beeson JG. Evaluating antibody functional activity and strain-specificity of vaccine candidates for malaria in pregnancy using in vitro phagocytosis assays. Parasit Vectors 2018; 11:69. [PMID: 29378634 PMCID: PMC5789608 DOI: 10.1186/s13071-018-2653-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria in pregnancy is a major cause of poor maternal and infant health, and is associated with the sequestration of P. falciparum-infected erythrocytes (IE) in the placenta. The leading vaccine candidate for pregnancy malaria, VAR2CSA, has been shown to induce antibodies that inhibit IE adhesion to the placental receptor chondroitin sulfate A (CSA), potentially preventing placental infection. However, the ability of vaccination-induced antibodies to promote opsonic phagocytosis is not well defined, but likely to be an important component of protective immunity. METHODS We investigated the use of an opsonic phagocytosis assay to evaluate antibodies induced by pregnancy malaria vaccine candidate antigens based on VAR2CSA. Opsonic phagocytosis was measured by flow cytometry and visualized by electron microscopy. We measured vaccine-induced antibody reactivity to placental type IEs from different geographical origins, and the functional ability of antibodies raised in immunized rabbits to induce phagocytosis by a human monocyte cell line. RESULTS Immunization-induced antibodies showed a mixture of strain-specific and cross-reactive antibody recognition of different placental-binding parasite lines. Antibodies generated against the DBL5 and DBL3 domains of VAR2CSA effectively promoted the opsonic phagocytosis of IEs by human monocytes; however, these functional antibodies were largely allele-specific and not cross-reactive. This has significant implications for the development of vaccines aiming to achieve a broad coverage against diverse parasite strains. Using competition ELISAs, we found that acquired human antibodies among pregnant women targeted both cross-reactive and allele-specific epitopes, consistent with what we observed with vaccine-induced antibodies. CONCLUSIONS Vaccines based on domains of VAR2CSA induced opsonic phagocytosis of IEs in a strain-specific manner. Assays measuring this phagocytic activity have the potential to aid the development and evaluation of vaccines against malaria in pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph D Smith
- Center for Infectious Diseases Research, Seattle, WA, USA
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia. .,Department of Medicine, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia. .,Department of Microbiology and Central Clinical School, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Pehrson C, Salanti A, Theander TG, Nielsen MA. Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 2017; 16:613-624. [PMID: 28434376 DOI: 10.1080/14760584.2017.1322512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.
Collapse
Affiliation(s)
- Caroline Pehrson
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Ali Salanti
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Thor G Theander
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| | - Morten A Nielsen
- a Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science , University of Copenhagen , Copenhagen , Denmark.,b Department of Infectious Diseases , Copenhagen University Hospital (Rigshospitalet) , Copenhagen , Denmark
| |
Collapse
|
12
|
Pehrson C, Heno KK, Adams Y, Resende M, Mathiesen L, Soegaard M, de Jongh WA, Theander TG, Salanti A, Nielsen MA. Comparison of functional assays used in the clinical development of a placental malaria vaccine. Vaccine 2016; 35:610-618. [PMID: 28012775 DOI: 10.1016/j.vaccine.2016.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria are in clinical development. The purpose of this study was to evaluate the robustness and comparability of binding inhibition assays used in the clinical development of placental malaria vaccines. METHODS The ability of sera from animals immunised with different VAR2CSA constructs to inhibit IE binding to CSA was investigated in three in vitro assays using 96-well plates, petri dishes, capillary flow and an ex vivo placental perfusion assay. RESULTS The inter-assay variation was not uniform between assays and ranged from above ten-fold in the flow assay to two-fold in the perfusion assay. The intra-assay variation was highest in the petri dish assay. A positive correlation between IE binding avidity and the level of binding after antibody inhibition in the petri dish assay indicate that high avidity IE binding is more difficult to inhibit. The highest binding inhibition sensitivity was found in the 96-well and petri dish assays compared to the flow and perfusion assays where binding inhibition required higher antibody titers. CONCLUSIONS The inhibitory capacity of antibodies is not easily translated between assays and the high sensitivity of the 96-well and petri dish assays stresses the need for comparing serial dilutions of serum. Furthermore, IE binding avidity must be in the same range when comparing data from different days. There was an overall concordance in the capacity of antibody-mediated inhibition, when comparing the in vitro assays with the perfusion assay, which more closely represents in vivo conditions. Importantly the ID1-ID2a protein in a liposomal formulation, currently in a phase I trial, effectively induced antibodies that inhibited IE adhesion in placental tissue.
Collapse
Affiliation(s)
- Caroline Pehrson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Kristine K Heno
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353 Copenhagen, Denmark.
| | - Max Soegaard
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark.
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark.
| |
Collapse
|
13
|
Chêne A, Houard S, Nielsen MA, Hundt S, D'Alessio F, Sirima SB, Luty AJF, Duffy P, Leroy O, Gamain B, Viebig NK. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report. Malar J 2016; 15:476. [PMID: 27639691 PMCID: PMC5027113 DOI: 10.1186/s12936-016-1527-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays with a goal to define standards that will allow comparative assessment of different placental malaria vaccine candidates. The recommendations of these workshops should guide researchers and clinicians in the further development of placental malaria vaccines.
Collapse
Affiliation(s)
- Arnaud Chêne
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Adrian J F Luty
- IRD MERIT UMR 216, 75006, Paris, France.,COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75270, Paris, France
| | - Patrick Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - Benoit Gamain
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, Institut National de la Transfusion Sanguine, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany.
| |
Collapse
|
14
|
Ayres Pereira M, Mandel Clausen T, Pehrson C, Mao Y, Resende M, Daugaard M, Riis Kristensen A, Spliid C, Mathiesen L, E. Knudsen L, Damm P, G. Theander T, R. Hansson S, A. Nielsen M, Salanti A. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog 2016; 12:e1005831. [PMID: 27556547 PMCID: PMC4996535 DOI: 10.1371/journal.ppat.1005831] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023] Open
Abstract
During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. Plasmodium falciparum is the most deadly malaria parasite, causing more than 500,000 deaths each year. The parasite infects the host’s red blood cells. In placental malaria infected red blood cells accumulate in placenta. The parasite protein VAR2CSA mediates this adherence, which causes complications for both mother and child. VAR2CSA binds a carbohydrate chain termed chondroitin sulfate (CS). CS is not a well-defined biochemical entity but constitute a family of oligosaccharides which each have unique sulfation patterns. The CS binding VAR2CSA is attached to proteoglycans expressed on the surface of placental cells. While much work has gone into understanding the nature of VAR2CSA and its interaction with placental CS, the protein to which the placental CS is attached is not known. To further the understanding of the molecular pathology of PM we characterized the CSPG receptor that the parasites adhere to by defining the exact proteoglycan that carries the placental CS. We further investigated the molecular and cellular consequences of VAR2CSA binding to the receptor. This work provides novel insights into the pathology of placental malaria and the nature of the parasite receptor. This may aid development of strategies to treat or prevent placental malaria.
Collapse
Affiliation(s)
- Marina Ayres Pereira
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Thomas Mandel Clausen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
- Vancouver Prostate Centre, Vancouver, BC, Canada
- * E-mail: (TMC); (AS)
| | - Caroline Pehrson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Yang Mao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Copenhagen Center for Glycomics and Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Mafalda Resende
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | | | | | - Charlotte Spliid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth E. Knudsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Department of Obstetrics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Stefan R. Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University Hospital, Lund University, Lund, Sweden
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Copenhagen University Hospital, Denmark
- * E-mail: (TMC); (AS)
| |
Collapse
|
15
|
Kömpf D, Held J, Müller SF, Drechsel HR, Tschan SC, Northoff H, Mordmüller B, Gehring FK. Real-time measurement of Plasmodium falciparum-infected erythrocyte cytoadhesion with a quartz crystal microbalance. Malar J 2016; 15:317. [PMID: 27296675 PMCID: PMC4906606 DOI: 10.1186/s12936-016-1374-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/04/2016] [Indexed: 11/13/2022] Open
Abstract
Background An important virulence mechanism of the malaria parasite Plasmodium falciparum is cytoadhesion, the binding of infected erythrocytes to endothelial cells in the second half of asexual blood stage development. Conventional methods to investigate adhesion of infected erythrocytes are mostly performed under static conditions, many are based on manual or semi-automated read-outs and are, therefore, difficult to standardize. Quartz crystal microbalances (QCM) are sensitive to nanogram-scale changes in mass and biomechanical properties and are increasingly used in biomedical research. Here, the ability of QCM is explored to measure binding of P. falciparum-infected erythrocytes to two receptors: CD36 and chondroitin sulfate A (CSA) under flow conditions. Methods Binding of late stage P. falciparum parasites is measured in comparison to uninfected erythrocytes to CD36- and CSA-coated quartzes by QCM observing frequency shifts. CD36-expressing cell membrane fragments and CSA polysaccharide were coated via poly-l-lysine to the quartz. The method was validated by microscopic counting of attached parasites and of erythrocytes to the coated quartzes. Results Frequency shifts indicating binding of infected erythrocytes could be observed for both receptors CD36 and CSA. The frequency shifts seen for infected and uninfected erythrocytes were strongly correlated to the microscopically counted numbers of attached cells. Conclusions In this proof-of-concept experiment it is shown that QCM is a promising tool to measure binding kinetics and specificity of ligand-receptor interactions using viable, parasite-infected erythrocytes. The method can improve the understanding of the virulence of P. falciparum and might be used to cross-validate other methods. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1374-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Kömpf
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,State Health Office Baden-Württemberg, Stuttgart, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany. .,DZIF-Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Germany.
| | - Stefani F Müller
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Hartmut R Drechsel
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany.,3T GmbH & Co KG, Tuttlingen, Germany
| | - Serena C Tschan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,DZIF-Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Germany
| | - Hinnak Northoff
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,DZIF-Deutsches Zentrum für Infektionsforschung, Standort Tübingen, Germany
| | - Frank K Gehring
- Biosensor Research Group, Institute of Clinical and Experimental Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany. .,3T GmbH & Co KG, Tuttlingen, Germany.
| |
Collapse
|
16
|
Pehrson C, Mathiesen L, Heno KK, Salanti A, Resende M, Dzikowski R, Damm P, Hansson SR, King CL, Schneider H, Wang CW, Lavstsen T, Theander TG, Knudsen LE, Nielsen MA. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue: a novel model of placental malaria. Malar J 2016; 15:292. [PMID: 27230523 PMCID: PMC4881162 DOI: 10.1186/s12936-016-1342-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Placental malaria occurs when Plasmodium falciparum infected erythrocytes sequester in the placenta. Placental parasite isolates bind to chondroitin sulphate A (CSA) by expression of VAR2CSA on the surface of infected erythrocytes, but may sequester by other VAR2CSA mediated mechanisms, such as binding to immunoglobulins. Furthermore, other parasite antigens have been associated with placental malaria. These findings have important implications for placental malaria vaccine design. The objective of this study was to adapt and describe a biologically relevant model of parasite adhesion in intact placental tissue. Results The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. Conclusion The ex vivo model provides a novel way of studying receptor-ligand interactions and antibody mediated inhibition of binding in placental malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1342-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Pehrson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353, Copenhagen, Denmark
| | - Kristine K Heno
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Peter Damm
- Department of Obstetrics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University and Veterans Affairs Medical Center, Cleveland, USA
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christian W Wang
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lisbeth E Knudsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, 1353, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
17
|
Doritchamou JYA, Herrera R, Aebig JA, Morrison R, Nguyen V, Reiter K, Shimp RL, MacDonald NJ, Narum DL, Fried M, Duffy PE. VAR2CSA Domain-Specific Analysis of Naturally Acquired Functional Antibodies to Plasmodium falciparum Placental Malaria. J Infect Dis 2016; 214:577-86. [PMID: 27190180 DOI: 10.1093/infdis/jiw197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Placental malaria is caused by Plasmodium falciparum-infected erythrocytes (IEs) that surface-express VAR2CSA and bind chondroitin sulfate A. The inflammatory response to placenta-sequestered parasites is associated with poor pregnancy outcomes, and protection may be mediated in part by VAR2CSA antibodies that block placental IE adhesion. METHODS In this study, we used a new approach to assess VAR2CSA domains for functional epitopes recognized by naturally acquired antibodies. Antigen-specific immunoglobulin (Ig) G targeting Duffy binding-like (DBL) domains from different alleles were sequentially purified from plasma pooled from multigravid women and then characterized using enzyme-linked immunosorbent assay, flow cytometry, and antiadhesion assays. RESULTS Different DBL domain-specific IgGs could react to homologous as well as heterologous antigens and parasites, suggesting that conserved epitopes are shared between allelic variants. Homologous blocking of IE binding was observed with ID1-DBL2-ID2a-, DBL4-, and DBL5-specific IgG (range, 42%-75%), whereas partial cross-inhibition activity was observed with purified IgG specific to ID1-DBL2-ID2a and DBL4 antigens. Plasma retained broadly neutralizing activity after complete depletion of these VAR2CSA specificities. CONCLUSIONS Broadly neutralizing antibodies of multigravidae are not depleted on VAR2CSA recombinant antigens, and hence development of VAR2CSA vaccines based on a single construct and variant might induce antibodies with limited broadly neutralizing activity.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Raul Herrera
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Joan A Aebig
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Robert Morrison
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland MOMS Project, Seattle Biomedical Research Institute, Washington
| | - Vu Nguyen
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Karine Reiter
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Richard L Shimp
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - David L Narum
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Michal Fried
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Disease, National Institute of Health, Rockville, Maryland
| |
Collapse
|
18
|
Babakhanyan A, Tutterrow YL, Bobbili N, Salanti A, Wey A, Fogako J, Leke RJ, Leke RGF, Taylor DW. Influence of Intermittent Preventive Treatment on Antibodies to VAR2CSA in Pregnant Cameroonian Women. Am J Trop Med Hyg 2015; 94:640-9. [PMID: 26711513 DOI: 10.4269/ajtmh.15-0521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022] Open
Abstract
Intermittent preventive treatment (IPT) and insecticide-treated bed nets are the standard of care for preventing malaria in pregnant women. Since these preventive measures reduce exposure to malaria, their influence on the antibody (Ab) response to the parasite antigen VAR2CSA was evaluated in pregnant Cameroonian women exposed to holoendemic malaria. Ab levels to full-length VAR2CSA (FV2), variants of the six Duffy binding like (DBL) domains, and proportion of high avidity Ab to FV2 were measured longitudinally in 92 women before and 147 women after IPT. As predicted, reduced exposure interfered with acquisition of Ab in primigravidae, with 71% primigravidae being seronegative to FV2 at delivery. Use of IPT for > 13 weeks by multigravidae resulted in 26% of women being seronegative at delivery and a significant reduction in Ab levels to FV2, DBL5, DBL6, proportion of high avidity Ab to FV2, and number of variants recognized. Thus, in women using IPT important immune responses were not acquired by primigravidae and reduced in a portion of multigravidae, especially women with one to two previous pregnancies. Longitudinal data from individual multigravidae on IPT suggest that lower Ab levels most likely resulted from lack of boosting of the VAR2CSA response and not from a short-lived Ab response.
Collapse
Affiliation(s)
- Anna Babakhanyan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Yeung L Tutterrow
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Ali Salanti
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Andrew Wey
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Josephine Fogako
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Robert J Leke
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Rose G F Leke
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii; Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark; The Biotechnology Center, Faculty of Medicine and Biomedical Research, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
19
|
Fried M, Duffy PE. Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine 2015; 33:7483-8. [PMID: 26469717 PMCID: PMC5077158 DOI: 10.1016/j.vaccine.2015.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
Placental malaria (PM) due to Plasmodium falciparum is a major cause of maternal, fetal and infant mortality, but the mechanisms of pathogenesis and protective immunity are relatively well-understood for this condition, providing a path for vaccine development. P. falciparum parasites bind to chondroitin sulfate A (CSA) to sequester in the placenta, and women become resistant over 1–2 pregnancies as they acquire antibodies that block adhesion to CSA. The protein VAR2CSA, a member of the PfEMP1 variant surface antigen family, mediates parasite adhesion to CSA, and is the leading target for a vaccine to prevent PM. Obstacles to PM vaccine development include the large size (~350 kD), high cysteine content, and sequence variation of VAR2CSA. A number of approaches have been taken to identify the combination of VAR2CSA domains and alleles that can induce broadly active antibodies that block adhesion of heterologous parasite isolates to CSA. This review summarizes these approaches, which have examined VAR2CSA fragments for binding activity, antigenicity with naturally acquired antibodies, and immunogenicity in animals for inducing anti-adhesion or surface-reactive antibodies. Two products are expected to enter human clinical studies in the near future based on N-terminal VAR2CSA fragments that have high binding affinity for CSA, and additional proteins preferentially expressed by placental parasites are also being examined for their potential contribution to a PM vaccine.
Collapse
Affiliation(s)
- Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, TWB1/Room 1111, Rockville, MD, USA.
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, TWB1/Room 1111, Rockville, MD, USA.
| |
Collapse
|
20
|
Birkett AJ. Building an effective malaria vaccine pipeline to address global needs. Vaccine 2015; 33:7538-43. [PMID: 26469721 DOI: 10.1016/j.vaccine.2015.09.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023]
Abstract
Despite impressive gains over the last 15 years in reducing the mortality associated with malaria, it remains a public health emergency. New interventions, such as vaccines, are needed to ensure that previous gains serve as a foundation for future progress. Vaccines have the potential to prevent severe disease and death in those most vulnerable, and to accelerate elimination and eradication by breaking the cycle of parasite transmission. The pipeline is as healthy as it has ever been, with approaches targeting different stages of the parasite lifecycle using an array of technologies. This article reviews recent progress and reviews key considerations in the quest to develop products that are aligned with the unmet medical need.
Collapse
Affiliation(s)
- Ashley J Birkett
- PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC 20001-2621, USA.
| |
Collapse
|
21
|
Viebig NK, D'Alessio F, Draper SJ, Sim BKL, Mordmüller B, Bowyer PW, Luty AJF, Jungbluth S, Chitnis CE, Hill AVS, Kremsner P, Craig AG, Kocken CHM, Leroy O. Workshop report: Malaria vaccine development in Europe--preparing for the future. Vaccine 2015; 33:6137-44. [PMID: 26431986 DOI: 10.1016/j.vaccine.2015.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap.
Collapse
Affiliation(s)
- Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Simon J Draper
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD 20850, USA
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, B.P. 118 Lambaréné, Gabon
| | - Paul W Bowyer
- The National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Adrian J F Luty
- IRD MERIT UMR 216, 75006 Paris, France; COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75270 Paris, France
| | - Stefan Jungbluth
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Chetan E Chitnis
- Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Peter Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, B.P. 118 Lambaréné, Gabon
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Clemens H M Kocken
- Biomedical Primate Research Centre, Department of Parasitology, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Nielsen MA, Resende M, de Jongh WA, Ditlev SB, Mordmüller B, Houard S, Ndam NT, Agerbæk MØ, Hamborg M, Massougbodji A, Issifou S, Strøbæk A, Poulsen L, Leroy O, Kremsner PG, Chippaux JP, Luty AJF, Deloron P, Theander TG, Dyring C, Salanti A. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine. PLoS One 2015; 10:e0135406. [PMID: 26327283 PMCID: PMC4556615 DOI: 10.1371/journal.pone.0135406] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
The disease caused by Plasmodium falciparum (Pf) involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM) is one such manifestation in which Pf infected erythrocytes (IE) bind to chondroitin sulphate A (CSA) through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally constrained receptor-binding domains may, theoretically, circumvent polymorphisms, reduce the risk of escape-mutants and induce cross-reactive antibodies. However, the sub-unit composition and small differences in the borders, may lead to exposure of novel immuno-dominant antibody epitopes that lead to non-functional antibodies, and furthermore influence the folding, stability and yield of expression. Candidate antigens from the pre-clinical development expressed in High-Five insect cells using the baculovirus expression vector system were transitioned into the Drosophila Schneider-2 cell (S2) expression-system compliant with clinical development. The functional capacity of antibodies against antigens expressed in High-Five cells or in S2 cells was equivalent. This enabled an extensive down-selection of S2 insect cell-expressed antigens primarily encompassing the minimal CSA-binding region of VAR2CSA. In general, we found differential potency of inhibitory antibodies against antigens with the same borders but of different var2csa sequences. Likewise, we found that subtle size differences in antigens of the same sequence gave varying levels of inhibitory antibodies. The study shows that induction of a functional response against recombinant subunits of the VAR2CSA antigen is unpredictable, demonstrating the need for large-scale screening in order to identify antigens that induce a broadly strain-transcending antibody response.
Collapse
Affiliation(s)
- Morten A. Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- * E-mail:
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Sisse B. Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Benjamin Mordmüller
- Eberhard Karls Universität Tübingen, Institut für Tropenmedizin, Tübingen, Germany, and Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Sophie Houard
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Nicaise Tuikue Ndam
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Mette Hamborg
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Achille Massougbodji
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Saddou Issifou
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Anette Strøbæk
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Lars Poulsen
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Odile Leroy
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Peter G. Kremsner
- Eberhard Karls Universität Tübingen, Institut für Tropenmedizin, Tübingen, Germany, and Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jean-Philippe Chippaux
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Adrian J. F. Luty
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Philippe Deloron
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Charlotte Dyring
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
23
|
Guillotte M, Juillerat A, Igonet S, Hessel A, Petres S, Crublet E, Le Scanf C, Lewit-Bentley A, Bentley GA, Vigan-Womas I, Mercereau-Puijalon O. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes. PLoS One 2015. [PMID: 26222304 PMCID: PMC4519321 DOI: 10.1371/journal.pone.0134292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Cross Reactions
- Epitopes/chemistry
- Epitopes/genetics
- Erythrocytes/parasitology
- Female
- Humans
- Malaria Vaccines/chemistry
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Rosette Formation
Collapse
Affiliation(s)
- Micheline Guillotte
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
| | - Alexandre Juillerat
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Sébastien Igonet
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Audrey Hessel
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Plate-forme de Protéines recombinantes (PFPR), Paris, France
| | - Elodie Crublet
- Institut Pasteur, Plate-forme de Protéines recombinantes (PFPR), Paris, France
| | - Cécile Le Scanf
- Bordeaux Biothèques Santé, Groupe hospitalier Pellegrin, Centre Hospitalier Universitaire de Bordeaux - Bordeaux, France
| | - Anita Lewit-Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Graham A. Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Moreno A, Joyner C. Malaria vaccine clinical trials: what's on the horizon. Curr Opin Immunol 2015; 35:98-106. [PMID: 26172291 DOI: 10.1016/j.coi.2015.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Significant progress toward a malaria vaccine, specifically for Plasmodium falciparum, has been made in the past few years with the completion of numerous clinical trials. Each trial has utilized a unique combination of antigens, delivery platforms, and adjuvants, which has provided the research community with a wealth of critical information to apply towards the development of next generation malaria vaccines. Despite the progress toward a P. falciparum vaccine, P. vivax vaccine research requires more momentum and additional investigations to identify novel vaccine candidates. In this review, recently completed and ongoing malaria vaccine clinical trials as well as vaccine candidates that are in the development pipeline are reviewed. Perspectives for future research using post-genomic mining, nonhuman primate models, and systems biology are also discussed.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University, 69 Jesse Hill, Jr. Drive, SE, Atlanta, GA 30303, USA.
| | - Chester Joyner
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| |
Collapse
|
25
|
Hviid L, Jensen ATR. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. ADVANCES IN PARASITOLOGY 2015; 88:51-84. [PMID: 25911365 DOI: 10.1016/bs.apar.2015.02.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
26
|
Nielsen MA, Salanti A. High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites. Methods Mol Biol 2015; 1325:241-53. [PMID: 26450394 DOI: 10.1007/978-1-4939-2815-6_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range of different human receptors through Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of the infected cell. As the var genes encoding the large PfEMP1 antigens are extensively polymorphic, vaccine development strategies are focused on targeting the functional binding epitopes. This involves identification of recombinant fragments of PfEMP1s that induce antibodies, which hinder the adhesion of the IE to a given receptor or tissue. Different assays to measure the blocking of adhesion have been described in the literature, each with different advantages. This chapter describes a high-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria.
Collapse
Affiliation(s)
- Morten A Nielsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, CSS Building 22/23, Øster Farimagsgade 5, 2099, Copenhagen K, 1014, Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, CSS Building 22/23, Øster Farimagsgade 5, 2099, Copenhagen K, 1014, Denmark.
| |
Collapse
|
27
|
Gullingsrud J, Milman N, Saveria T, Chesnokov O, Williamson K, Srivastava A, Gamain B, Duffy PE, Oleinikov AV. High-throughput screening platform identifies small molecules that prevent sequestration of Plasmodium falciparum-infected erythrocytes. J Infect Dis 2014; 211:1134-43. [PMID: 25355939 DOI: 10.1093/infdis/jiu589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We developed a 2-step approach to screen molecules that prevent and/or reverse Plasmodium falciparum-infected erythrocyte (IE) binding to host receptors. IE adhesion and sequestration in vasculature causes severe malaria, and therefore antiadhesion therapy might be useful as adjunctive treatment. IE adhesion is mediated by the polymorphic family (approximately 60 members) of P. falciparum EMP1 (PfEMP1) multidomain proteins. METHODS We constructed sets of PfEMP1 domains that bind ICAM-1, CSA, or CD36, receptors that commonly support IE binding. Combinations of domain-coated beads were assayed by Bio-Plex technology as a high-throughput molecular platform to screen antiadhesion molecules (antibodies and small molecules). Molecules identified as so-called hits in the screen (first step) then could be assayed individually for inhibition of binding of live IE to receptors (second step). RESULTS In proof-of-principle studies, the antiadhesion activity of several antibodies was concordant in Bio-Plex and live IE assays. Using this 2-step approach, we identified several molecules in a small molecule library of 10 000 compounds that could inhibit and reverse binding of IEs to ICAM-1 and CSA receptors. CONCLUSION This 2-step screening approach should be efficient for identification of antiadhesion drug candidates for falciparum malaria.
Collapse
Affiliation(s)
| | - Neta Milman
- Seattle Biomedical Research Institute, Seattle, Washington
| | - Tracy Saveria
- Seattle Biomedical Research Institute, Seattle, Washington
| | - Olga Chesnokov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton
| | | | - Anand Srivastava
- Inserm UMR 1134 Université Paris Diderot, Sorbonne Paris Cité, UMR S1134 Institut National de la Transfusion Sanguine, Paris, France
| | - Benoit Gamain
- Inserm UMR 1134 Université Paris Diderot, Sorbonne Paris Cité, UMR S1134 Institut National de la Transfusion Sanguine, Paris, France
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institutes of Health, Bethesda, Maryland
| | - Andrew V Oleinikov
- Seattle Biomedical Research Institute, Seattle, Washington Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton
| |
Collapse
|
28
|
Ditlev SB, Florea R, Nielsen MA, Theander TG, Magez S, Boeuf P, Salanti A. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA. PLoS One 2014; 9:e84981. [PMID: 24465459 PMCID: PMC3897377 DOI: 10.1371/journal.pone.0084981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/28/2013] [Indexed: 12/19/2022] Open
Abstract
Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.
Collapse
Affiliation(s)
- Sisse B Ditlev
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Raluca Florea
- Cellular and Molecular Immunology Research Unit, Vrije Universiteit Brussel, Brussels, Belgium ; Department of Structural Biology, VIB, Brussels, Belgium
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Stefan Magez
- Cellular and Molecular Immunology Research Unit, Vrije Universiteit Brussel, Brussels, Belgium ; Department of Structural Biology, VIB, Brussels, Belgium
| | - Philippe Boeuf
- The University of Melbourne, Department of Medicine, Parkville, Victoria, Australia ; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ali Salanti
- Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen and at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
29
|
Bancells C, Deitsch KW. A molecular switch in the efficiency of translation reinitiation controls expression of var2csa, a gene implicated in pregnancy-associated malaria. Mol Microbiol 2013; 90:472-88. [PMID: 23980802 DOI: 10.1111/mmi.12379] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2013] [Indexed: 12/16/2022]
Abstract
Plasmodium falciparum malaria parasites export the protein PfEMP1 to the surface of infected erythrocytes, enabling them to adhere to receptors in the microvasculature and thereby avoid clearance by the spleen. The gene var2csa encodes the form of PfEMP1 that binds specifically within the placenta, causing pregnancy-associated malaria, and appears to not be expressed in the absence of a placenta. We previously described an upstream open reading frame (uORF) that is responsible for repression of translation of the downstream ORF (dORF) that encodes VAR2CSA, thus keeping the gene silent when parasites infect non-pregnant individuals. To elucidate the molecular mechanism by which this repression is overcome during pregnancy, we stably transformed parasites with reporter gene constructs designed to detect switches in the efficiency of dORF translation. We found that proper regulation of switching relies on two separate components, (i) active translation of the uORF and (ii) sequence-specific characteristics of the surrounding transcript, which together control the ability of the ribosome complex to reinitiate a second round of translation and thus express VAR2CSA. These results provide the first details of a molecular switch that allows parasites take advantage of the unique niche provided by the placenta.
Collapse
Affiliation(s)
- Cristina Bancells
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | | |
Collapse
|
30
|
Heppner DG. The malaria vaccine--status quo 2013. Travel Med Infect Dis 2013; 11:2-7. [PMID: 23454205 DOI: 10.1016/j.tmaid.2013.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 01/23/2023]
Abstract
It has been 40 years since David Clyde's landmark induction of sterile immunity against deadly falciparum malaria through immunization by exposure to 1000 irradiated mosquitoes, and the first recombinant Plasmodium falciparum vaccine, RTS,S/AS01, is now in Phase III testing. Interim reports from this largest ever Phase III pediatric trial in Africa show the malaria vaccine decreased clinical and severe disease by 56% and 47% respectively in 5-17 month olds, and by 31% and 26% respectively in infants participating in the Expanded Programme on Immunization. Final data in 2014 will more fully describe the efficacy of RTS,S/AS01 over time against all falciparum malaria cases under a variety of transmission conditions, results essential for decisions on licensure and deployment. Meanwhile, candidate components of a second-generation malaria vaccine are emerging. A field trial of the polymorphic blood stage vaccine AMA-1/AS02 demonstrated no overall efficacy (ve = 17%, P = 0.18), yet a sieve analysis revealed allele-specific efficacy (ve = 64%, P = 0.03) against the vaccine strain, suggesting AMA-1 antigens could be part of a multicomponent vaccine. Initial trials of new antigens include the highly conserved pre-erythrocytic candidate PfCelTOS, a synthetic Plasmodium vivax circumsporozoite antigen VMP-001, and sexual stage vaccines containing antigens from both P. falciparum (Pfs25) and P. vivax (Pvs25) intended to interrupt transmission. Targets for a vaccine to protect against placental malaria, the leading remediable cause of low birth weight infants in Africa, have been identified. Lastly, renewed efforts are underway to develop a practical attenuated-sporozoite vaccine to recapture the promise of David Clyde's experiment.
Collapse
Affiliation(s)
- D Gray Heppner
- Heppner Associates, LLC, 9441 Brenner Court, Vienna, VA 22180-3402, USA.
| |
Collapse
|