1
|
Gates-Hollingsworth MA, Kolton CB, Hoffmaster AR, Meister GT, Moore AE, Green HR, Pogoda JM, Pillai SP, Kozel TR. Rapid Capsular Antigen Immunoassay for Diagnosis of Inhalational Anthrax: Preclinical Studies and Evaluation in a Nonhuman Primate Model. mBio 2022; 13:e0093122. [PMID: 35546539 PMCID: PMC9239138 DOI: 10.1128/mbio.00931-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Inhalational anthrax is a fatal infectious disease. Rapid and effective treatment is critically dependent on early and accurate diagnosis. Blood culture followed by identification and confirmation may take days to provide clinically relevant information. In contrast, immunoassay for a shed antigen, the capsular polypeptide gamma-d-polyglutamate (γDPGA), can provide rapid results at the point of care. In this study, a lateral flow immunoassay for γDPGA was evaluated in a robust nonhuman primate model of inhalational anthrax. The results showed that the time to a positive result with the rapid test using either serum or blood as a clinical specimen was similar to the time after infection when a blood culture became positive. In vitro testing showed that the test was equally sensitive with cultures of the three major clades of Bacillus anthracis. Cultures from other Bacillus spp. that are known to produce γDPGA also produced positive results. The test was negative with human sera from 200 normal subjects and 45 subjects with culture-confirmed nonanthrax bacterial or fungal sepsis. Taken together, the results showed that immunoassay for γDPGA is an effective surrogate for blood culture in a relevant cynomolgus monkey model of inhalational anthrax. The test would be a valuable aid in early diagnosis of anthrax, which is critical for rapid intervention and a positive outcome. Use of the test could facilitate triage of patients with signs and symptoms of anthrax in a mass-exposure incident and in low-resource settings where laboratory resources are not readily available. IMPORTANCE Patient outcome in anthrax is critically dependent on early diagnosis followed by effective treatment. We describe a rapid lateral flow immunoassay that detects capsular antigen of Bacillus anthracis that is shed into blood during infection. The test was evaluated in a robust cynomolgus monkey model of inhalational anthrax. Rapid detection of capsular antigen is an effective surrogate for the time-consuming and laboratory-intensive diagnosis by blood culture, direct fluorescent antibody staining, or other molecular testing. The test can be performed at the point of patient contact, is rapid and inexpensive, and can be used by individuals with minimal training.
Collapse
Affiliation(s)
| | - Cari B. Kolton
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Addie E. Moore
- Battelle Biomedical Research Center, Columbus, Ohio, USA
| | - Heather R. Green
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | | | - Segaran P. Pillai
- Office of the Commissioner, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Thomas R. Kozel
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
2
|
Scheepers C, Bekker V, Anthony C, Richardson SI, Oosthuysen B, Moyo T, Kgagudi P, Kitchin D, Nonyane M, York T, Mielke D, Mabvakure BM, Sheng Z, Lambson BE, Ismail A, Garrett NJ, Abdool Karim SS, Shapiro L, Williamson C, Morris L, Moore PL. Antibody Isotype Switching as a Mechanism to Counter HIV Neutralization Escape. Cell Rep 2020; 33:108430. [PMID: 33238131 PMCID: PMC7723817 DOI: 10.1016/j.celrep.2020.108430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/18/2020] [Accepted: 11/02/2020] [Indexed: 02/04/2023] Open
Abstract
Neutralizing antibodies (nAbs) to highly variable viral pathogens show remarkable diversification during infection, resulting in an “arms race” between virus and host. Studies of nAb lineages have shown how somatic hypermutation (SHM) in immunoglobulin (Ig)-variable regions enables maturing antibodies to neutralize emerging viral escape variants. However, the Ig-constant region (which determines isotype) can also influence epitope recognition. Here, we use longitudinal deep sequencing of an HIV-directed nAb lineage, CAP88-CH06, and identify several co-circulating isotypes (IgG3, IgG1, IgA1, IgG2, and IgA2), some of which share identical variable regions. First, we show that IgG3 and IgA1 isotypes are better able to neutralize longitudinal autologous viruses and epitope mutants than can IgG1. Second, detrimental class-switch recombination (CSR) events that resulted in reduced neutralization can be rescued by further CSR, which we term “switch redemption.” Thus, CSR represents an additional immunological mechanism to counter viral escape from HIV-specific antibody responses. Scheepers et al. show within an HIV-specific antibody lineage that isotypes confer variable ability to neutralize emerging viral escape variants. This suggests that class switching, in addition to somatic hypermutation of immunoglobulin-variable regions, contributes to antibody maturation during infection.
Collapse
Affiliation(s)
- Cathrine Scheepers
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Valerie Bekker
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Colin Anthony
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa
| | - Simone I Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Brent Oosthuysen
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Thandeka Moyo
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Prudence Kgagudi
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Dale Kitchin
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Talita York
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa
| | - Dieter Mielke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa
| | - Batsirai M Mabvakure
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Brain Mind Behaviour Institute, Columbia University, New York, NY 10027, USA
| | - Bronwen E Lambson
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Arshad Ismail
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Nigel J Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal 4013, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal 4013, South Africa; Department of Epidemiology, Columbia University, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Brain Mind Behaviour Institute, Columbia University, New York, NY 10027, USA
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal 4013, South Africa.
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa; Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7701, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal 4013, South Africa.
| |
Collapse
|
3
|
Jelacic TM, Ribot WJ, Chua J, Boyer AE, Woolfitt AR, Barr JR, Friedlander AM. Human Innate Immune Cells Respond Differentially to Poly-γ-Glutamic Acid Polymers from Bacillus anthracis and Nonpathogenic Bacillus Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1263-1273. [PMID: 31932496 PMCID: PMC7970647 DOI: 10.4049/jimmunol.1901066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022]
Abstract
The poly-γ-glutamic acid (PGA) capsule produced by Bacillus anthracis is composed entirely of d-isomer glutamic acid, whereas nonpathogenic Bacillus species produce mixed d-, l-isomer PGAs. To determine if B. anthracis PGA confers a pathogenic advantage over other PGAs, we compared the responses of human innate immune cells to B. anthracis PGA and PGAs from nonpathogenic B. subtilis subsp. chungkookjang and B. licheniformis Monocytes and immature dendritic cells (iDCs) responded differentially to the PGAs, with B. anthracis PGA being least stimulatory and B. licheniformis PGA most stimulatory. All three elicited IL-8 and IL-6 from monocytes, but B. subtilis PGA also elicited IL-10 and TNF-α, whereas B. licheniformis PGA elicited all those plus IL-1β. Similarly, all three PGAs elicited IL-8 from iDCs, but B. subtilis PGA also elicited IL-6, and B. licheniformis PGA elicited those plus IL-12p70, IL-10, IL-1β, and TNF-α. Only B. licheniformis PGA induced dendritic cell maturation. TLR assays also yielded differential results. B. subtilis PGA and B. licheniformis PGA both elicited more TLR2 signal than B. anthracis PGA, but only responses to B. subtilis PGA were affected by a TLR6 neutralizing Ab. B. licheniformis PGA elicited more TLR4 signal than B. anthracis PGA, whereas B. subtilis PGA elicited none. B. anthracis PGA persisted longer in high m.w. form in monocyte and iDC cultures than the other PGAs. Reducing the m.w. of B. anthracis PGA reduced monocytes' cytokine responses. We conclude that B. anthracis PGA is recognized less effectively by innate immune cells than PGAs from nonpathogenic Bacillus species, resulting in failure to induce a robust host response, which may contribute to anthrax pathogenesis.
Collapse
Affiliation(s)
- Tanya M Jelacic
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702;
| | - Wilson J Ribot
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Jennifer Chua
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Anne E Boyer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341; and
| | - Adrian R Woolfitt
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341; and
| | - John R Barr
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341; and
| | - Arthur M Friedlander
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702;
- Department of Medicine, Uniformed University of Health Services, Bethesda, MD 20814
| |
Collapse
|
4
|
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 470] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland 20814, USA
| |
Collapse
|
5
|
Janda A, Bowen A, Greenspan NS, Casadevall A. Ig Constant Region Effects on Variable Region Structure and Function. Front Microbiol 2016; 7:22. [PMID: 26870003 PMCID: PMC4740385 DOI: 10.3389/fmicb.2016.00022] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/11/2016] [Indexed: 01/02/2023] Open
Abstract
The adaptive humoral immune response is responsible for the generation of antimicrobial proteins known as immunoglobulin molecules or antibodies. Immunoglobulins provide a defense system against pathogenic microbes and toxins by targeting them for removal and/or destruction. Historically, antibodies have been thought to be composed of distinct structural domains known as the variable and constant regions that are responsible for antigen binding and mediating effector functions such as opsonization and complement activation, respectively. These domains were thought to be structurally and functionally independent. Recent work has revealed however, that in some families of antibodies, the two regions can influence each other. We will discuss the body of work that led to these observations, as well as the mechanisms that have been proposed to explain how these two different antibody regions may interact in the function of antigen binding.
Collapse
Affiliation(s)
- Alena Janda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine New York, NY, USA
| | - Anthony Bowen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine New York, NY, USA
| | - Neil S Greenspan
- Department of Pathology, Case Western Reserve University Cleveland, OH, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health Baltimore, MD, USA
| |
Collapse
|
6
|
Abstract
Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Catherine Vrentas
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Andrei P Pomerantsev
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; , , , ,
| |
Collapse
|
7
|
Xiong S, Tang Q, Liang X, Zhou T, Yang J, Liu P, Chen Y, Wang C, Feng Z, Zhu J. A Novel Chimeric Anti-PA Neutralizing Antibody for Postexposure Prophylaxis and Treatment of Anthrax. Sci Rep 2015; 5:11776. [PMID: 26134518 PMCID: PMC4488766 DOI: 10.1038/srep11776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Anthrax is a highly lethal infectious disease caused by the bacterium Bacillus anthracis, and the associated shock is closely related to the lethal toxin (LeTx) produced by the bacterium. The central role played by the 63 kDa protective antigen (PA63) region of LeTx in the pathophysiology of anthrax makes it an excellent therapeutic target. In the present study, a human/murine chimeric IgG mAb, hmPA6, was developed by inserting murine antibody variable regions into human constant regions using antibody engineering technology. hmPA6 expressed in 293F cells could neutralize LeTx both in vitro and in vivo. At a dose of 0.3 mg/kg, it could protect all tested rats from a lethal dose of LeTx. Even administration of 0.6 mg/kg hmPA6 48 h before LeTx challenge protected all tested rats. The results indicate that hmPA6 is a potential candidate for clinical application in anthrax treatment.
Collapse
Affiliation(s)
- Siping Xiong
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Xudong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Tingting Zhou
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Jin Yang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Peng Liu
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Ya Chen
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Changjun Wang
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Zhenqing Feng
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Jin Zhu
- 1] Huadong Medical Institute of Biotechniques, Nanjing 210002, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
8
|
Gates-Hollingsworth MA, Perry MR, Chen H, Needham J, Houghton RL, Raychaudhuri S, Hubbard MA, Kozel TR. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax. PLoS One 2015; 10:e0126304. [PMID: 25942409 PMCID: PMC4420260 DOI: 10.1371/journal.pone.0126304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/31/2015] [Indexed: 01/17/2023] Open
Abstract
Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA), the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation), whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.
Collapse
Affiliation(s)
| | - Mark R. Perry
- Battelle Biomedical Research Center, Columbus, Ohio, United States of America
| | - Hongjing Chen
- InBios International, Inc., Seattle, Washington, United States of America
| | - James Needham
- InBios International, Inc., Seattle, Washington, United States of America
| | | | | | - Mark A. Hubbard
- University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Thomas R. Kozel
- University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kaur M, Singh S, Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev Vaccines 2014; 12:955-70. [PMID: 23984963 DOI: 10.1586/14760584.2013.814860] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of anthrax remains a top priority among the biowarfare/bioterror agents. It was the Bacillus anthracis spore attack through the US mail system after the September 11, 2001, terrorist attacks in the USA that highlighted the potential of B. anthracis as a bioterrorism agent and the threat posed by its deliberate dissemination. These attacks invigorated the efforts toward understanding the anthrax pathogenesis and development of more comprehensive medical intervention strategies for its containment in case of both natural disease and manmade, accidental or deliberate infection of a non-suspecting population. Currently, efforts are directed toward the development of safe and efficacious vaccines as well as intervention tools for controlling the disease in the advanced fulminant stage when toxemia has already developed. This work presents an overview of the current understanding of anthrax pathogenesis and recent advances made, particularly after 2001, for the successful management of anthrax and outlines future perspectives.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | | | | |
Collapse
|
10
|
Bouzianas DG. Potential biological targets ofBacillus anthracisin anti-infective approaches against the threat of bioterrorism. Expert Rev Anti Infect Ther 2014; 5:665-84. [PMID: 17678429 DOI: 10.1586/14787210.5.4.665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The terrorist attacks of 2001 involving anthrax underscore the imperative that safe and effective medical countermeasures should be readily available. Vaccination appears to be the most effective form of mass protection against a biological attack, but the current vaccines have drawbacks that justify the enormous amount of effort currently being put into developing more effective vaccines and other treatment modalities. After providing a comprehensive overview of the organism Bacillus anthracis as a biological weapon and its pathogenicity, this review briefly summarizes the current knowledge vital to the management of anthrax disease. This knowledge has been acquired since 2001 as a result of the progress on anthrax research and focuses on the possible development of improved human anti-infective strategies targeting B. anthracis spore components, as well as strategies based on host-pathogen interactions.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- Department of Medical Laboratories, Faculty of Health and Care Professions, University-level Technological Educational Institute of Thessaloniki, Greece.
| |
Collapse
|
11
|
Brojatsch J, Casadevall A, Goldman DL. Molecular determinants for a cardiovascular collapse in anthrax. Front Biosci (Elite Ed) 2014; 6:139-47. [PMID: 24389148 DOI: 10.2741/e697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multi-organ failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax.
Collapse
Affiliation(s)
- Jurgen Brojatsch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - David L Goldman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| |
Collapse
|
12
|
Hubbard MA, Thorkildson P, Welch WH, Kozel TR. Stereo-selective binding of monoclonal antibodies to the poly-γ-D-glutamic acid capsular antigen of Bacillus anthracis. Mol Immunol 2013; 55:337-44. [PMID: 23602451 PMCID: PMC3783358 DOI: 10.1016/j.molimm.2013.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 01/06/2023]
Abstract
Bacillus anthracis is surrounded by an anti-phagocytic capsule that is entirely composed of γ-linked D-glutamic acid (γDPGA). γDPGA is required for virulence and is produced in large quantities following spore germination. We have previously described the isolation of several γDPGA-reactive mAbs. The reagents are effective in both immunoprotection and diagnostic applications. The current work was done to further investigate the specificity of γDPGA-reactive mAbs. The specificity of each mAb was characterized using surface plasmon resonance. Our results indicate that each mAb is stereoselective for binding to D-glutamic acid oligomers, but to varying degrees. In particular, mAb F26G3 is highly selective for γDPGA; alterations in stereochemistry disrupted recognition. These differences in mAb reactivity suggest that binding of γDPGA by mAb F26G3 is more specific than non-directional ionic interactions between a negatively charged antigen and a positively charged antibody.
Collapse
Affiliation(s)
- Mark A. Hubbard
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
- Cellular and Molecular Biology Graduate Program, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| | - Peter Thorkildson
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| | - William H. Welch
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| | - Thomas R. Kozel
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
- Cellular and Molecular Biology Graduate Program, University of Nevada School of Medicine, Reno, Nevada, 89557 USA
| |
Collapse
|
13
|
Hubbard MA, Thorkildson P, Kozel TR, AuCoin DP. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polypeptide of Bacillus anthracis. Virulence 2013; 4:483-8. [PMID: 23863605 DOI: 10.4161/viru.25711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct "rim" quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse-human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared "puffy" in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site.
Collapse
Affiliation(s)
- Mark A Hubbard
- Department of Microbiology and Immunology; University of Nevada School of Medicine, Reno, NV, USA.
| | | | | | | |
Collapse
|
14
|
Jang J, Cho M, Lee HR, Cha K, Chun JH, Hong KJ, Park J, Rhie GE. Monoclonal antibody against the poly-gamma-D-glutamic acid capsule of Bacillus anthracis protects mice from enhanced lethal toxin activity due to capsule and anthrax spore challenge. Biochim Biophys Acta Gen Subj 2013. [PMID: 23201204 DOI: 10.1016/j.bbagen.2012.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The poly-gamma-D-glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis, protects bacilli from immune surveillance and allows its unimpeded growth in the host. Recently, the importance of the PGA in the pathogenesis of anthrax infection has been reported. The PGA capsule is associated with lethal toxin (LT) in the blood of experimentally infected animals and enhances the cytotoxicity of LT. METHODS To investigate the role of anti-PGA Abs on progression of anthrax infection, two mouse anti-PGA mAbs with K(d) values of 0.8 microM and 2.6 microM respectively were produced and in silico three dimensional (3D) models of mAbs with their cognitive PGA antigen complex were analyzed. RESULTS Anti-PGA mAbs specifically bound encapsulated B. anthracis H9401 and showed opsonophagocytosis activity against the bacteria with complement. The enhancement effect of PGA on LT-mediated cytotoxicity was confirmed ex vivo using mouse bone marrow-derived macrophages and was effectively inhibited by anti-PGA mAb. Passive immunization of mAb completely protected mice from PGA-enhanced LT toxicity and partially rescued mice from anthrax spore challenges. 3D structure models of these mAbs and PGA complex support specific interactions between CDR and cognitive PGA. These results indicate that mouse mAb against PGA capsule prevents the progress of anthrax disease not only by eliminating the vegetative form of encapsulated B. anthracis but also by inhibiting the enhanced cytotoxic activity of LT by PGA through specific binding with PGA capsule antigen. GENERAL SIGNIFICANCE Our results suggest a potential role for PGA antibodies in preventing and treating anthrax infection.
Collapse
Affiliation(s)
- Jeyoun Jang
- Division of High-Risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 187 Osongsaengmyeong2-ro, Cheongwon-gun, Chungbuk 363-951, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hovenden M, Hubbard MA, Aucoin DP, Thorkildson P, Reed DE, Welch WH, Lyons CR, Lovchik JA, Kozel TR. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis. PLoS Pathog 2013; 9:e1003306. [PMID: 23637599 PMCID: PMC3630167 DOI: 10.1371/journal.ppat.1003306] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/02/2013] [Indexed: 12/27/2022] Open
Abstract
Bacterial capsules are common targets for antibody-mediated immunity. The capsule of Bacillus anthracis is unusual among capsules because it is composed of a polymer of poly-γ-d-glutamic acid (γdPGA). We previously generated murine IgG3 monoclonal antibodies (mAbs) to γdPGA that were protective in a murine model of pulmonary anthrax. IgG3 antibodies are characteristic of the murine response to polysaccharide antigens. The goal of the present study was to produce subclass switch variants of the γdPGA mAbs (IgG3 → IgG1 → IgG2b → IgG2a) and assess the contribution of subclass to antibody affinity and protection. Subclass switch antibodies had identical variable regions but differed in their heavy chains. The results showed that a switch from the protective IgG3 to IgG1, IgG2b or IgG2a was accompanied by i) a loss of protective activity ii) a change in mAb binding to the capsular matrix, and iii) a loss of affinity. These results identify a role for the heavy chain constant region in mAb binding. Hybrid mAbs were constructed in which the CH1, CH2 or CH3 heavy chain constant domains from a non-protective, low binding IgG2b mAb were swapped into the protective IgG3 mAb. The IgG3 mAb that contained the CH1 domain from IgG2b showed no loss of affinity or protection. In contrast, swapping the CH2 or CH3 domains from IgG2b into IgG3 produced a reduction in affinity and a loss of protection. These studies identify a role for the constant region of IgG heavy chains in affinity and protection against an encapsulated bacterial pathogen.
Collapse
Affiliation(s)
- Maria Hovenden
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Friedlander AM, Grabenstein JD, Brachman PS. Anthrax vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Panning of a phage display library against a synthetic capsule for peptide ligands that bind to the native capsule of Bacillus anthracis. PLoS One 2012; 7:e45472. [PMID: 23029033 PMCID: PMC3446873 DOI: 10.1371/journal.pone.0045472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax with the ability to not only produce a tripartite toxin, but also an enveloping capsule comprised primarily of γ-D-glutamic acid residues. The purpose of this study was to isolate peptide ligands capable of binding to the native capsule of B. anthracis from a commercial phage display peptide library using a synthetic form of the capsule consisting of 12 γ-D-glutamic acid residues. Following four rounds of selection, 80 clones were selected randomly and analysed by DNA sequencing. Four clones, each containing a unique consensus sequence, were identified by sequence alignment analysis. Phage particles were prepared and their derived 12-mer peptides were also chemically synthesized and conjugated to BSA. Both the phage particles and free peptide-BSA conjugates were evaluated by ELISA for binding to encapsulated cells of B. anthracis as well as a B. anthracis capsule extract. All the phage particles tested except one were able to bind to both the encapsulated cells and the capsule extract. However, the peptide-BSA conjugates could only bind to the encapsulated cells. One of the peptide-BSA conjugates, with the sequence DSSRIPMQWHPQ (termed G1), was fluorescently labelled and its binding to the encapsulated cells was further confirmed by confocal microscopy. The results demonstrated that the synthetic capsule was effective in isolating phage-displayed peptides with binding affinity for the native capsule of B. anthracis.
Collapse
|
18
|
Chow SK, Casadevall A. Monoclonal antibodies and toxins--a perspective on function and isotype. Toxins (Basel) 2012; 4:430-54. [PMID: 22822456 PMCID: PMC3398419 DOI: 10.3390/toxins4060430] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022] Open
Abstract
Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.
Collapse
Affiliation(s)
- Siu-Kei Chow
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-718-430-2811; Fax: +1-718-430-8711
| |
Collapse
|
19
|
AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, Torres AG, Kozel TR. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One 2012; 7:e35386. [PMID: 22530013 PMCID: PMC3328442 DOI: 10.1371/journal.pone.0035386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/16/2012] [Indexed: 01/22/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacillus that is the causative agent of melioidosis. The bacterium is inherently resistant to many antibiotics and mortality rates remain high in endemic areas. The lipopolysaccharide (LPS) and capsular polysaccharide (CPS) are two surface-associated antigens that contribute to pathogenesis. We previously developed two monoclonal antibodies (mAbs) specific to the CPS and LPS; the CPS mAb was shown to identify antigen in serum and urine from melioidosis patients. The goal of this study was to determine if passive immunization with CPS and LPS mAbs alone and in combination would protect mice from a lethal challenge with B. pseudomallei. Intranasal (i.n.) challenge experiments were performed with B. pseudomallei strains 1026b and K96423. Both mAbs provided significant protection when administered alone. A combination of mAbs was protective when low doses were administered. In addition, combination therapy provided a significant reduction in spleen colony forming units (cfu) compared to results when either the CPS or LPS mAbs were administered alone.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chabot DJ, Joyce J, Caulfield M, Cook J, Hepler R, Wang S, Vietri NJ, Ruthel G, Shoop W, Pitt L, Leffel E, Ribot W, Friedlander AM. Efficacy of a capsule conjugate vaccine against inhalational anthrax in rabbits and monkeys. Vaccine 2011; 30:846-52. [PMID: 22172509 DOI: 10.1016/j.vaccine.2011.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, is recognized as one of the most serious bioterrorism threats. The current human vaccines are based on the protective antigen component of the anthrax toxins. Concern about possible vaccine resistant strains and reliance on a single antigen has prompted the search for additional immunogens. Bacterial capsules, as surface-expressed virulence factors, are well-established components of several licensed vaccines. In a previous study we showed that an anthrax vaccine consisting of the B. anthracis poly-γ-D-glutamic acid capsule covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B protected mice against parenteral B. anthracis challenge. Here we tested this vaccine in rabbits and monkeys against an aerosol spore challenge. The vaccine induced anti-capsule antibody responses in both species, measured by ELISA and a macrophage opsono-adherence assay. While rabbits were not protected against a high aerosol challenge dose, significant protection was observed in monkeys receiving the capsule conjugate vaccine. The results confirm that the capsule is a protective immunogen against anthrax, being the first non-toxin antigen shown to be efficacious in monkeys and suggest that addition of capsule may broaden and enhance the protection afforded by protective antigen-based vaccines.
Collapse
Affiliation(s)
- Donald J Chabot
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cote CK, Welkos SL, Bozue J. Key aspects of the molecular and cellular basis of inhalational anthrax. Microbes Infect 2011; 13:1146-55. [DOI: 10.1016/j.micinf.2011.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 01/25/2023]
|
22
|
Antibodies against anthrax: mechanisms of action and clinical applications. Toxins (Basel) 2011; 3:1433-52. [PMID: 22174979 PMCID: PMC3237005 DOI: 10.3390/toxins3111433] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/23/2022] Open
Abstract
B. anthracis is a bioweapon of primary importance and its pathogenicity depends on its lethal and edema toxins, which belong to the A-B model of bacterial toxins, and on its capsule. These toxins are secreted early in the course of the anthrax disease and for this reason antibiotics must be administered early, in addition to other limitations. Antibodies (Abs) may however neutralize those toxins and target this capsule to improve anthrax treatment, and many Abs have been developed in that perspective. These Abs act at various steps of the cell intoxication and their mechanisms of action are detailed in the present review, presented in correlation with structural and functional data. The potential for clinical application is discussed for Abs targeting each step of entry, with four of these molecules already advancing to clinical trials. Paradoxically, certain Abs may also enhance the lethal toxin activity and this aspect will also be presented. The unique paradigm of Abs neutralizing anthrax toxins thus exemplifies how they may act to neutralize A-B toxins and, more generally, be active against infectious diseases.
Collapse
|
23
|
Monoclonal antibody therapies against anthrax. Toxins (Basel) 2011; 3:1004-19. [PMID: 22069754 PMCID: PMC3202866 DOI: 10.3390/toxins3081004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/06/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022] Open
Abstract
Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. It not only causes natural infection in humans but also poses a great threat as an emerging bioterror agent. The lethality of anthrax is primarily attributed to the two major virulence factors: toxins and capsule. An extensive effort has been made to generate therapeutically useful monoclonal antibodies to each of the virulence components: protective antigen (PA), lethal factor (LF) and edema factor (EF), and the capsule of B. anthracis. This review summarizes the current status of anti-anthrax mAb development and argues for the potential therapeutic advantage of a cocktail of mAbs that recognize different epitopes or different virulence factors.
Collapse
|
24
|
Chen Z, Schneerson R, Lovchik J, Lyons CR, Zhao H, Dai Z, Kubler-Kielb J, Leppla SH, Purcell RH. Pre- and postexposure protection against virulent anthrax infection in mice by humanized monoclonal antibodies to Bacillus anthracis capsule. Proc Natl Acad Sci U S A 2011; 108:739-44. [PMID: 21187383 PMCID: PMC3021070 DOI: 10.1073/pnas.1017677108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the two essential virulence factors of Bacillus anthracis is the poly-γ-D-glutamic acid (γDPGA) capsule. Five γDPGA-specific antibody antigen-binding fragments (Fabs) were generated from immunized chimpanzees. The two selected for further study, Fabs 11D and 4C, were both converted into full-length IgG1 and IgG3 mAbs having human IgG1 or IgG3 constant regions. These two mAbs had similar binding affinities, in vitro opsonophagocytic activities, and in vivo efficacies, with the IgG1 and IgG3 subclasses reacting similarly. The mAbs bound to γDPGA specifically with estimated binding affinities (K(d)) of 35-70 nM and effective affinities (effective K(d)) of 0.1-0.3 nM. The LD(50) in an opsonophagocytic bactericidal assay was ≈10 ng/mL of 11D or 4C. A single 30-μg dose of either mAb given to BALB/c mice 18 h before challenge conferred about 50% protection against a lethal intratracheal spore challenge by the virulent B. anthracis Ames strain. More importantly, either mAb given 8 h or 20 h after challenge provided significant protection against lethal infection. Thus, these anti-γDPGA mAbs should be useful, alone or in combination with antitoxin mAbs, for achieving a safe and efficacious postexposure therapy for anthrax.
Collapse
Affiliation(s)
| | - Rachel Schneerson
- Program on Developmental and Molecular Immunity, National Institute of Child Health and Human Development, and
| | - Julie Lovchik
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - C. Rick Lyons
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Huaying Zhao
- National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892; and
| | - Zhongdong Dai
- Program on Developmental and Molecular Immunity, National Institute of Child Health and Human Development, and
| | - Joanna Kubler-Kielb
- Program on Developmental and Molecular Immunity, National Institute of Child Health and Human Development, and
| | - Stephen H. Leppla
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases
| | | |
Collapse
|
25
|
Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol 2010; 161:721-48. [PMID: 20860656 DOI: 10.1111/j.1476-5381.2010.00939.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The use of biological agents has generally been confined to military-led conflicts. However, there has been an increase in non-state-based terrorism, including the use of asymmetric warfare, such as biological agents in the past few decades. Thus, it is becoming increasingly important to consider strategies for preventing and preparing for attacks by insurgents, such as the development of pre- and post-exposure medical countermeasures. There are a wide range of prophylactics and treatments being investigated to combat the effects of biological agents. These include antibiotics (for both conventional and unconventional use), antibodies, anti-virals, immunomodulators, nucleic acids (analogues, antisense, ribozymes and DNAzymes), bacteriophage therapy and micro-encapsulation. While vaccines are commercially available for the prevention of anthrax, cholera, plague, Q fever and smallpox, there are no licensed vaccines available for use in the case of botulinum toxins, viral encephalitis, melioidosis or ricin. Antibiotics are still recommended as the mainstay treatment following exposure to anthrax, plague, Q fever and melioidosis. Anti-toxin therapy and anti-virals may be used in the case of botulinum toxins or smallpox respectively. However, supportive care is the only, or mainstay, post-exposure treatment for cholera, viral encephalitis and ricin - a recommendation that has not changed in decades. Indeed, with the difficulty that antibiotic resistance poses, the development and further evaluation of techniques and atypical pharmaceuticals are fundamental to the development of prophylaxis and post-exposure treatment options. The aim of this review is to present an update on prophylaxis and post-exposure treatment recommendations and research initiatives for biological agents in the open literature from 2007 to 2009.
Collapse
Affiliation(s)
- S Ramasamy
- Defence Science & Technology Organisation, Human Protection and Performance Division, Fishermans Bend, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fasanella A, Scasciamacchia S, Garofolo G, Giangaspero A, Tarsitano E, Adone R. Evaluation of the house fly Musca domestica as a mechanical vector for an anthrax. PLoS One 2010; 5:e12219. [PMID: 20808920 PMCID: PMC2923185 DOI: 10.1371/journal.pone.0012219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 07/16/2010] [Indexed: 12/22/2022] Open
Abstract
Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass or anthrax contaminated blood, and the presence of anthrax spores in their spots (faeces and vomitus) was microbiologically monitored. It was also evaluated if the anthrax spores were able to germinate and replicate in the gut content of insects. These results confirmed the role of insects in spreading anthrax infection. This role, although not major, given the huge size of fly populations often associated with anthrax epidemics in domestic animals, cannot be neglected from an epidemiological point of view and suggest that fly control should be considered as part of anthrax control programs.
Collapse
Affiliation(s)
- Antonio Fasanella
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute, Foggia, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Klee SR, Brzuszkiewicz EB, Nattermann H, Brüggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W, Couacy-Hymann E, Boesch C, Meyer FD, Leendertz FH, Ellerbrok H, Gottschalk G, Grunow R, Liesegang H. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One 2010; 5:e10986. [PMID: 20634886 PMCID: PMC2901330 DOI: 10.1371/journal.pone.0010986] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var.) anthracis".
Collapse
Affiliation(s)
- Silke R Klee
- Centre for Biological Security (ZBS), Robert Koch-Institut, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bouzianas DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010; 53:4305-31. [PMID: 20102155 DOI: 10.1021/jm901024b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dimitrios G Bouzianas
- Laboratory of Molecular Endocrinology, Division of Endocrinology and Metabolism, AHEPA University Hospital, 1 S. Kyriakidi Street, P.C. 54636, Thessaloniki, Macedonia, Greece.
| |
Collapse
|
29
|
Bouzianas DG. Medical countermeasures to protect humans from anthrax bioterrorism. Trends Microbiol 2009; 17:522-8. [PMID: 19781945 DOI: 10.1016/j.tim.2009.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/25/2009] [Accepted: 08/24/2009] [Indexed: 12/27/2022]
Abstract
The deliberate dissemination of Bacillus anthracis spores via the US mail system in 2001 confirmed their potential use as a biological weapon for mass human casualties. This dramatically highlighted the need for specific medical countermeasures to enable the authorities to protect individuals from a future bioterrorism attack. Although vaccination appears to be the most effective and economical form of mass protection, current vaccines have significant drawbacks that justify the immense research effort to develop improved treatment modalities. After eight years and an expenditure of more than $50 billion, only marginal progress has been made in developing effective therapeutics. This article summarizes the most important medical countermeasures that have mostly been developed since the 2001 events, and highlights current problems and possible avenues for future research.
Collapse
Affiliation(s)
- Dimitrios G Bouzianas
- Technological Educational Institute of Thessaloniki, Department of Medical Laboratories, Laboratory of Immunology and Microbiology, PO Box 145-61, Thessaloniki 541-01, Macedonia, Greece.
| |
Collapse
|
30
|
Cybulski RJ, Sanz P, O'Brien AD. Anthrax vaccination strategies. Mol Aspects Med 2009; 30:490-502. [PMID: 19729034 DOI: 10.1016/j.mam.2009.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 01/10/2023]
Abstract
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine's reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.
Collapse
Affiliation(s)
- Robert J Cybulski
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States
| | | | | |
Collapse
|
31
|
Lee DY, Chun JH, Ha HJ, Park J, Kim BS, Oh HB, Rhie GE. Poly-gamma-d-glutamic acid and protective antigen conjugate vaccines induce functional antibodies against the protective antigen and capsule of Bacillus anthracis in guinea-pigs and rabbits. ACTA ACUST UNITED AC 2009; 57:165-72. [PMID: 19732139 DOI: 10.1111/j.1574-695x.2009.00595.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anthrax is a lethal infectious disease caused by the spore-forming Bacillus anthracis. The two major virulence factors of B. anthracis are exotoxin and the poly-gamma-d-glutamic acid (PGA) capsule. The three components of the exotoxin, protective antigen (PA), lethal factor and edema factor act in a binary combination, which results in massive edema and organ failure in the progress of anthrax disease. The antiphagocytic PGA capsule disguises the bacilli from immune surveillance and allows unimpeded growth of bacilli in the host. Because PA can elicit a protective immune response, it has been a target of the anthrax vaccine. In addition to PA, efforts have been made to include PGA as a component of the anthrax vaccine. In this study, we report that PA-PGA conjugates induce expressions of anti-PA, anti-PGA and toxin-neutralizing antibodies in guinea-pigs and completely protect guinea-pigs against a 50 x LD(50) challenge with fully virulent B. anthracis spores. Polyclonal rabbit antisera produced against either PA or ovalbumin conjugated to a PGA-15mer offer a partial passive protection to guinea-pigs against B. anthracis infection, indicating that anti-PGA antibodies play a protective role. Our results demonstrate that PA-PGA conjugate vaccines are effective in the guinea-pig model, in addition to the previously reported mouse model.
Collapse
Affiliation(s)
- Deog-Yong Lee
- Center for Infectious Diseases, Division of High-Risk Pathogen Research, Korea National Institute of Health, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
AuCoin DP, Sutherland MD, Percival AL, Lyons CR, Lovchik JA, Kozel TR. Rapid detection of the poly-gamma-D-glutamic acid capsular antigen of Bacillus anthracis by latex agglutination. Diagn Microbiol Infect Dis 2009; 64:229-32. [PMID: 19345041 DOI: 10.1016/j.diagmicrobio.2009.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/27/2022]
Abstract
Latex agglutination has been used to detect capsular polysaccharides from a variety of bacteria in body fluids. A latex agglutination assay was constructed for detection of the poly-gamma-D-glutamic acid (gammaDPGA) capsular polypeptide of Bacillus anthracis in serum from animal models of pulmonary anthrax. The assay was able to detect gammaDPGA in serum from infected animals at concentrations of 100 to 200 ng/mL.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, 89557, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Schneemann A, Manchester M. Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax. Future Microbiol 2009; 4:35-43. [PMID: 19207098 DOI: 10.2217/17460913.4.1.35] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The CDC recommend 60 days of oral antibiotics combined with a three-dose series of the anthrax vaccine for prophylaxis after potential exposure to aerosolized Bacillus anthracis spores. The anthrax vaccine is currently not licensed for anthrax postexposure prophylaxis and has to be made available under an Investigational New Drug protocol. Postexposure prophylaxis based on antibiotics can be problematic in cases where the use of antibiotics is contraindicated. Furthermore, there is a concern that an exposure could involve antibiotic-resistant strains of B. anthracis. Availability of alternate treatment modalities that are effective in prophylaxis of inhalation anthrax is therefore highly desirable. A major research focus toward this end has been on passive immunization using polyclonal and monoclonal antibodies against B. anthracis toxin components. Since 2001, significant progress has been made in isolation and commercial development of monoclonal and polyclonal antibodies that function as potent neutralizers of anthrax lethal toxin in both a prophylactic and therapeutic setting. Several new products have completed Phase I clinical trials and are slated for addition to the National Strategic Stockpile. These rapid advances were possible because of major funding made available by the US government through programs such as Bioshield and the Biomedical Advanced Research and Development Authority. Continued government funding is critical to support the development of a robust biodefense industry.
Collapse
Affiliation(s)
- Anette Schneemann
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
34
|
Efficacy of opsonic and nonopsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibodies against intranasal challenge with Streptococcus pneumoniae in mice. Infect Immun 2009; 77:1502-13. [PMID: 19168739 DOI: 10.1128/iai.01075-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serotype-specific antibodies to pneumococcal capsular polysaccharide (PPS) are a critical component of vaccine-mediated immunity to Streptococcus pneumoniae. In this study, we investigated the in vitro opsonophagocytic activities of three PPS-specific mouse immunoglobulin G1 monoclonal antibodies (MAbs), 1E2, 5F6, and 7A9, and determined their in vivo efficacies against intranasal challenge with WU2, a serotype 3 pneumococcal strain, in normal and immunodeficient mice. The MAbs had different in vitro activities in a pneumococcal killing assay: 7A9 enhanced killing by mouse neutrophils and J774 cells in the presence of a complement source, whereas 5F6 promoted killing in the absence, but not the presence, of complement, and 1E2 did not promote killing under any conditions. Nonetheless, all three MAbs protected normal and complement component 3-deficient mice from a lethal intranasal challenge with WU2 in passive-immunization experiments in which 10 mug of the MAbs were administered intraperitoneally before intranasal challenge. In contrast, only 1E2 protected Fcgamma receptor IIB knockout (FcgammaRIIB KO) mice and mice that were depleted of neutrophils with the MAb RB6, whereas 7A9 and 5F6 required neutrophils and FcgammaRIIB to mediate protection. Conversely, 7A9 and 5F6 protected FcgammaR KO mice, but 1E2 did not. Hence, the efficacy of 1E2 required an activating FcgammaR(s), whereas 5F6 and 7A9 required the inhibitory FcgammaR (FcgammaRIIB). Taken together, our data demonstrate that both MAbs that do and do not promote pneumococcal killing in vitro can mediate protection in vivo, although their efficacies depend on different host receptors and/or components.
Collapse
|
35
|
Efficacy of a vaccine based on protective antigen and killed spores against experimental inhalational anthrax. Infect Immun 2008; 77:1197-207. [PMID: 19114543 DOI: 10.1128/iai.01217-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protective antigen (PA)-based anthrax vaccines acting on toxins are less effective than live attenuated vaccines, suggesting that additional antigens may contribute to protective immunity. Several reports indicate that capsule or spore-associated antigens may enhance the protection afforded by PA. Addition of formaldehyde-inactivated spores (FIS) to PA (PA-FIS) elicits total protection against cutaneous anthrax. Nevertheless, vaccines that are effective against cutaneous anthrax may not be so against inhalational anthrax. The aim of this work was to optimize immunization with PA-FIS and to assess vaccine efficacy against inhalational anthrax. We assessed the immune response to recombinant anthrax PA from Bacillus anthracis (rPA)-FIS administered by various immunization protocols and the protection provided to mice and guinea pigs infected through the respiratory route with spores of a virulent strain of B. anthracis. Combined subcutaneous plus intranasal immunization of mice yielded a mucosal immunoglobulin G response to rPA that was more than 20 times higher than that in lung mucosal secretions after subcutaneous vaccination. The titers of toxin-neutralizing antibody and antispore antibody were also significantly higher: nine and eight times higher, respectively. The optimized immunization elicited total protection of mice intranasally infected with the virulent B. anthracis strain 17JB. Guinea pigs were fully protected, both against an intranasal challenge with 100 50% lethal doses (LD(50)) and against an aerosol with 75 LD(50) of spores of the highly virulent strain 9602. Conversely, immunization with PA alone did not elicit protection. These results demonstrate that the association of PA and spores is very much more effective than PA alone against experimental inhalational anthrax.
Collapse
|
36
|
Association of Bacillus anthracis capsule with lethal toxin during experimental infection. Infect Immun 2008; 77:749-55. [PMID: 19064632 DOI: 10.1128/iai.00764-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis lethal toxin (LT) was characterized in plasma from infected African Green monkeys, rabbits, and guinea pigs. In all cases, during the terminal phase of infection only the protease-activated 63-kDa form of protective antigen (PA(63)) and the residual 20-kDa fragment (PA(20)) were detected in the plasma. No uncut PA with a molecular mass of 83 kDa was detected in plasma from toxemic animals during the terminal stage of infection. PA(63) was largely associated with lethal factor (LF), forming LT. Characterization of LT by Western blotting, capture enzyme-linked immunosorbent assay, and size exclusion chromatography revealed that the antiphagocytic poly-gamma-d-glutamic acid (gamma-DPGA) capsule released from B. anthracis bacilli was associated with LT in animal blood in variable amounts. While the nature of this in vivo association is not understood, we were able to determine that a portion of these LT/gamma-DPGA complexes retained LF protease activity. Our findings suggest that the in vivo LT complexes differ from in vitro-produced LT and that including gamma-DPGA when examining the effects of LT on specific immune cells in vitro may reveal novel and important roles for gamma-DPGA in anthrax pathogenesis.
Collapse
|
37
|
Zarebski LM, Vaughan K, Sidney J, Peters B, Grey H, Janda KD, Casadevall A, Sette A. Analysis of epitope information related to Bacillus anthracis and Clostridium botulinum. Expert Rev Vaccines 2008; 7:55-74. [PMID: 18251694 DOI: 10.1586/14760584.7.1.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have reviewed the information about epitopes of immunological interest from Clostridium botulinum and Bacillus anthracis, by mining the Immune Epitope Database and Analysis Resource. For both pathogens, the vast majority of epitopes reported to date are derived from a single protein: the protective antigen of B. anthracis and the neurotoxin type A of C. botulinum. A detailed analysis of the data was performed to characterize the function, localization and conservancy of epitopes identified as neutralizing and/or protective. In order to broaden the scope of this analysis, we have also included data describing immune responses against defined fragments (over 50 amino acids long) of the relevant antigens. The scarce information on T-cell determinants and on epitopes from other antigens besides the toxins, highlights a gap in our knowledge and identifies areas for future research. Despite this, several distinct structures at the epitope and fragment level are described herein, which could be potential additions to future vaccines or targets of novel immunotherapeutics and diagnostic reagents.
Collapse
Affiliation(s)
- Laura M Zarebski
- Immune Epitope Database and Analysis Resource, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 9203,7 USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
In vivo fate and distribution of poly-gamma-D-glutamic acid, the capsular antigen from Bacillus anthracis. Infect Immun 2008; 76:899-906. [PMID: 18195035 DOI: 10.1128/iai.01176-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis is surrounded by an antiphagocytic capsule composed of poly-gamma-d-glutamic acid (gammaDPGA). Bacterial and fungal capsular polysaccharides are shed into body fluids in large amounts during infection. The goal of our study was to examine the in vivo fate and distribution of the gammaDPGA capsular polypeptide. Mice were injected via the intravenous route with various amounts of purified gammaDPGA. Blood, urine, and various organs were harvested at different times after treatment. Sites of gammaDPGA accumulation were determined by immunoassay using monoclonal antibodies specific for gammaDPGA. The results showed that the liver and spleen were the primary sites for the accumulation of gammaDPGA. As found in previous studies of capsular polysaccharides, the Kupffer cells of the liver and splenic macrophages were sites for the cellular accumulation of gammaDPGA. Unlike capsular polysaccharides, the hepatic sinusoidal endothelial cells were also sites for gammaDPGA accumulation. gammaDPGA was rapidly cleared from serum and was excreted into the urine. gammaDPGA in the urine showed a reduced molecular size relative to native gammaDPGA. The results indicate that in vivo clearance of the polypeptide capsular antigen of B. anthracis shares several features with the clearance of capsular polysaccharides. Key differences between the in vivo behaviors of gammaDPGA and capsular polysaccharides include the accumulation of gammaDPGA in hepatic sinusoidal endothelial cells and a gammaDPGA clearance rate that was more rapid than the clearance reported for capsular polysaccharides.
Collapse
|
39
|
Treatment of experimental anthrax with recombinant capsule depolymerase. Antimicrob Agents Chemother 2007; 52:1014-20. [PMID: 18160516 DOI: 10.1128/aac.00741-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis produces an antiphagocytic gamma-linked poly-D-glutamic acid capsule that is required for virulence. Capsule depolymerase (CapD) is a membrane-associated poly-gamma-glutamate-specific depolymerase encoded on the B. anthracis capsule plasmid, pX02, that is reported to contribute to virulence by anchoring the capsule to the peptidoglycan and partially degrading high-molecular-weight capsule from the bacterial surface. We previously demonstrated that treatment with CapD effectively removes the capsule from anthrax bacilli, rendering them susceptible to phagocytic killing in vitro. Here we report that CapD promoted in vivo phagocytic killing of B. anthracis bacilli by mouse peritoneal neutrophils and that parenteral administration of CapD protected mice in two models of anthrax infection. CapD conferred significant protection compared with controls when coinjected with encapsulated bacilli from fully virulent B. anthracis Ames or the nontoxigenic encapsulated strain Delta Ames and when injected 10 min after infection with encapsulated bacilli from B. anthracis Ames. Protection was also observed when CapD was administered 30 h after infection with B. anthracis Delta Ames spores, while significant protection could not be demonstrated following challenge with B. anthracis Ames spores. These data support the proposed role of capsule in B. anthracis virulence and suggest that strategies to target anthrax bacilli for neutrophil killing may lead to novel postexposure therapies.
Collapse
|