1
|
Schulze-Späte U, Wurschi L, van der Vorst EPC, Hölzle F, Craveiro RB, Wolf M, Noels H. Crosstalk between periodontitis and cardiovascular risk. Front Immunol 2024; 15:1469077. [PMID: 39717783 PMCID: PMC11663742 DOI: 10.3389/fimmu.2024.1469077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024] Open
Abstract
Recent demographic developments resulted in an aged society with a rising disease burden of systemic and non-communicable diseases (NCDs). In cardiovascular disease (CVD), a NCD with high morbidity and mortality, recent preventive strategies include the investigation of comorbidities to reduce its significant economic burden. Periodontal disease, an oral bacterial-induced inflammatory disease of tooth-supporting tissue, is regulated in its prevalence and severity by the individual host response to a dysbiotic oral microbiota. Clinically, both NCDs are highly associated; however, shared risk factors such as smoking, obesity, type II diabetes mellitus and chronic stress represent only an insufficient explanation for the multifaceted interactions of both disease entities. Specifically, the crosstalk between both diseases is not yet fully understood. This review summarizes current knowledge on the clinical association of periodontitis and CVD, and elaborates on how periodontitis-induced pathophysiological mechanisms in patients may contribute to increased cardiovascular risk with focus on atherosclerosis. Clinical implications as well as current and future therapy considerations are discussed. Overall, this review supports novel scientific endeavors aiming at improving the quality of life with a comprehensive and integrated approach to improve well-being of the aging populations worldwide.
Collapse
Affiliation(s)
- Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Ludwig Wurschi
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Jena, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, School of Medicine, Uniklinik RWTH Aachen, Aachen, Germany
| | - Rogerio B. Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), Uniklinik RWTH Aachen, RWTH Aachen University, Aachen, Germany
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Silva DS, Laranjeira P, Silva A, Silva I, Kaminska M, Mydel P, de Vries C, Lundberg K, da Silva JAP, Baptista IP, Paiva A. Impaired Periodontitis-Induced Cytokine Production by Peripheral Blood Monocytes and Myeloid Dendritic Cells in Patients with Rheumatoid Arthritis: A Case-Control Study. J Clin Med 2024; 13:5297. [PMID: 39274511 PMCID: PMC11395796 DOI: 10.3390/jcm13175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Immune cells from rheumatoid arthritis (RA) patients display a reduced in vitro response to Porphyromonas gingivalis (P. gingivalis), which may have functional immune consequences. The aim of this study was to characterize, by flow cytometry, the frequency/activity of monocytes and naturally occurring myeloid dendritic cells (mDCs) in peripheral blood samples from patients with periodontitis and patients with periodontitis and RA. Methods: The relative frequency of monocytes and mDCs in the whole blood, the frequency of these cells producing TNFα or IL-6 and the protein expression levels for each cytokine, before and after stimulation with lipopolysaccharide (LPS) from Escherichia coli plus interferon-γ (IFN-γ), were assessed by flow cytometry, in peripheral blood samples from 10 healthy individuals (HEALTHY), 10 patients with periodontitis (PERIO) and 17 patients with periodontitis and RA (PERIO+RA). Results: The frequency of monocytes and mDCs producing IL-6 or TNF-α and the expression of IL-6 and TNF-α in the PERIO group were generally higher. Within the PERIO+RA group, P. gingivalis and related antibodies were negatively correlated with the monocyte and mDC expression of IL-6. A subgroup of the PERIO+RA patients that displayed statistically significantly lower frequencies of monocytes producing IL-6 after activation presented statistically significantly higher peptidylarginine deiminase (PAD)2/4 activity, anti-arg-gingipain (RgpB) IgG levels, mean probing depth (PD), periodontal inflamed surface area (PISA) and bleeding on probing (BoP). Conclusions: In the patients with PERIO+RA, innate immune cells seemed to produce lower amounts of pro-inflammatory cytokines, which are correlated with worse periodontitis-related clinical and microbiological parameters.
Collapse
Affiliation(s)
- Daniela S Silva
- Periodontology Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paula Laranjeira
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotchnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Marta Kaminska
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Charlotte de Vries
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, 17164 Solna, Sweden
| | - Karin Lundberg
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, 17164 Solna, Sweden
| | - José António P da Silva
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Rheumatology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Isabel P Baptista
- Periodontology Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotchnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, 3046-854 Coimbra, Portugal
| |
Collapse
|
3
|
Christfort JF, Ortis M, Nguyen HV, Marsault R, Doglio A. Centrifugal Microfluidic Cell Culture Platform for Physiologically Relevant Virus Infection Studies: A Case Study with HSV-1 Infection of Periodontal Cells. BIOSENSORS 2024; 14:401. [PMID: 39194630 DOI: 10.3390/bios14080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Static well plates remain the gold standard to study viral infections in vitro, but they cannot accurately mimic dynamic viral infections as they occur in the human body. Therefore, we established a dynamic cell culture platform, based on centrifugal microfluidics, to study viral infections in perfusion. To do so, we used human primary periodontal dental ligament (PDL) cells and herpes simplex virus-1 (HSV-1) as a case study. By microscopy, we confirmed that the PDL cells efficiently attached and grew in the chip. Successful dynamic viral infection of perfused PDL cells was monitored using fluorescent imaging and RT-qPCR-based experiments. Remarkably, viral infection in flow resulted in a gradient of HSV-1-infected cells gradually decreasing from the cell culture chamber entrance towards its end. The perfusion of acyclovir in the chip prevented HSV-1 spreading, demonstrating the usefulness of such a platform for monitoring the effects of antiviral drugs. In addition, the innate antiviral response of PDL cells, measured by interferon gene expression, increased significantly over time in conventional static conditions compared to the perfusion model. These results provide evidence suggesting that dynamic viral infections differ from conventional static infections, which highlights the need for more physiologically relevant in vitro models to study viral infections.
Collapse
Affiliation(s)
- Juliane Fjelrad Christfort
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| | - Morgane Ortis
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| | - Hau Van Nguyen
- IDUN Centre of Excellence, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Robert Marsault
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| | - Alain Doglio
- MICORALIS (E.A. 7354), Faculty of Dental Surgery and Odontology, University Côte d'Azur, 06300 Nice, France
| |
Collapse
|
4
|
Feng X, Peng D, Qiu Y, Guo Q, Zhang X, Li Z, Pan C. Identification and Validation of Aging- and Endoplasmic Reticulum Stress-Related Genes in Periodontitis Using a Competing Endogenous RNA Network. Inflammation 2024:10.1007/s10753-024-02124-0. [PMID: 39136902 DOI: 10.1007/s10753-024-02124-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 01/03/2025]
Abstract
Periodontitis is a multifactorial chronic inflammatory disease that destroy periodontium. Apart from microbial infection and host immune responses, emerging evidence shows aging and endoplasmic reticulum stress (ER stress) play a key role in periodontitis pathogenesis. The aim of this study is to identify aging-related genes (ARGs) and endoplasmic reticulum stress-related genes (ERGs) in periodontitis. Data were obtained from the Gene Expression Omnibus (GEO), Human Ageing Genomic Resources (HAGR) and GeneCards databases to identify differentially expressed mRNAs/miRNAs/lncRNAs (DEmRNAs/DEmiRNAs/DElncRNAs), ARGs and ERGs, respectively. We used the MultiMiR database for the reverse prediction of miRNAs and predicted miRNA-lncRNA interactions using the STARBase database. Afterwards, we constructed a mRNA-miRNA-lncRNA ceRNA network. A total of 10 hub genes, namely LCK, LYN, CXCL8, IL6, HCK, IL1B, BTK, CXCL12, GNAI1 and FCER1G, and 5 DEmRNAs-ARGs-ERGs were then discovered. Further, weighted gene co-expression network analysis (WGCNA) and single sample gene set enrichment analysis (ssGSEA) were performed to explore co-expression modules and immune infiltration respectively. Finally, we used transmission electron microscope (TEM), inverted fluorescence microscopy, quantitative real-time polymerase chain reaction (qRT-PCR) and Western Blot to verify the bioinformatic results in periodontal ligament stem cells (PDLSCs) infected with Porphyromonas gingivalis (P. gingivalis). The experimental results broadly confirmed the accuracy of bioinformatic analysis. The present study established an aging- and ER stress-related ceRNA network in periodontitis, contributing to a deeper understanding of the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xinran Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Da Peng
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Yunjing Qiu
- School of Nursing & Midwifery, Faculty of Health, University of Technology Sydney, Sydney, 2007, Australia
| | - Qian Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhixuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chunling Pan
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China.
| |
Collapse
|
5
|
Pan S, Yang L, Zhong W, Wang H, Lan Y, Chen Q, Yu S, Yang F, Yan P, Peng H, Liu X, Gao X, Song J. Integrated analyses revealed the potential role and immune link of mitochondrial dysfunction between periodontitis and type 2 diabetes mellitus. Int Immunopharmacol 2024; 130:111796. [PMID: 38452412 DOI: 10.1016/j.intimp.2024.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
There is a reciprocal comorbid relationship between periodontitis and type 2 diabetes mellitus (T2DM). Recent studies have suggested that mitochondrial dysfunction (MD) could be the key driver underlying this comorbidity. The aim of this study is to provide novel understandings into the potential molecular mechanisms between MD and the comorbidity, and identify potential therapeutic targets for personalized clinical management. MD-related differentially expressed genes (MDDEGs) were identified. Enrichment analyses and PPI network analysis were then conducted. Six algorithms were used to explore the hub MDDEGs, and these were validated by ROC analysis and qRT-PCR. Co-expression and potential drug targeting analyses were then performed. Potential biomarkers were identified using LASSO regression. The immunocyte infiltration levels in periodontitis and T2DM were evaluated via CIBERSORTx and validated in mouse models. Subsequently, MD-related immune-related genes (MDIRGs) were screened by WGCNA. The in vitro experiment verified that MD was closely associated with this comorbidity. GO and KEGG analyses demonstrated that the connection between periodontitis and T2DM was mainly enriched in immuno-inflammatory pathways. In total, 116 MDDEGs, eight hub MDDEGs, and two biomarkers were identified. qRT-PCR revealed a distinct hub MDDEG expression pattern in the comorbidity group. Altered immunocytes in disease samples were identified, and their correlations were explored. The in vivo examination revealed higher infiltration levels of inflammatory immunocytes. The findings of this study provide insight into the mechanism underlying the gene-mitochondria-immunocyte network and provide a novel reference for future research into the function of mitochondria in periodontitis and T2DM.
Collapse
Affiliation(s)
- Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - LanXin Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - He Wang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuyan Lan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Qiyue Chen
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Simin Yu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Pingping Yan
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Houli Peng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Liu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
6
|
Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol 2024; 22:89-104. [PMID: 37700024 PMCID: PMC11084736 DOI: 10.1038/s41579-023-00963-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/14/2023]
Abstract
The human oral microbiota is highly diverse and has a complex ecology, comprising bacteria, microeukaryotes, archaea and viruses. These communities have elaborate and highly structured biogeography that shapes metabolic exchange on a local scale and results from the diverse microenvironments present in the oral cavity. The oral microbiota also interfaces with the immune system of the human host and has an important role in not only the health of the oral cavity but also systemic health. In this Review, we highlight recent advances including novel insights into the biogeography of several oral niches at the species level, as well as the ecological role of candidate phyla radiation bacteria and non-bacterial members of the oral microbiome. In addition, we summarize the relationship between the oral microbiota and the pathology of oral diseases and systemic diseases. Together, these advances move the field towards a more holistic understanding of the oral microbiota and its role in health, which in turn opens the door to the study of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jonathon L Baker
- Oregon Health & Science University, Portland, OR, USA
- J. Craig Venter Institute, La Jolla, CA, USA
- UC San Diego School of Medicine, La Jolla, CA, USA
| | - Jessica L Mark Welch
- The Forsyth Institute, Cambridge, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Xuesong He
- The Forsyth Institute, Cambridge, MA, USA.
- Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Lu H, Sun J, Sun J. Identification of potential crosstalk genes and mechanisms between periodontitis and diabetic nephropathy through bioinformatic analysis. Medicine (Baltimore) 2023; 102:e36802. [PMID: 38206700 PMCID: PMC10754619 DOI: 10.1097/md.0000000000036802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
Periodontitis and diabetic nephropathy are significant public health concerns globally and are closely related with each other. This study aimed to identify potential crosstalk genes, pathways, and mechanisms associated with the interaction between periodontitis and diabetic nephropathy. Expression profiles of periodontitis and diabetic nephropathy were retrieved from the Gene expression omnibus gene expression omnibus database, and differentially expressed genes (DEGs) were screened, followed by identification of co-expressed differential genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using R software. A protein-protein interaction network was constructed via STRING website, and key crosstalk genes were selected using Cytoscape. Subsequent gene ontology and KEGG analyses were conducted for the key genes, and a validation dataset was obtained from the gene expression omnibus database for differential gene validation. The TRRUST website was employed to identify transcription factors (TFs) associated with the key crosstalk genes between periodontitis and diabetic nephropathy, followed by differential analysis of TFs. A total of 17 crosstalk genes were obtained. Among them, SAMSN1, BCL2A1, interleukin-19, IL1B, RGS1, CXCL3, CCR1, CXCR4, CXCL1, and PTGS2 were identified as key crosstalk genes between periodontitis and diabetic nephropathy. Additionally, 16 key TFs were discovered. This bioinformatic analysis revealed potential crosstalk genes between periodontitis and diabetic nephropathy. The identified key genes participate in signaling pathways, including cytokine signaling and chemokine signaling transduction, which might collectively influence these 2 diseases. These genes may serve as potential biomarkers guiding future research in this field.
Collapse
Affiliation(s)
- Huijuan Lu
- Department of Nephrology, First People’s Hospital of Linping District, Hangzhou, China
| | - Jia Sun
- Department of Nephrology, First People’s Hospital of Linping District, Hangzhou, China
| | - Jieqiong Sun
- Department of Nephrology, First People’s Hospital of Linping District, Hangzhou, China
| |
Collapse
|
8
|
Xie H, Qin Z, Ling Z, Ge X, Zhang H, Guo S, Liu L, Zheng K, Jiang H, Xu R. Oral pathogen aggravates atherosclerosis by inducing smooth muscle cell apoptosis and repressing macrophage efferocytosis. Int J Oral Sci 2023; 15:26. [PMID: 37380627 DOI: 10.1038/s41368-023-00232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P. gingivalis-accelerated plaque formation are associated with impaired macrophage clearance. Here, we show that smooth muscle cells (SMCs) have a greater susceptibility to P. gingivalis-induced apoptosis than endothelial cells through TLR2 pathway activation. Meanwhile, large amounts of miR-143/145 in P.gingivalis-infected SMCs are extracellularly released and captured by macrophages. Then, these miR-143/145 are translocated into the nucleus to promote Siglec-G transcription, which represses macrophage efferocytosis. By constructing three genetic mouse models, we further confirm the in vivo roles of TLR2 and miR-143/145 in P. gingivalis-accelerated atherosclerosis. Therapeutically, we develop P.gingivalis-pretreated macrophage membranes to coat metronidazole and anti-Siglec-G antibodies for treating atherosclerosis and periodontitis simultaneously. Our findings extend the knowledge of the mechanism and therapeutic strategy in oral pathogen-associated systemic diseases.
Collapse
Affiliation(s)
- Hanyu Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyue Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
10
|
Xu W, Zhang Z, Yao L, Xue B, Xi H, Wang X, Sun S. Exploration of Shared Gene Signatures and Molecular Mechanisms Between Periodontitis and Nonalcoholic Fatty Liver Disease. Front Genet 2022; 13:939751. [PMID: 35836570 PMCID: PMC9273910 DOI: 10.3389/fgene.2022.939751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Periodontitis is associated with periodontal tissue damage and teeth loss. Nonalcoholic fatty liver disease (NAFLD) has an intimate relationship with periodontitis. Nevertheless, interacted mechanisms between them have not been clear. This study was intended for the exploration of shared gene signatures and latent therapeutic targets in periodontitis and NAFLD. Methods: Microarray datasets of periodontitis and NAFLD were obtained from the Gene Expression Omnibus (GEO) database. The weighted gene co-expression network analysis (WGCNA) was utilized for the acquisition of modules bound up with NAFLD and periodontitis. We used ClueGO to carry out biological analysis on shared genes to search their latent effects in NAFLD and periodontitis. Another cohort composed of differential gene analysis verified the results. The common microRNAs (miRNAs) in NAFLD and periodontitis were acquired in the light of the Human microRNA Disease Database (HMDD). According to miRTarbase, miRDB, and Targetscan databases, latent target genes of miRNAs were forecasted. Finally, the miRNAs–mRNAs network was designed. Results: Significant modules with periodontitis and NAFLD were obtained via WGCNA. GO enrichment analysis with GlueGo indicated that damaged migration of dendritic cells (DCs) might be a common pathophysiologic feature of NAFLD and periodontitis. In addition, we revealed common genes in NAFLD and periodontitis, including IGK, IGLJ3, IGHM, MME, SELL, ENPP2, VCAN, LCP1, IGHD, FCGR2C, ALOX5AP, IGJ, MMP9, FABP4, IL32, HBB, FMO1, ALPK2, PLA2G7, MNDA, HLA-DRA, and SLC16A7. The results of differential analysis in another cohort were highly accordant with the findings of WGCNA. We established a comorbidity model to explain the underlying mechanism of NAFLD secondary to periodontitis. Finally, the analysis of miRNA pointed out that hsa-mir-125b-5p, hsa-mir-17-5p, and hsa-mir-21-5p might provide potential therapeutic targets. Conclusion: Our study initially established a comorbidity model to explain the underlying mechanism of NAFLD secondary to periodontitis, found that damaged migration of DCs might be a common pathophysiological feature of NAFLD and periodontitis, and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Wanqiu Xu
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengwei Zhang
- Ward 7, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihong Yao
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Xue
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hualei Xi
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiumei Wang, ; Shibo Sun,
| | - Shibo Sun
- Ward 7, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiumei Wang, ; Shibo Sun,
| |
Collapse
|
11
|
A Tale of Two Fimbriae: How Invasion of Dendritic Cells by Porphyromonas gingivalis Disrupts DC Maturation and Depolarizes the T-Cell-Mediated Immune Response. Pathogens 2022; 11:pathogens11030328. [PMID: 35335652 PMCID: PMC8954744 DOI: 10.3390/pathogens11030328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a unique pathogen implicated in severe forms of periodontitis (PD), a disease that affects around 50% of the US population. P. gingivalis is equipped with a plethora of virulence factors that it uses to exploit its environment and survive. These include distinct fimbrial adhesins that enable it to bind to other microbes, colonize inflamed tissues, acquire nutrients, and invade cells of the stroma and immune system. Most notable for this review is its ability to invade dendritic cells (DCs), which bridge the innate and adaptive immune systems. This invasion process is tightly linked to the bridging functions of resultant DCs, in that it can disable (or stimulate) the maturation function of DCs and cytokines that are secreted. Maturation molecules (e.g., MHCII, CD80/CD86, CD40) and inflammatory cytokines (e.g., IL-1b, TNFa, IL-6) are essential signals for antigen presentation and for proliferation of effector T-cells such as Th17 cells. In this regard, the ability of P. gingivalis to coordinately regulate its expression of major (fimA) and minor (mfa-1) fimbriae under different environmental influences becomes highly relevant. This review will, therefore, focus on the immunoregulatory role of P. gingivalis fimbriae in the invasion of DCs, intracellular signaling, and functional outcomes such as alveolar bone loss and immune senescence.
Collapse
|
12
|
Puzhankara L, Janakiram C. Common Risk Factor Approach to Limit Noncommunicable Diseases and Periodontal Disease-The Molecular and Cellular Basis: A Narrative Review. J Int Soc Prev Community Dent 2021; 11:490-502. [PMID: 34760792 PMCID: PMC8533044 DOI: 10.4103/jispcd.jispcd_109_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction The link between periodontal disease and noncommunicable diseases (NCDs) has been the subject of major research over the past several years. The primary objective of this review is to understand the cellular and molecular components that link common risk factors (exposure) in adult patients (population) with periodontal disease and other NCDs (outcome). The secondary objective is to interpret from existing literature the possibility of identifying the molecular plausibility of the Common Risk Factor Approach (CRFA). Materials and Methods A literature search was performed in PubMed/MEDLINE, CINAHL, Web of Science, and Google Scholar for all published articles pertaining to the molecular and cellular basis of the risk factors between periodontal diseases and major NCDs. Data from all randomized and nonrandomized clinical trials, cross-sectional studies, case-control, cohort studies, literature, and systematic reviews were included. Results Periodontal pathogens, stress, obesity, smoking, and dietary factors are some of the common risk factors between periodontal disease and NCDs. Conclusion Understanding the molecular and cellular link of common risk factors between NCDs and periodontal disease would ensure the application of CRFA. The CRFA implies that controlling the risk factors associated with NCDs can have an incredible positive impact on regulating many chronic conditions, which would extend to periodontal health also.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chandrashekar Janakiram
- Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
13
|
Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol 2021; 21:426-440. [PMID: 33510490 PMCID: PMC7841384 DOI: 10.1038/s41577-020-00488-6] [Citation(s) in RCA: 676] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Periodontitis, a major inflammatory disease of the oral mucosa, is epidemiologically associated with other chronic inflammation-driven disorders, including cardio-metabolic, neurodegenerative and autoimmune diseases and cancer. Emerging evidence from interventional studies indicates that local treatment of periodontitis ameliorates surrogate markers of comorbid conditions. The potential causal link between periodontitis and its comorbidities is further strengthened by recent experimental animal studies establishing biologically plausible and clinically consistent mechanisms whereby periodontitis could initiate or aggravate a comorbid condition. This multi-faceted ‘mechanistic causality’ aspect of the link between periodontitis and comorbidities is the focus of this Review. Understanding how certain extra-oral pathologies are affected by disseminated periodontal pathogens and periodontitis-associated systemic inflammation, including adaptation of bone marrow haematopoietic progenitors, may provide new therapeutic options to reduce the risk of periodontitis-associated comorbidities. Periodontitis has been causally linked to the development of other chronic inflammatory diseases outside the oral mucosa. In this Review, George Hajishengallis and Triantafyllos Chavakis consider the molecular basis of these links.
Collapse
|
14
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
15
|
Meghil MM, Cutler CW. Oral Microbes and Mucosal Dendritic Cells, "Spark and Flame" of Local and Distant Inflammatory Diseases. Int J Mol Sci 2020; 21:E1643. [PMID: 32121251 PMCID: PMC7084622 DOI: 10.3390/ijms21051643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Mucosal health and disease is mediated by a complex interplay between the microbiota ("spark") and the inflammatory response ("flame"). Pathobionts, a specific class of microbes, exemplified by the oral microbe Porphyromonas gingivalis, live mostly "under the radar" in their human hosts, in a cooperative relationship with the indigenous microbiota. Dendritic cells (DCs), mucosal immune sentinels, often remain undisturbed by such microbes and do not alert adaptive immunity to danger. At a certain tipping point of inflammation, an "awakening" of pathobionts occurs, wherein their active growth and virulence are stimulated, leading to a dysbiosis. Pathobiont becomes pathogen, and commensal becomes accessory pathogen. The local inflammatory outcome is the Th17-mediated degenerative bone disease, periodontitis (PD). In systemic circulation of PD subjects, inflammatory DCs expand, carrying an oral microbiome and promoting Treg and Th17 responses. At distant peripheral sites, comorbid diseases including atherosclerosis, Alzheimer's disease, macular degeneration, chronic kidney disease, and others are reportedly induced. This review will review the immunobiology of DCs, examine the complex interplay of microbes and DCs in the pathogenesis of PD and its comorbid inflammatory diseases, and discuss the role of apoptosis and autophagy in this regard. Overall, the pathophysiological mechanisms of DC-mediated chronic inflammation and tissue destruction will be summarized.
Collapse
Affiliation(s)
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
16
|
Rabelo MDS, El-Awady A, Moura Foz A, Hisse Gomes G, Rajendran M, Meghil MM, Lowry S, Romito GA, Cutler CW, Susin C. Influence of T2DM and prediabetes on blood DC subsets and function in subjects with periodontitis. Oral Dis 2019; 25:2020-2029. [PMID: 31541516 DOI: 10.1111/odi.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the myeloid and plasmacytoid DC counts and maturation status among subjects with/without generalized periodontitis (GP) and type 2 diabetes mellitus (T2DM). METHODS The frequency and maturation status of myeloid and plasmacytoid blood DCs were analyzed by flow cytometry in four groups of 15 subjects: healthy controls, T2DM with generalized CP (T2DM + GP), prediabetes with GP (PD + GP), and normoglycemics with GP (NG + GP). RT-PCR was used to determine levels of Porphyromonas gingivalis in the oral biofilms and within panDCs. The role of exogenous glucose effects on differentiation and apoptosis of healthy human MoDCs was explored in vitro. RESULTS Relative to controls and to NG + GP, T2DM + GP showed significantly lower CD1c + and CD303 + DC counts, while CD141 + DCs were lower in T2DM + GP relative to controls. Blood DC maturation required for mobilization and immune responsiveness was not observed. A statistically significant trend was observed for P. gingivalis levels in the biofilms of groups as follows: controls <NG+GP < PD+GP < T2DM+GP. Moreover, significantly higher P. gingivalis levels were observed in blood DCs of NG + GP than controls, whereas no differences were observed between controls and PD + GP/T2DM + GP. In vitro differentiation of MoDCs was significantly decreased, and apoptosis was increased by physiologically relevant glucose levels. CONCLUSION Type 2 diabetes mellitus appears to inhibit important DC immune homeostatic functions, including expansion and bacterial scavenging, which might be mediated by hyperglycemia.
Collapse
Affiliation(s)
- Mariana de Sousa Rabelo
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Ahmed El-Awady
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Adriana Moura Foz
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Giovane Hisse Gomes
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Mythilpriya Rajendran
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed M Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Lowry
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Giuseppe Alexandre Romito
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Christopher W Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Cristiano Susin
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Polymicrobial synergy within oral biofilm promotes invasion of dendritic cells and survival of consortia members. NPJ Biofilms Microbiomes 2019; 5:11. [PMID: 32179736 PMCID: PMC6423025 DOI: 10.1038/s41522-019-0084-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Years of human microbiome research have confirmed that microbes rarely live or function alone, favoring diverse communities. Yet most experimental host-pathogen studies employ single species models of infection. Here, the influence of three-species oral microbial consortium on growth, virulence, invasion and persistence in dendritic cells (DCs) was examined experimentally in human monocyte-derived dendritic cells (DCs) and in patients with periodontitis (PD). Cooperative biofilm formation by Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis was documented in vitro using growth models and scanning electron microscopy. Analysis of growth rates by species-specific 16s rRNA probes revealed distinct, early advantages to consortium growth for S. gordonii and F. nucleatum with P. gingivalis, while P. gingivalis upregulated its short mfa1 fimbriae, leading to increased invasion of DCs. F. nucleatum was only taken up by DCs when in consortium with P. gingivalis. Mature consortium regressed DC maturation upon uptake, as determined by flow cytometry. Analysis of dental plaques of PD and healthy subjects by 16s rRNA confirmed oral colonization with consortium members, but DC hematogenous spread was limited to P. gingivalis and F. nucleatum. Expression of P. gingivalis mfa1 fimbriae was increased in dental plaques and hematogenous DCs of PD patients. P. gingivalis in the consortium correlated with an adverse clinical response in the gingiva of PD subjects. In conclusion, we have identified polymicrobial synergy in a three-species oral consortium that may have negative consequences for the host, including microbial dissemination and adverse peripheral inflammatory responses.
Collapse
|
18
|
Arjunan P, Meghil MM, Pi W, Xu J, Lang L, El-Awady A, Sullivan W, Rajendran M, Rabelo MS, Wang T, Tawfik OK, Kunde-Ramamoorthy G, Singh N, Muthusamy T, Susin C, Teng Y, Arce RM, Cutler CW. Oral Pathobiont Activates Anti-Apoptotic Pathway, Promoting both Immune Suppression and Oncogenic Cell Proliferation. Sci Rep 2018; 8:16607. [PMID: 30413788 PMCID: PMC6226501 DOI: 10.1038/s41598-018-35126-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic periodontitis (CP) is a microbial dysbiotic disease linked to increased risk of oral squamous cell carcinomas (OSCCs). To address the underlying mechanisms, mouse and human cell infection models and human biopsy samples were employed. We show that the ‘keystone’ pathogen Porphyromonas gingivalis, disrupts immune surveillance by generating myeloid-derived dendritic suppressor cells (MDDSCs) from monocytes. MDDSCs inhibit CTLs and induce FOXP3 + Tregs through an anti-apoptotic pathway. This pathway, involving pAKT1, pFOXO1, FOXP3, IDO1 and BIM, is activated in humans with CP and in mice orally infected with Mfa1 expressing P. gingivalis strains. Mechanistically, activation of this pathway, demonstrating FOXP3 as a direct FOXO1-target gene, was demonstrated by ChIP-assay in human CP gingiva. Expression of oncogenic but not tumor suppressor markers is consistent with tumor cell proliferation demonstrated in OSCC-P. gingivalis cocultures. Importantly, FimA + P. gingivalis strain MFI invades OSCCs, inducing inflammatory/angiogenic/oncogenic proteins stimulating OSCCs proliferation through CXCR4. Inhibition of CXCR4 abolished Pg-MFI-induced OSCCs proliferation and reduced expression of oncogenic proteins SDF-1/CXCR4, plus pAKT1-pFOXO1. Conclusively, P. gingivalis, through Mfa1 and FimA fimbriae, promotes immunosuppression and oncogenic cell proliferation, respectively, through a two-hit receptor-ligand process involving DC-SIGN+hi/CXCR4+hi, activating a pAKT+hipFOXO1+hiBIM−lowFOXP3+hi and IDO+hi- driven pathway, likely to impact the prognosis of oral cancers in patients with periodontitis.
Collapse
Affiliation(s)
- Pachiappan Arjunan
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.,Department of Oral Biology, Augusta University, Augusta, Georgia, United States of America
| | - Wenhu Pi
- Department of Radiation Oncology, Indiana University, Indianapolis, Indiana, United States of America
| | - Jinxian Xu
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Liwei Lang
- Department of Oral Biology, Augusta University, Augusta, Georgia, United States of America
| | - Ahmed El-Awady
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - William Sullivan
- Department of Energy, Joint Genome Institute, California, United States of America
| | - Mythilypriya Rajendran
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Mariana Sousa Rabelo
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.,Department of Periodontics, University of São Paulo, Sao Paulo, Brazil
| | - Tong Wang
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Omnia K Tawfik
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | | | - Nagendra Singh
- Department of Biochemistry & Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Thangaraju Muthusamy
- Department of Biochemistry & Molecular Biology, Cancer Research Center, Augusta University, Augusta, Georgia, United States of America
| | - Cristiano Susin
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yong Teng
- Department of Oral Biology, Augusta University, Augusta, Georgia, United States of America
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, Georgia, United States of America.
| |
Collapse
|
19
|
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that play a pivotal role in the pathogenesis of periodontitis. The use of animal models to study the role of DCs in periodontitis has been limited by lack of a method for sustained depletion of DCs. Hence, the objectives of this study were to validate the zDC-DTR knockin mouse model of conventional DCs (cDCs) depletion, as well as to investigate whether this depletion could be sustained long enough to induce alveolar bone loss in this model. zDC-DTR mice were treated with different dose regimens of diphtheria toxin (DT) to determine survival rate. A loading DT dose of 20ng/bw, followed and maintained with doses of 10ng/bm every 3days for up to 4weeks demonstrated 80% survival. Animals were weighed weekly and peripheral blood was obtained to confirm normal neutrophil counts. Five animals per group were euthanized at baseline, 24h, 1 and 4weeks. Bone marrow (BM), spleen (SP) and gingival tissue (GT) were harvested, and cells were isolated, separated and stained for Pre-DCs precursors (CD45R-MHCII+CD11c+Flt3+CD172a+) in BM, cDCs (CD11c+MHCII+CD209+) in spleen, and DCs in GT (CD45R+MHCII+CD11c+ DC-SIGN/CD209+). Pre-DCs in BM were significantly depleted at 24h and depletion maintained for up to 4weeks, as compared to blank (PBS) controls. Circulating cDCs in spleen demonstrated a non-significant trend to deplete in 1week with high variability among mice. GT also showed a similar non-significant trend to deplete in 24h. The zDC-DTR model seems to be viable for evaluating the role of DCs immune homeostasis disruption and alveolar bone loss pathogenesis in response to long-term oral infection.
Collapse
|
20
|
Strever JM, Lee J, Ealick W, Peacock M, Shelby D, Susin C, Mettenberg D, El-Awady A, Rueggeberg F, Cutler CW. Erbium, Chromium:Yttrium-Scandium-Gallium-Garnet Laser Effectively Ablates Single-Species Biofilms on Titanium Disks Without Detectable Surface Damage. J Periodontol 2017; 88:484-492. [DOI: 10.1902/jop.2016.160529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jason M. Strever
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA
| | - Jaebum Lee
- Private practice limited to periodontics, Dallas, TX
| | - William Ealick
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA
| | - Mark Peacock
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA
| | - Daniel Shelby
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA
| | - Cristiano Susin
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA
| | - Donald Mettenberg
- Department of Oral Rehabilitation, The Dental College of Georgia at Augusta University
| | - Ahmed El-Awady
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA
| | - Frederick Rueggeberg
- Department of Oral Rehabilitation, The Dental College of Georgia at Augusta University
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
21
|
El-Awady AR, Arce RM, Cutler CW. Dendritic cells: microbial clearance via autophagy and potential immunobiological consequences for periodontal disease. Periodontol 2000 2017; 69:160-80. [PMID: 26252408 PMCID: PMC4530502 DOI: 10.1111/prd.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 12/15/2022]
Abstract
Dendritic cells are potent antigen‐capture and antigen‐presenting cells that play a key role in the initiation and regulation of the adaptive immune response. This process of immune homeostasis, as maintained by dendritic cells, is susceptible to dysregulation by certain pathogens during chronic infections. Such dysregulation may lead to disease perpetuation with potentially severe systemic consequences. Here we discuss in detail how intracellular pathogens exploit dendritic cells and escape degradation by altering or evading autophagy. This novel mechanism explains, in part, the chronic, persistent nature observed in several immuno‐inflammatory diseases, including periodontal disease. We also propose a hypothetical model of the plausible role of autophagy in the context of periodontal disease. Promotion of autophagy may open new therapeutic strategies in the search of a ‘cure’ for periodontal disease in humans.
Collapse
|
22
|
Hasturk H, Kantarci A. Activation and resolution of periodontal inflammation and its systemic impact. Periodontol 2000 2015; 69:255-73. [PMID: 26252412 PMCID: PMC4530469 DOI: 10.1111/prd.12105] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2015] [Indexed: 02/06/2023]
Abstract
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation that results in failure to heal and in a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents, such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the tissues or organ system affected. Whilst mediators are similar, there is tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathways to resolution of inflammation. We also discuss a new treatment concept in which natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration.
Collapse
Affiliation(s)
- Hatice Hasturk
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8499; Fax: 617-892-8505
| | - Alpdogan Kantarci
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, MA 02142, USA. Phone: 617-892-8530
| |
Collapse
|
23
|
Abstract
Periodontitis is a dysbiotic inflammatory disease with an adverse impact on systemic health. Recent studies have provided insights into the emergence and persistence of dysbiotic oral microbial communities that can mediate inflammatory pathology at local as well as distant sites. This Review discusses the mechanisms of microbial immune subversion that tip the balance from homeostasis to disease in oral or extra-oral sites.
Collapse
|
24
|
Miles B, Abdel-Ghaffar KA, Gamal AY, Baban B, Cutler CW. Blood dendritic cells: "canary in the coal mine" to predict chronic inflammatory disease? Front Microbiol 2014; 5:6. [PMID: 24478766 PMCID: PMC3902297 DOI: 10.3389/fmicb.2014.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/07/2014] [Indexed: 12/19/2022] Open
Abstract
The majority of risk factors for chronic inflammatory diseases are unknown. This makes personalized medicine for assessment, prognosis, and choice of therapy very difficult. It is becoming increasingly clear, however, that low-grade subclinical infections may be an underlying cause of many chronic inflammatory diseases and thus may contribute to secondary outcomes (e.g., cancer). Many diseases are now categorized as inflammatory-mediated diseases that stem from a dysregulation in host immunity. There is a growing need to study the links between low-grade infections, the immune responses they elicit, and how this impacts overall health. One such link explored in detail here is the extreme sensitivity of myeloid dendritic cells (mDCs) in peripheral blood to chronic low-grade infections and the role that these mDCs play in arbitrating the resulting immune responses. We find that emerging evidence supports a role for pathogen-induced mDCs in chronic inflammation leading to increased risk of secondary clinical disease. The mDCs that are elevated in the blood as a result of low-grade bacteremia often do not trigger a productive immune response, but can disseminate the pathogen throughout the host. This aberrant trafficking of mDCs can accelerate systemic inflammatory disease progression. Conversely, restoration of dendritic cell homeostasis may aid in pathogen elimination and minimize dissemination. Thus it would seem prudent when assessing chronic inflammatory disease risk to consider blood mDC numbers, and the microbial content (microbiome) and activation state of these mDCs. These may provide important clues (“the canary in the coal mine”) of high inflammatory disease risk. This will facilitate development of novel immunotherapies to eliminate such smoldering infections in atherosclerosis, cancer, rheumatoid arthritis, and pre-eclampsia.
Collapse
Affiliation(s)
- Brodie Miles
- Department of Periodontics, College of Dental Medicine, Georgia Regents University Augusta, GA, USA
| | | | | | - Babak Baban
- Department of Oral Biology, Georgia Regents University Augusta, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, College of Dental Medicine, Georgia Regents University Augusta, GA, USA
| |
Collapse
|