1
|
Medicinal plants as potential therapeutic agents for trypanosomosis: a systematic review. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
2
|
Kangethe RT, Winger EM, Settypalli TBK, Datta S, Wijewardana V, Lamien CE, Unger H, Coetzer TH, Cattoli G, Diallo A. Low Dose Gamma Irradiation of Trypanosoma evansi Parasites Identifies Molecular Changes That Occur to Repair Radiation Damage and Gene Transcripts That May Be Involved in Establishing Disease in Mice Post-Irradiation. Front Immunol 2022; 13:852091. [PMID: 35634275 PMCID: PMC9136415 DOI: 10.3389/fimmu.2022.852091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
The protozoan parasite Trypanosoma evansi is responsible for causing surra in a variety of mammalian hosts and is spread by many vectors over a wide geographical area making it an ideal target for irradiation as a tool to study the initial events that occur during infection. Parasites irradiated at the representative doses 100Gy, 140Gy, and 200Gy were used to inoculate BALB/c mice revealing that parasites irradiated at 200Gy were unable to establish disease in all mice. Cytokine analysis of mice inoculated with 200Gy of irradiated parasites showed significantly lower levels of interleukins when compared to mice inoculated with non-irradiated and 100Gy irradiated parasites. Irradiation also differentially affected the abundance of gene transcripts in a dose-dependent trend measured at 6- and 20-hours post-irradiation with 234, 325, and 484 gene transcripts affected 6 hours post-irradiation for 100Gy-, 140Gy- and 200Gy-irradiated parasites, respectively. At 20 hours post-irradiation, 422, 381, and 457 gene transcripts were affected by irradiation at 100Gy, 140Gy, and 200Gy, respectively. A gene ontology (GO) term analysis was carried out for the three representative doses at 6 hours and 20 hours post-irradiation revealing different processes occurring at 20 hours when compared to 6 hours for 100Gy irradiation. The top ten most significant processes had a negative Z score. These processes fall in significance at 140Gy and even further at 200Gy, revealing that they were least likely to occur at 200Gy, and thus may have been responsible for infection in mice by 100Gy and 140Gy irradiated parasites. When looking at 100Gy irradiated parasites 20 hours post-irradiation processes with a positive Z score, we identified genes that were involved in multiple processes and compared their fold change values at 6 hours and 20 hours. We present these genes as possibly necessary for repair from irradiation damage at 6 hours and suggestive of being involved in the establishment of disease in mice at 20 hours post-irradiation. A potential strategy using this information to develop a whole parasite vaccine is also postulated.
Collapse
Affiliation(s)
- Richard T. Kangethe
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
- *Correspondence: Richard T. Kangethe,
| | - Eva M. Winger
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Tirumala Bharani K. Settypalli
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Sneha Datta
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Charles E. Lamien
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Hermann Unger
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Theresa H.T. Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Adama Diallo
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
- UMR CIRAD INRA, Animal, Santé, Territoires, Risques et Ecosystèmes (ASTRE), Montpellier, France
| |
Collapse
|
3
|
Onyilagha C, Uzonna JE. Host Immune Responses and Immune Evasion Strategies in African Trypanosomiasis. Front Immunol 2019; 10:2738. [PMID: 31824512 PMCID: PMC6883386 DOI: 10.3389/fimmu.2019.02738] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/08/2019] [Indexed: 01/11/2023] Open
Abstract
Parasites, including African trypanosomes, utilize several immune evasion strategies to ensure their survival and completion of their life cycles within their hosts. The defense factors activated by the host to resolve inflammation and restore homeostasis during active infection could be exploited and/or manipulated by the parasites in an attempt to ensure their survival and propagation. This often results in the parasites evading the host immune responses as well as the host sustaining some self-inflicted collateral tissue damage. During infection with African trypanosomes, both effector and suppressor cells are activated and the balance between these opposing arms of immunity determines susceptibility or resistance of infected host to the parasites. Immune evasion by the parasites could be directly related to parasite factors, (e.g., antigenic variation), or indirectly through the induction of suppressor cells following infection. Several cell types, including suppressive macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells have been shown to contribute to immunosuppression in African trypanosomiasis. In this review, we discuss the key factors that contribute to immunity and immunosuppression during T. congolense infection, and how these factors could aid immune evasion by African trypanosomes. Understanding the regulatory mechanisms that influence resistance and/or susceptibility during African trypanosomiasis could be beneficial in designing effective vaccination and therapeutic strategies against the disease.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jude Ezeh Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Eyssen LEA, Coetzer THT. Expression, purification and characterisation of Trypanosoma congolense metacaspase 5 (TcoMCA5) - a potential drug target for animal African trypanosomiasis. Protein Expr Purif 2019; 164:105465. [PMID: 31377239 DOI: 10.1016/j.pep.2019.105465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
The metacaspases (MCAs) are attractive drug targets for the treatment of African trypanosomiasis as they are not found in the metazoan kingdom and their action has been implicated in cell cycle and cell death pathways in kinetoplastid parasites. Here we report the biochemical characterisation of MCA5 from T. congolense. Upon recombinant expression in E. coli, autoprocessing is evident, and MCA5 further autoprocesses when purified using nickel affinity chromatography, which we term nickel-induced over autoprocessing. When both the catalytic His and Cys residues were mutated (TcoMCA5H147A/C202G), no nickel-induced over autoprocessing was observed and was enzymatically active, suggesting the existence of a secondary catalytic Cys residue, Cys81. Immunoaffinity purification of native TcoMCA5 from the total parasite proteins was achieved using chicken anti-TcoMCA5 IgY antibodies. The full length native TcoMCA5 and the autoprocessed products of recombinant TcoMCA5H147A/C202G were shown to possess gelatinolytic activity, the first report for that of a MCA. Both the native and recombinant enzyme were calcium independent, had a preference for Arg over Lys at the P1 site and were active over a pH range between 6.5 and 9. Partial inhibition (23%) of enzymatic activity was only achieved with leupeptin and antipain. These findings are the first step in the biochemical characterisation of the single copy MCAs from animal infective trypanosomes towards the design of novel trypanocides.
Collapse
Affiliation(s)
- Lauren E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
5
|
Abstract
This study assessed the virulence of Trypanosoma evansi, the causative agent of camel trypanosomiasis (surra), affecting mainly camels among other hosts in Africa, Asia and South America, with high mortality and morbidity. Using Swiss white mice, we assessed virulence of 17 T. evansi isolates collected from surra endemic countries. We determined parasitaemia, live body weight, packed cell volume (PCV) and survivorship in mice, for a period of 60 days' post infection. Based on survivorship, the 17 isolates were classified into three virulence categories; low (31-60 days), moderate (11-30 days) and high (0-10 days). Differences in survivorship, PCV and bodyweights between categories were significant and correlated (P < 0.05). Of the 10 Kenyan isolates, four were of low, five moderate and one (Type B) of high virulence. These findings suggest differential virulence between T. evansi isolates. In conclusion, these results show that the virulence of T. evansi may be region specific, the phenotype of the circulating parasite should be considered in the management of surra. There is also need to collect more isolates from other surra endemic regions to confirm this observation.
Collapse
|
6
|
Sterkel AK, Lorenzini JL, Fites JS, Subramanian Vignesh K, Sullivan TD, Wuthrich M, Brandhorst T, Hernandez-Santos N, Deepe GS, Klein BS. Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity. Cell Host Microbe 2016; 19:361-74. [PMID: 26922990 DOI: 10.1016/j.chom.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/29/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022]
Abstract
Systemic fungal infections trigger marked immune-regulatory disturbances, but the mechanisms are poorly understood. We report that the pathogenic yeast of Blastomyces dermatitidis elaborates dipeptidyl-peptidase IVA (DppIVA), a close mimic of the mammalian ectopeptidase CD26, which modulates critical aspects of hematopoiesis. We show that, like the mammalian enzyme, fungal DppIVA cleaved C-C chemokines and GM-CSF. Yeast producing DppIVA crippled the recruitment and differentiation of monocytes and prevented phagocyte activation and ROS production. Silencing fungal DppIVA gene expression curtailed virulence and restored recruitment of CCR2(+) monocytes, generation of TipDC, and phagocyte killing of yeast. Pharmacological blockade of DppIVA restored leukocyte effector functions and stemmed infection, while addition of recombinant DppIVA to gene-silenced yeast enabled them to evade leukocyte defense. Thus, fungal DppIVA mediates immune-regulatory disturbances that underlie invasive fungal disease. These findings reveal a form of molecular piracy by a broadly conserved aminopeptidase during disease pathogenesis.
Collapse
Affiliation(s)
- Alana K Sterkel
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jenna L Lorenzini
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - J Scott Fites
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kavitha Subramanian Vignesh
- Division of Infectious Disease, University of Cincinnati College of Medicine and Veterans Affairs Hospital, Cincinnati, OH 45220, USA
| | - Thomas D Sullivan
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Marcel Wuthrich
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Tristan Brandhorst
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Nydiaris Hernandez-Santos
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - George S Deepe
- Division of Infectious Disease, University of Cincinnati College of Medicine and Veterans Affairs Hospital, Cincinnati, OH 45220, USA
| | - Bruce S Klein
- Departments of Pediatrics, Medicine, and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA.
| |
Collapse
|
7
|
Obishakin E, de Trez C, Magez S. Chronic Trypanosoma congolense infections in mice cause a sustained disruption of the B-cell homeostasis in the bone marrow and spleen. Parasite Immunol 2014; 36:187-98. [PMID: 24451010 DOI: 10.1111/pim.12099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/15/2014] [Indexed: 12/21/2022]
Abstract
Trypanosoma congolense is one of the main species responsible for Animal African Trypanosomosis (AAT). As preventive vaccination strategies for AAT have been unsuccessful so far, investigating the mechanisms underlying vaccine failure has to be prioritized. In T. brucei and T. vivax infections, recent studies revealed a rapid onset of destruction of the host B-cell compartment, resulting in the loss of memory recall capacity. To assess such effect in experimental T. congolense trypanosomosis, we performed infections with both the cloned Tc13 parasite, which is considered as a standard model system for T. congolense rodent infections and the noncloned TRT55 field isolate. These infections differ in their virulence level in the C57BL/6 mouse model for trypanosomosis. We show that early on, an irreversible depletion of all developmental B cells stages occur. Subsequently, in the spleen, a detrimental decrease in immature B cells is followed by a significant and permanent depletion of Marginal zone B cells and Follicular B cells. The severity of these events later on in infection correlated with the virulence level of the parasite stock. In line with this, it was observed that later-stage infection-induced IgGs were largely nonspecific, in particular in the more virulent TRT55 infection model.
Collapse
Affiliation(s)
- E Obishakin
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | | | | |
Collapse
|
8
|
Recombinant expression and biochemical characterisation of two alanyl aminopeptidases of Trypanosoma congolense. Exp Parasitol 2013; 135:675-84. [PMID: 24177338 DOI: 10.1016/j.exppara.2013.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 11/23/2022]
Abstract
Trypanosoma congolense is a haemoprotozoan parasite that causes African animal trypanosomosis, a wasting disease of cattle and small ruminants. Current control methods are unsatisfactory and no conventional vaccine exists due to antigenic variation. An anti-disease vaccine approach to control T. congolense has been proposed requiring the identification of parasitic factors that cause disease. Immunoprecipitation of T. congolense antigens using sera from infected trypanotolerant cattle allowed the identification of several immunogenic antigens including two M1 type aminopeptidases (APs). The two APs were cloned and expressed in Escherichia coli. As the APs were expressed as insoluble inclusion bodies it was necessary to develop a method for solubilisation and subsequent refolding to restore conformation and activity. The refolded APs both showed a distinct substrate preference for H-Ala-AMC, an optimum pH of 8.0, puromycin-sensitivity, inhibition by bestatin and amastatin, and cytoplasmic localisation. The two APs are expressed in procyclic metacyclic and bloodstream form parasites. Down-regulation of both APs by RNAi resulted in a slightly reduced growth rate in procyclic parasites in vitro.
Collapse
|
9
|
Balogun EO, Balogun JB, Yusuf S, Inuwa HM, Ndams IS, Sheridan P, Inaoka DK, Shiba T, Harada S, Kita K, Esievo KAN, Nok AJ. Anemia amelioration by lactose infusion during trypanosomosis could be associated with erythrocytes membrane de-galactosylation. Vet Parasitol 2013; 199:259-63. [PMID: 24238624 DOI: 10.1016/j.vetpar.2013.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 12/28/2022]
Abstract
African trypanosomosis is a potentially fatal disease that is caused by extracellular parasitic protists known as African trypanosomes. These parasites inhabit the blood stream of their mammalian hosts and produce a number of pathological features, amongst which is anemia. Etiology of the anemia has been partly attributed to an autoimmunity-like mediated erythrophagocytosis of de-sialylated red blood cells (dsRBCs) by macrophages. Lactose infusion to infected animals has proven effective at delaying progression of the anemia. However, the mechanism of this anemia prevention is yet to be well characterized. Here, the hypothesis of a likely induced further modification of the dsRBCs was investigated. RBC membrane galactose (RBC m-GAL) and packed cell volume (PCV) were measured during the course of experimental trypanosomosis in mice infected with Trypanosoma congolense (stb 212). Intriguingly, while the membrane galactose on the RBCs of infected and lactose-treated mice (group D) decreased as a function of parasitemia, that of the lactose-untreated infected group (group C) remained relatively constant, as was recorded for the uninfected lactose-treated control (group B) animals. At the peak of infection, the respective cumulative percent decrease in PCV and membrane galactose were 30 and 185 for group D, and 84 and 13 for group C. From this observed inverse relationship between RBCs membrane galactose and PCV, it is logical to rationalize that the delay of anemia progression during trypanosomosis produced by lactose might have resulted from an induction of galactose depletion from dsRBCs, thereby preventing their recognition by the macrophages.
Collapse
Affiliation(s)
- E O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan.
| | - J B Balogun
- Department of Biological Sciences, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | - S Yusuf
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Uganda
| | - H M Inuwa
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - I S Ndams
- Department of Biological Sciences, Ahmadu Bello University, Zaria 2222, Nigeria
| | - P Sheridan
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - D K Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - T Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - S Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - K Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - K A N Esievo
- Department of Veterinary Pathology and Microbiology, Ahmadu Bello University, Zaria 2222, Nigeria
| | - A J Nok
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| |
Collapse
|
10
|
Identification of trans-sialidases as a common mediator of endothelial cell activation by African trypanosomes. PLoS Pathog 2013; 9:e1003710. [PMID: 24130501 PMCID: PMC3795030 DOI: 10.1371/journal.ppat.1003710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Understanding African Trypanosomiasis (AT) host-pathogen interaction is the key to an "anti-disease vaccine", a novel strategy to control AT. Here we provide a better insight into this poorly described interaction by characterizing the activation of a panel of endothelial cells by bloodstream forms of four African trypanosome species, known to interact with host endothelium. T. congolense, T. vivax, and T. b. gambiense activated the endothelial NF-κB pathway, but interestingly, not T. b. brucei. The parasitic TS (trans-sialidases) mediated this NF-κB activation, remarkably via their lectin-like domain and induced production of pro-inflammatory molecules not only in vitro but also in vivo, suggesting a considerable impact on pathogenesis. For the first time, TS activity was identified in T. b. gambiense BSF which distinguishes it from the subspecies T. b. brucei. The corresponding TS were characterized and shown to activate endothelial cells, suggesting that TS represent a common mediator of endothelium activation among trypanosome species with divergent physiopathologies.
Collapse
|
11
|
Guegan F, Plazolles N, Baltz T, Coustou V. Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection. Cell Microbiol 2013; 15:1285-303. [PMID: 23421946 DOI: 10.1111/cmi.12123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
Abstract
Trypanosomal infection-induced anaemia is a devastating scourge for cattle in widespread regions. Although Trypanosoma vivax is considered as one of the most important parasites regarding economic impact in Africa and South America, very few in-depth studies have been conducted due to the difficulty of manipulating this parasite. Several hypotheses were proposed to explain trypanosome induced-anaemia but mechanisms have not yet been elucidated. Here, we characterized a multigenic family of trans-sialidases in T. vivax, some of which are released into the host serum during infection. These enzymes are able to trigger erythrophagocytosis by desialylating the major surface erythrocytes sialoglycoproteins, the glycophorins. Using an ex vivo assay to quantify erythrophagocytosis throughout infection, we showed that erythrocyte desialylation alone results in significant levels of anaemia during the acute phase of the disease. Characterization of virulence factors such as the trans-sialidases is vital to develop a control strategy against the disease or parasite.
Collapse
Affiliation(s)
- Fabien Guegan
- Microbiologie fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, Bordeaux, France
| | | | | | | |
Collapse
|
12
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Kangethe RT, Boulangé AF, Coustou V, Baltz T, Coetzer TH. Trypanosoma brucei brucei oligopeptidase B null mutants display increased prolyl oligopeptidase-like activity. Mol Biochem Parasitol 2012; 182:7-16. [DOI: 10.1016/j.molbiopara.2011.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/07/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023]
|
14
|
Coustou V, Plazolles N, Guegan F, Baltz T. Sialidases play a key role in infection and anaemia in Trypanosoma congolense animal trypanosomiasis. Cell Microbiol 2012; 14:431-45. [PMID: 22136727 DOI: 10.1111/j.1462-5822.2011.01730.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Animal African trypanosomiasis is a major constraint to livestock productivity and has an important impact on millions of people in developing African countries. This parasitic disease, caused mainly by Trypanosoma congolense, results in severe anaemia leading to animal death. In order to characterize potential targets for an anti-disease vaccine, we investigated a multigenic trans-sialidase family (TcoTS) in T. congolense. Sialidase and trans-sialidase activities were quantified for the first time, as well as the tightly regulated TcoTS expression pattern throughout the life cycle. Active enzymes were expressed in bloodstream form parasites and released into the blood during infection. Using genetic tools, we demonstrated a significant correlation between TcoTS silencing and impairment of virulence during experimental infection with T. congolense. Reduced TcoTS expression affected infectivity, parasitaemia and pathogenesis development. Immunization-challenge experiments using recombinant TcoTS highlighted their potential protective use in an anti-disease vaccine.
Collapse
Affiliation(s)
- Virginie Coustou
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, Bordeaux, France.
| | | | | | | |
Collapse
|
15
|
Gannavaram S, Debrabant A. Involvement of TatD nuclease during programmed cell death in the protozoan parasite Trypanosoma brucei. Mol Microbiol 2012; 83:926-35. [PMID: 22288397 DOI: 10.1111/j.1365-2958.2012.07978.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this report, we describe the involvement of TatD nuclease during programmed cell death (PCD) in the human protozoan parasite Trypanosoma brucei. T. brucei TatD nuclease showed intrinsic DNase activity, was localized in the cytoplasm and translocated to the nucleus when cells were treated with inducers previously demonstrated to cause PCD in T. brucei. Overexpression of TatD nuclease resulted in elevated PCD and conversely, loss of TatD expression by RNAi conferred significant resistance to the induction of PCD in T. brucei. Co-immunoprecipitation studies revealed that TatD nuclease interacts with endonucleaseG suggesting that these two nucleases could form a DNA degradation complex in the nucleus. Together, biochemical activity, RNAi and subcellular localization results demonstrate the role of TatD nuclease activity in DNA degradation during PCD in these evolutionarily ancient eukaryotic organisms. Further, in conjunction with endonucleaseG, TatD may represent a critical nuclease in a caspase-independent PCD pathway in trypanosomatid parasites since caspases have not been identified in these organisms.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
16
|
Abstract
Trypanosomes are protozoan parasites of medical and veterinary importance. It is well established that different species, subspecies and strains of trypanosome can cause very different disease in the mammalian host, exemplified by the two human-infective subspecies of Trypanosoma brucei that cause either acute or chronic disease. We are beginning to understand how the host response shapes the course of the disease and how genetic variation in the host can be a factor in disease severity, particularly in the mouse model, but until recently the role of parasite genetic variation that determines differential disease outcome has been a neglected area. This review will discuss the recent advances in this field, covering both our current knowledge of the T. brucei genes involved and the approaches that are leading towards the identification of T. brucei virulence genes. Finally, the potential for using parasite genotype variation to examine the evolutionary context of virulence will be discussed.
Collapse
Affiliation(s)
- L J Morrison
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
17
|
Neumüller M, Nilsson K, Påhlson C. Trypanosoma spp. in Swedish game animals. Parasitol Res 2011; 110:135-9. [PMID: 21614542 DOI: 10.1007/s00436-011-2462-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Serum and blood samples from 36 game animals, shot during the hunting seasons 2007-2009, were collected and analyzed for the presence of Trypanosoma spp. by three methods: isolation, polymerase chain reaction (PCR), and serology. Only fissiped animals were included, four different ruminants and wild boar. Trypanosomes could be isolated from two of the animals, and eight had detectable parasite DNA. Seven animals had high titers of anti-trypanosoma IgG antibodies. The two isolated strains, one from roe dear and one from European elk, were determined to Trypanosoma theileri by partial DNA sequencing of the 18S ribosomal gene. In the seven boars, no Trypanosoma were detected, but four out of seven strongly positive serological samples came from this group. This is the first study in Scandinavia on the presence of Trypanosoma in game animals. The results indicate that trypanosomiasis is frequently occurring among Swedish game animals.
Collapse
Affiliation(s)
- Magnus Neumüller
- Department of Biology and Chemical Engineering, Mälardalen University, Box 883, 72123, Västerås, Sweden
| | | | | |
Collapse
|
18
|
Boulangé AF, Khamadi SA, Pillay D, Coetzer THT, Authié E. Production of congopain, the major cysteine protease of Trypanosoma (Nannomonas) congolense, in Pichia pastoris reveals unexpected dimerisation at physiological pH. Protein Expr Purif 2010; 75:95-103. [PMID: 20828616 DOI: 10.1016/j.pep.2010.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 11/17/2022]
Abstract
African animal trypanosomosis (nagana) is arguably the most important parasitic disease affecting livestock in sub-Saharan Africa. Since none of the existing control measures are entirely satisfactory, vaccine development is being actively pursued. However, due to antigenic variation, the quest for a conventional vaccine has proven elusive. As a result, we have sought an alternative 'anti-disease vaccine approach', based on congopain, a cysteine protease of Trypanosoma congolense, which was shown to have pathogenic effects in vivo. Congopain was initially expressed as a recombinant protein in bacterial and baculovirus expression systems, but both the folding and yield obtained proved inadequate. Hence alternative expression systems were investigated, amongst which Pichia pastoris proved to be the most suitable. We report here the expression of full length, and C-terminal domain-truncated congopain in the methylotrophic yeast P. pastoris. Differences in yield were observed between full length and truncated proteins, the full length producing 2-4 mg of protein per litre of culture, while the truncated form produced 20-30 mg/l. The protease was produced as a proenzyme, but underwent spontaneous activation when acidified (pH <5). To investigate whether this activation was due to autolysis, we produced an inactive mutant (active site Cys→Ala) by site-directed mutagenesis. The mutant form was produced at a much higher rate, up to 100mg/l culture, as a proenzyme. It did not undergo spontaneous cleavage of the propeptide when subjected to acidic pH suggesting an autocatalytic process of activation for congopain. These recombinant proteins displayed a very unusual feature for cathepsin L-like proteinases, i.e. complete dimerisation at pH >6, and by reversibly monomerising at acidic pH <5. This attribute is of utmost importance in the context of an anti-disease vaccine, given that the epitopes recognised by the sera of trypanosome-infected trypanotolerant cattle appear dimer-specific.
Collapse
Affiliation(s)
- Alain F Boulangé
- UMR 17 IRD-CIRAD Trypanosomes, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France. ,
| | | | | | | | | |
Collapse
|
19
|
Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. II. Immunobiological dysfunctions. PLoS Negl Trop Dis 2010; 4. [PMID: 20711524 PMCID: PMC2919407 DOI: 10.1371/journal.pntd.0000793] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 07/14/2010] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma vivax is the main species involved in trypanosomosis, but very little is known about the immunobiology of the infective process caused by this parasite. Recently we undertook to further characterize the main parasitological, haematological and pathological characteristics of mouse models of T. vivax infection and noted severe anemia and thrombocytopenia coincident with rising parasitemia. To gain more insight into the organism's immunobiology, we studied lymphocyte populations in central (bone marrow) and peripherical (spleen and blood) tissues following mouse infection with T. vivax and showed that the immune system apparatus is affected both quantitatively and qualitatively. More precisely, after an initial increase that primarily involves CD4+ T cells and macrophages, the number of splenic B cells decreases in a step-wise manner. Our results show that while infection triggers the activation and proliferation of Hematopoietic Stem Cells, Granulocyte-Monocyte, Common Myeloid and Megacaryocyte Erythrocyte progenitors decrease in number in the course of the infection. An in-depth analysis of B-cell progenitors also indicated that maturation of pro-B into pre-B precursors seems to be compromised. This interferes with the mature B cell dynamics and renewal in the periphery. Altogether, our results show that T. vivax induces profound immunological alterations in myeloid and lymphoid progenitors which may prevent adequate control of T. vivax trypanosomosis. Trypanosoma vivax is responsible for animal trypanosomosis, or Nagana, in cattle and small ruminants. Under experimental conditions, the outbred mouse model infected with a well studied West African T. vivax isolate reproduces the main characteristics of the infection and pathology observed in livestock. Anemia and non-specific (parasite-directed) polyclonal hypergammaglobulinemia are the most common disorders coincident with the rise in parasitemia. Our results presented here show that the decrease in peripheral B cell populations does not seem to be compensated by newly arriving B cells from the bone marrow. The infection nevertheless prompts intense production of stem cells that mature into myeloid and lymphoid precursors. In spite of this, B cell numbers are specifically reduced in the periphery as the infection progresses. Thus, negative feedback seems to be set in motion by the infection in the bone marrow, more precisely affecting the maturation of B precursors and consequently the output of mature B cells. The origin of these phenomena is unclear but this doubtless creates a homeostatic imbalance that contributes to the inefficient immune response against T. vivax infection.
Collapse
|
20
|
Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010; 2010:389153. [PMID: 20182644 PMCID: PMC2826769 DOI: 10.1155/2010/389153] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023] Open
Abstract
Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.
Collapse
|
21
|
Role for parasite genetic diversity in differential host responses to Trypanosoma brucei infection. Infect Immun 2010; 78:1096-108. [PMID: 20086091 DOI: 10.1128/iai.00943-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The postgenomic era has revolutionized approaches to defining host-pathogen interactions and the investigation of the influence of genetic variation in either protagonist upon infection outcome. We analyzed pathology induced by infection with two genetically distinct Trypanosoma brucei strains and found that pathogenesis is partly strain specific, involving distinct host mechanisms. Infections of BALB/c mice with one strain (927) resulted in more severe anemia and greater erythropoietin production compared to infections with the second strain (247), which, contrastingly, produced greater splenomegaly and reticulocytosis. Plasma interleukin-10 (IL-10) and gamma interferon levels were significantly higher in strain 927-infected mice, whereas IL-12 was higher in strain 247-infected mice. To define mechanisms underlying these differences, expression microarray analysis of host genes in the spleen at day 10 postinfection was undertaken. Rank product analysis (RPA) showed that 40% of the significantly differentially expressed genes were specific to infection with one or the other trypanosome strain. RPA and pathway analysis identified LXR/RXR signaling, IL-10 signaling, and alternative macrophage activation as the most significantly differentially activated host processes. These data suggest that innate immune response modulation is a key determinant in trypanosome infections, the pattern of which can vary, dependent upon the trypanosome strain. This strongly suggests that a parasite genetic component is responsible for causing disease in the host. Our understanding of trypanosome infections is largely based on studies involving single parasite strains, and our results suggest that an integrated host-parasite approach is required for future studies on trypanosome pathogenesis. Furthermore, it is necessary to incorporate parasite variation into both experimental systems and models of pathogenesis.
Collapse
|