1
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
2
|
Oliver A, Conrado FO, Nolen-Walston R. Equine Granulocytic Anaplasmosis. Vet Clin North Am Equine Pract 2023; 39:133-145. [PMID: 36737288 DOI: 10.1016/j.cveq.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Equine granulocytic anaplasmosis is a clinically significant and common disease of equids that has a broader prevalence than was once thought. The most common clinical signs include high fever and edema, with mild to mderate thrombocytopenia and lymphopenia typically noted on complete blood count. Subclinical cases are reported and many are self-limiting. Rare clinical presentations include neurologic disease, vasculitis, dysphagia, rhabdomyolysis, or bicavitary effusion. Most cases resolve rapidly with appropriate antimicrobial intervention.
Collapse
Affiliation(s)
- Andrea Oliver
- Department of Clinical Studies, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Francisco O Conrado
- Department of Comparative Pathobiology, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Rose Nolen-Walston
- Department of Clinical Studies, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA.
| |
Collapse
|
3
|
Crosby FL, Eskeland S, Bø-Granquist EG, Munderloh UG, Price LD, Al-Khedery B, Stuen S, Barbet AF. Comparative Whole Genome Analysis of an Anaplasma phagocytophilum Strain Isolated from Norwegian Sheep. Pathogens 2022; 11:pathogens11050601. [PMID: 35631122 PMCID: PMC9146208 DOI: 10.3390/pathogens11050601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Anaplasma phagocytophilum is a Gram-negative obligate intracellular tick-borne alphaproteobacteria (family Anaplasmatacea, order Rickettsiales) with a worldwide distribution. In Norway, tick borne fever (TBF), caused by A. phagocytophilum, presents a major challenge in sheep farming. Despite the abundance of its tick vector, Ixodes ricinus, and A. phagocytophilum infections in wild and domestic animals, reports of infections in humans are low compared with cases in the U.S. Although A. phagocytophilum is genetically diverse and complex infections (co-infection and superinfection) in ruminants and other animals are common, the underlying genetic basis of intra-species interactions and host-specificity remains unexplored. Here, we performed whole genome comparative analysis of a newly cultured Norwegian A. phagocytophilum isolate from sheep (ApSheep_NorV1) with 27 other A. phagocytophilum genome sequences derived from human and animal infections worldwide. Although the compared strains are syntenic, there is remarkable genetic diversity between different genomic loci including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen Msp2/p44. Blast comparisons between the msp2/p44 pseudogene repertoires from all the strains showed high divergence between U. S. and European strains and even between two Norwegian strains. Based on these comparisons, we concluded that in ruminants, complex infections can be attributed to infection with strains that differ in their msp2/p44 repertoires, which has important implications for pathogen evolution and vaccine development. We also present evidence for integration of rickettsial DNA into the genome of ISE6 tick cells.
Collapse
Affiliation(s)
- Francy L. Crosby
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (B.A.-K.); (A.F.B.)
- Correspondence:
| | - Sveinung Eskeland
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1432, Norway; (S.E.); (E.G.B.-G.); (S.S.)
| | - Erik G. Bø-Granquist
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1432, Norway; (S.E.); (E.G.B.-G.); (S.S.)
| | - Ulrike G. Munderloh
- Department of Entomology, College of Food, Agricultural and Natural Resources, University of Minnesota, St. Paul, MN 55108, USA; (U.G.M.); (L.D.P.)
| | - Lisa D. Price
- Department of Entomology, College of Food, Agricultural and Natural Resources, University of Minnesota, St. Paul, MN 55108, USA; (U.G.M.); (L.D.P.)
| | - Basima Al-Khedery
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (B.A.-K.); (A.F.B.)
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1432, Norway; (S.E.); (E.G.B.-G.); (S.S.)
| | - Anthony F. Barbet
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (B.A.-K.); (A.F.B.)
| |
Collapse
|
4
|
Bishop C, Asgari S. Altered gene expression profile of Wolbachia pipientis wAlbB strain following transinfection from its native host Aedes albopictus to Aedes aegypti cells. Mol Microbiol 2021; 115:1229-1243. [PMID: 33325576 DOI: 10.1111/mmi.14668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Wolbachia is an obligate intracellular bacterial symbiont prevalent among arthropods and nematodes. To survive and reproduce, Wolbachia interacts with and modifies host subcellular structures, while sensing and responding to changes within the cellular environment. In mutualistic associations, Wolbachia may provision the host with metabolites, or help to maintain the chemical homeostasis of the host cell. Some strains can rapidly invade insect populations by manipulating host reproductive biology, while also preventing viral replication, allowing their use in vector control of arthropod-borne viruses. The Aedes albopictus-derived strain wAlbB is promising in this regard. When transinfected into the Yellow fever mosquito, Aedes aegypti, wAlbB reaches high frequencies within wild populations, and strongly inhibits viral transmission. Despite its obvious potential, much is still unknown about the molecular interactions between Wolbachia and host that enable its use in vector control. Furthermore, most Wolbachia transinfection research to date has focused on host effects. In the current study, we used a cell line model to explore the effect of transinfection of wAlbB from Ae. albopictus to Ae. aegypti. Using RNA sequencing, we show that several genes associated with host-symbiont interactions were downregulated by transinfection, with the greatest downregulation exhibited by prophage-associated genes.
Collapse
Affiliation(s)
- Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Eskeland S, Stuen S, Crosby FL, Lybeck K, Barbet AF, Lindgren PE, Tollefsen S, Wilhelmsson P, Tollersrud TS, Makvandi-Nejad S, Granquist EG. Assessing the clinical and bacteriological outcomes of vaccination with recombinant Asp14 and OmpA against A. phagocytophilum in sheep. Vet Immunol Immunopathol 2019; 218:109936. [PMID: 31590072 DOI: 10.1016/j.vetimm.2019.109936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum is a tick borne bacterium, causing disease in sheep and other mammals, including humans. The bacterium has great economic and animal welfare implications for sheep husbandry in Northern Europe. With the prospect of a warmer and more humid climate, the vector availability will likely increase, resulting in a higher prevalence of A. phagocytophilum. The current preventive measures, as pyrethroids acting on ticks or long acting antibiotics controlling bacterial infection, are suboptimal for prevention of the disease in sheep. Recently, the increased awareness on antibiotic- and pyrethorid resistance, is driving the search for a new prophylactic approach in sheep against A. phagocytophilum. Previous studies have used an attenuated vaccine, which gave insufficient protection from challenge with live bacteria. Other studies have focused on bacterial membrane surface proteins like Asp14 and OmpA. An animal study using homologous proteins to Asp14 and OmpA of A. marginale, showed no protective effect in heifers. In the current study, recombinant proteins of Asp14 (rAsp14) and OmpA (rOmpA) of A. phagocytophilum were produced and prepared as a vaccine for sheep. Ten lambs were vaccinated twice with an adjuvant emulsified with rAsp14 or rOmpA, three weeks apart and challenged with a live strain of A. phagocytophilum (GenBank acc.nr M73220) on day 42. The control group consisted of five lambs injected twice with PBS and adjuvant. Hematology, real time qPCR, immunodiagnostics and flow cytometric analyses of peripheral blood mononuclear cells were performed. Vaccinated lambs responded with clinical signs of A.phagocytophilum infection after challenge and bacterial load in the vaccinated group was not reduced compared to the control group. rAsp14 vaccinated lambs generated an antibody response against the vaccine, but a clear specificity for rAsp14 could not be established. rOmpA-vaccinated lambs developed a strong specific antibody response on days 28 after vaccination and 14 days post-challenge. Immunofluorescent staining and flow cytometric analysis of peripheral blood mononuclear monocytes revealed no difference between the three groups, but the percentage of CD4+, CD8+, γδ TcR+, λ-Light chain+, CD11b+, CD14+ and MHC II+ cells, within the groups changed during the study, most likely due to the adjuvant or challenge with the bacterium. Although an antigen specific antibody response could be detected against rOmpA and possibly rAsp14, the vaccines seemed to be ineffective in reducing clinical signs and bacterial load caused by A. phagocytophilum. This is the first animal study with recombinant Asp14 and OmpA aimed at obtaining clinical protection against A. phagocytophilum in sheep.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Ullevålsveien 72, 0454, Oslo, Norway.
| | - Snorre Stuen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Francy L Crosby
- University of Florida, College of Veterinary Medicine, 2015 SW 16thAve., Gainesville, FL, 32608, USA
| | - Kari Lybeck
- Norwegian Veterinary Institute, Ullevålsveien 68, 0454, Oslo, Norway
| | - Anthony F Barbet
- University of Florida, College of Veterinary Medicine, 2015 SW 16thAve., Gainesville, FL, 32608, USA
| | - Per-Eric Lindgren
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, 581 53, Linköping, Sweden; Department of Medical Microbiology, Laboratory Medicin, County Hospital Ryhov, 551 85, Jönköping, Sweden
| | - Stig Tollefsen
- Norwegian Veterinary Institute, Ullevålsveien 68, 0454, Oslo, Norway
| | - Peter Wilhelmsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, 581 53, Linköping, Sweden; Department of Medical Microbiology, Laboratory Medicin, County Hospital Ryhov, 551 85, Jönköping, Sweden
| | - Tore S Tollersrud
- Animalia, Norwegian Meat and Poultry Research Center, Lørenveien 38, 0585, Oslo, Norway
| | | | - Erik G Granquist
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Ullevålsveien 72, 0454, Oslo, Norway
| |
Collapse
|
6
|
Stuen S, Okstad W, Sagen AM. Intrauterine Transmission of Anaplasma phagocytophilum in Persistently Infected Lambs. Vet Sci 2018; 5:vetsci5010025. [PMID: 29495651 PMCID: PMC5876579 DOI: 10.3390/vetsci5010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
Anaplasma phagocytophilum, which causes the disease tick-borne fever (TBF), is the most important tick-borne pathogen in European animals. TBF may contribute to severe welfare challenges and economic losses in the Norwegian sheep industry. The bacterium causes a persistent infection in sheep and several other animal species. The objective of this study was to investigate whether intrauterine transmission occurs in persistently infected sheep. The study included thirteen 5–6-month-old unmated ewes, of which twelve were experimentally infected with A. phagocytophilum (GenBank acc. no. M73220). Four to six weeks later, all ewes were mated, and nine became pregnant. Blood samples were collected from these ewes and their offspring. If the lamb died, tissue samples were collected. The samples were analyzed with real-time PCR (qPCR) targeting the msp2 gene. PCR-positive samples were further analyzed by semi-nested PCR and 16S rDNA sequencing. A total of 20 lambs were born, of which six died within two days. Six newborn lambs (30%) were PCR-positive (qPCR), of which one was verified by 16S rDNA sequencing. The present study indicates that intrauterine transmission of A. phagocytophilum in persistently infected sheep may occur. The importance of these findings for the epidemiology of A. phagocytophilum needs to be further investigated.
Collapse
Affiliation(s)
- Snorre Stuen
- Section for Small Ruminant Research, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway.
| | - Wenche Okstad
- Section for Small Ruminant Research, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway.
| | - Anne Mette Sagen
- Section for Small Ruminant Research, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, N-4325 Sandnes, Norway.
| |
Collapse
|
7
|
Chastagner A, Pion A, Verheyden H, Lourtet B, Cargnelutti B, Picot D, Poux V, Bard É, Plantard O, McCoy KD, Leblond A, Vourc'h G, Bailly X. Host specificity, pathogen exposure, and superinfections impact the distribution of Anaplasma phagocytophilum genotypes in ticks, roe deer, and livestock in a fragmented agricultural landscape. INFECTION GENETICS AND EVOLUTION 2017; 55:31-44. [PMID: 28807858 DOI: 10.1016/j.meegid.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Anaplasma phagocytophilum is a bacterial pathogen mainly transmitted by Ixodes ricinus ticks in Europe. It infects wild mammals, livestock, and, occasionally, humans. Roe deer are considered to be the major reservoir, but the genotypes they carry differ from those that are found in livestock and humans. Here, we investigated whether roe deer were the main source of the A. phagocytophilum genotypes circulating in questing I. ricinus nymphs in a fragmented agricultural landscape in France. First, we assessed pathogen prevalence in 1837 I. ricinus nymphs (sampled along georeferenced transects) and 79 roe deer. Prevalence was dramatically different between ticks and roe deer: 1.9% versus 76%, respectively. Second, using high-throughput amplicon sequencing, we characterized the diversity of the A. phagocytophilum genotypes found in 22 infected ticks and 60 infected roe deer; the aim was to determine the frequency of co-infections. Only 22.7% of infected ticks carried genotypes associated with roe deer. This finding fits with others suggesting that cattle density is the major factor explaining infected tick density. To explore epidemiological scenarios capable of explaining these patterns, we constructed compartmental models that focused on how A. phagocytophilum exposure and infection dynamics affected pathogen prevalence in roe deer. At the exposure levels predicted by the results of this study and the literature, the high prevalence in roe deer was only seen in the model in which superinfections could occur during all infection phases and when the probability of infection post exposure was above 0.43. We then interpreted these results from the perspective of livestock and human health.
Collapse
Affiliation(s)
- Amélie Chastagner
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Angélique Pion
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Hélène Verheyden
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Lourtet
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Cargnelutti
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Denis Picot
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Valérie Poux
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Émilie Bard
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Olivier Plantard
- BIOEPAR, UMR 1300, Biologie, Epidemiologie et Analyse de Risque, INRA, UNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpôle, la Chantrerie, F-44307, Nantes, France
| | - Karen D McCoy
- MIVEGEC (UMR 5290), Maladie Infectieuses et Vecteurs: Ecologie, Génétique Evolution et Contrôle, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement (UR224), 911 Avenue d'Agropolis, BP 64501, F-34394 Cedex 5, Montpellier, France
| | - Agnes Leblond
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Gwenaël Vourc'h
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Xavier Bailly
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France.
| |
Collapse
|
8
|
Sae-Lim P, Grøva L, Olesen I, Varona L. A comparison of nonlinear mixed models and response to selection of tick-infestation on lambs. PLoS One 2017; 12:e0172711. [PMID: 28257433 PMCID: PMC5336382 DOI: 10.1371/journal.pone.0172711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/08/2017] [Indexed: 11/21/2022] Open
Abstract
Tick-borne fever (TBF) is stated as one of the main disease challenges in Norwegian sheep farming during the grazing season. TBF is caused by the bacterium Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. A sustainable strategy to control tick-infestation is to breed for genetically robust animals. In order to use selection to genetically improve traits we need reliable estimates of genetic parameters. The standard procedures for estimating variance components assume a Gaussian distribution of the data. However, tick-count data is a discrete variable and, thus, standard procedures using linear models may not be appropriate. Thus, the objectives of this study were twofold: 1) to compare four alternative non-linear models: Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial based on their goodness of fit for quantifying genetic variation, as well as heritability for tick-count and 2) to investigate potential response to selection against tick-count based on truncation selection given the estimated genetic parameters from the best fit model. Our results showed that zero-inflated Poisson was the most parsimonious model for the analysis of tick count data. The resulting estimates of variance components and high heritability (0.32) led us to conclude that genetic determinism is relevant on tick count. A reduction of the breeding values for tick-count by one sire-dam genetic standard deviation on the liability scale will reduce the number of tick counts below an average of 1. An appropriate breeding scheme could control tick-count and, as a consequence, probably reduce TBF in sheep.
Collapse
Affiliation(s)
| | - Lise Grøva
- Norwegian Institute of Bioeconomy Research (NIBIO), Gunnars veg 6, Tingvoll, Norway
| | | | - Luis Varona
- Faculty of Veterinary, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Brown WC, Barbet AF. Persistent Infections and Immunity in Ruminants to Arthropod-Borne Bacteria in the Family Anaplasmataceae. Annu Rev Anim Biosci 2015; 4:177-97. [PMID: 26734888 DOI: 10.1146/annurev-animal-022513-114206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tick-transmitted gram-negative bacteria in the family Anaplasmataceae in the order Rickettsiales cause persistent infection and morbidity and mortality in ruminants. Whereas Anaplasma marginale infection is restricted to ruminants, Anaplasma phagocytophilum is promiscuous and, in addition to causing disease in sheep and cattle, notably causes disease in humans, horses, and dogs. Although the two pathogens invade and replicate in distinct blood cells (erythrocytes and neutrophils, respectively), they have evolved similar mechanisms of antigenic variation in immunodominant major surface protein 2 (MSP2) and MSP2(P44) that result in immune evasion and persistent infection. Furthermore, these bacteria have evolved distinct strategies to cause immune dysfunction, characterized as an antigen-specific CD4 T-cell exhaustion for A. marginale and a generalized immune suppression for A. phagocytophilum, that also facilitate persistence. This indicates highly adapted strategies of Anaplasma spp. to both suppress protective immune responses and evade those that do develop. However, conserved subdominant antigens are potential targets for immunization.
Collapse
Affiliation(s)
- Wendy C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164;
| | - Anthony F Barbet
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
10
|
Granquist EG, Kristiansson M, Lindgren PE, Matussek A, Nødtvedt A, Okstad W, Stuen S. Evaluation of microbial communities and symbionts in Ixodes ricinus and ungulate hosts (Cervus elaphus and Ovis aries) from shared habitats on the west coast of Norway. Ticks Tick Borne Dis 2014; 5:780-4. [PMID: 25132534 DOI: 10.1016/j.ttbdis.2014.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 05/26/2014] [Indexed: 11/16/2022]
Abstract
Recent reports suggest a potential for transmission of a newly discovered rickettsial endosymbiont, Midichloria mitochondrii, to animals and humans from feeding ticks (Ixodes ricinus). Using molecular methods; I. ricinus, sheep and red deer in Anaplasma phagocytophilum-endemic areas of Norway, were examined to see if they were infected by M. mitochondrii or related organisms like Wolbachia pipientis and Rickettsia spp. A total of 532 ticks collected from pastures, 76 blood samples from grazing lambs and 12 organ samples from hunted deer, were analyzed during the study. All larval pools, 60.4% pooled nymphs and 35.1% of adult ticks were positive for M. mitochondrii. There was a significant difference between geographical areas in the prevalence of M. mitochondrii infection among nymphs. A total of 2.2% pooled nymphs and 5.3% adult ticks were positive for A. phagocytophilum. Eleven percent of pooled nymphs were positive for Borrelia spp, 2.2% of pooled nymphs and 3.5% of adult ticks were positive for Rickettsia spp. and none of the ticks were positive for W. pipientis. The prevalence of A. phagocytophilum infection was 54% and 75% in grazing lambs and deer, respectively. No animals were positive for Borrelia spp., M. mitochondrii, Rickettsia spp. or W. pipientis. The reported findings suggest that M. mitochondrii is widespread in tick populations at different geographical sites, and may appear in co-infection with A. phagocytophilum, Borrelia spp. and Rickettsia spp. in ticks.
Collapse
Affiliation(s)
- Erik G Granquist
- Faculty of Veterinary Medicine and Bio-Sciences, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Malin Kristiansson
- Department of Laboratory Services, Ryhov County Hospital, Jönköping, Sweden
| | - Per-Eric Lindgren
- Department of Laboratory Services, Ryhov County Hospital, Jönköping, Sweden; Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Andreas Matussek
- Department of Laboratory Services, Ryhov County Hospital, Jönköping, Sweden
| | - Ane Nødtvedt
- Faculty of Veterinary Medicine and Bio-Sciences, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Wenche Okstad
- Faculty of Veterinary Medicine and Bio-Sciences, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Snorre Stuen
- Faculty of Veterinary Medicine and Bio-Sciences, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
11
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
12
|
Stuen S, Pettersen KS, Granquist EG, Bergström K, Bown KJ, Birtles RJ. Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis 2013; 4:197-201. [PMID: 23414797 DOI: 10.1016/j.ttbdis.2012.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/11/2012] [Accepted: 11/28/2012] [Indexed: 11/15/2022]
Abstract
Infections by the ixodid tick-transmitted bacterial pathogen Anaplasma phagocytophilum are common in domestic ruminants and cervids in the coastal areas of southern Norway. Previous experimental work has shown that A. phagocytophilum strains recovered from red deer (Cervus elaphus) are infective in lambs, but epidemiological links between infections in red deer and sheep have yet to be established. To address this shortfall, the present study explores the genotypic relatedness between A. phagocytophilum strains infecting sympatric red deer and sheep. Blood from 32 lambs grazing on tick-infested pasture, and blood and tissues from 8 red deer shot in proximity to these pastures were collected during the summer and autumn of 2007. The presence of A. phagocytophilum in these samples was determined by PCR-based methods, and genotyping of detected strains was performed using comparative sequence analysis of 16S rDNA and msp4 fragments. A. phagocytophilum DNA was detected in 12 lambs and 7 red deer, 11 and 4 individuals of which 16S rDNA and msp4 sequence data were obtained from, respectively. A total of 9 genotypes were delineated, and only different individuals of the same host species were infected with indistinguishable A. phagocytophilum genotypes. Although 3 of the red deer-infecting genotypes belonged to a cluster of exclusively deer-associated strains phylogenetically remote from those commonly encountered in sheep, one red deer-infecting genotype, although unique, clustered tightly with genotypes associated with a wide range of hosts including sheep.
Collapse
Affiliation(s)
- Snorre Stuen
- Norwegian School of Veterinary Science, Department of Production Animal Clinical Sciences, Sandnes, Norway.
| | | | | | | | | | | |
Collapse
|
13
|
Rejmanek D, Foley P, Barbet A, Foley J. Antigen variability in Anaplasma phagocytophilum during chronic infection of a reservoir host. MICROBIOLOGY-SGM 2012; 158:2632-2641. [PMID: 22859615 DOI: 10.1099/mic.0.059808-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anaplasma phagocytophilum is an obligately intracellular, tick-transmitted, bacterial pathogen of humans and other animals. In order to evade host immunity during the course of infection, A. phagocytophilum utilizes gene conversion to shuffle approximately 100 functional pseudogenes into a single expression cassette of the msp2(p44) gene, which encodes the major surface antigen, major surface protein 2 (Msp2). The role and extent of msp2(p44) recombination in a reservoir host for A. phagocytophilum have not been evaluated. In the current study, we explored patterns of recombination and expression site variability of the msp2(p44) gene in three chronically infected woodrats, a reservoir for the disease in the Western USA. All three woodrats developed persistent infection of at least 6 months duration; two of them maintained active infection for at least 8 months. In total, we detected the emergence of 60 unique msp2(p44) expression site variants with no common temporal patterns of expression site recombination among the three A. phagocytophilum populations. Both the strength of infection (i.e. pathogen load) and the genetic diversity of pseudogenes detected at the msp2(p44) expression site fluctuated periodically during the course of infection. An analysis of the genomic pseudogene exhaustion rate showed that the repertoire of pseudogenes available to the A. phagocytophilum population could in theory become depleted within a year. However, the apparent emergence of variant pseudogenes suggests that the pathogen could potentially evade host immunity indefinitely. Our findings suggest a tightly co-evolved relationship between A. phagocytophilum and woodrats in which the pathogen perpetually evades host immunity yet causes no detectable disease.
Collapse
Affiliation(s)
- Daniel Rejmanek
- University of California, Davis School of Veterinary Medicine, Department of Medicine and Epidemiology, Davis, CA 95616, USA
| | - Patrick Foley
- California State University Department of Biological Sciences, Sacramento, CA 95819, USA
| | - Anthony Barbet
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Janet Foley
- University of California, Davis School of Veterinary Medicine, Department of Medicine and Epidemiology, Davis, CA 95616, USA
| |
Collapse
|
14
|
Gorman JK, Hoar BR, Nieto NC, Foley JE. Evaluation ofAnaplasma phagocytophiluminfection in experimentally inoculated sheep and determination ofAnaplasmaspp seroprevalence in 8 free-ranging sheep flocks in California and Oregon. Am J Vet Res 2012; 73:1029-34. [DOI: 10.2460/ajvr.73.7.1029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Brown WC. Adaptive immunity to Anaplasma pathogens and immune dysregulation: implications for bacterial persistence. Comp Immunol Microbiol Infect Dis 2012; 35:241-52. [PMID: 22226382 DOI: 10.1016/j.cimid.2011.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 12/15/2022]
Abstract
Anaplasma marginale is an obligate intraerythrocytic bacterium that infects ruminants, and notably causes severe economic losses in cattle worldwide. Anaplasma phagocytophilum infects neutrophils and causes disease in many mammals, including ruminants, dogs, cats, horses, and humans. Both bacteria cause persistent infection - infected cattle never clear A. marginale and A. phagocytophilum can also cause persistent infection in ruminants and other animals for several years. This review describes correlates of the protective immune response to these two pathogens as well as subversion and dysregulation of the immune response following infection that likely contribute to long-term persistence. I also compare the immune dysfunction observed with intraerythrocytic A. marginale to that observed in other models of chronic infection resulting in high antigen loads, including malaria, a disease caused by another intraerythrocytic pathogen.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, United States.
| |
Collapse
|
16
|
Isolation, propagation and preliminary characterisation of Anaplasma phagocytophilum from roe deer (Capreolus capreolus) in the tick cell line IDE8. Ticks Tick Borne Dis 2011; 2:204-8. [DOI: 10.1016/j.ttbdis.2011.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/17/2011] [Accepted: 09/06/2011] [Indexed: 10/16/2022]
|
17
|
Silaghi C, Liebisch G, Pfister K. Genetic variants of Anaplasma phagocytophilum from 14 equine granulocytic anaplasmosis cases. Parasit Vectors 2011; 4:161. [PMID: 21843364 PMCID: PMC3170280 DOI: 10.1186/1756-3305-4-161] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/16/2011] [Indexed: 11/20/2022] Open
Abstract
Background Equine Granulocytic Anaplasmosis (EGA) is caused by Anaplasma phagocytophilum, a tick-transmitted, obligate intracellular bacterium. In Europe, it is transmitted by Ixodes ricinus. A large number of genetic variants of A. phagocytophilum circulate in nature and have been found in ticks and different animals. Attempts have been made to assign certain genetic variants to certain host species or pathologies, but have not been successful so far. The purpose of this study was to investigate the causing agent A. phagocytophilum of 14 cases of EGA in naturally infected horses with molecular methods on the basis of 4 partial genes (16S rRNA, groEL, msp2, and msp4). Results All DNA extracts of EDTA-blood samples of the horses gave bands of the correct nucleotide size in all four genotyping PCRs. Sequence analysis revealed 4 different variants in the partial 16S rRNA, groEL gene and msp2 genes, and 3 in the msp4 gene. One 16S rRNA gene variant involved in 11 of the 14 cases was identical to the "prototype" variant causing disease in humans in the amplified part [GenBank: U02521]. Phylogenetic analysis revealed as expected for the groEL gene that sequences from horses clustered separately from roe deer. Sequences of the partial msp2 gene from this study formed a separate cluster from ruminant variants in Europe and from all US variants. Conclusions The results show that more than one variant of A. phagocytophilum seems to be involved in EGA in Germany. The comparative genetic analysis of the variants involved points towards different natural cycles in the epidemiology of A. phagocytophilum, possibly involving different reservoir hosts or host adaptation, rather than a strict species separation.
Collapse
Affiliation(s)
- Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, Leopoldstr, 5, 80802 Munich, Germany.
| | | | | |
Collapse
|
18
|
Granquist EG, Bårdsen K, Bergström K, Stuen S. Variant -and individual dependent nature of persistent Anaplasma phagocytophilum infection. Acta Vet Scand 2010; 52:25. [PMID: 20398321 PMCID: PMC2859769 DOI: 10.1186/1751-0147-52-25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 04/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is the causative agent of tick-borne fever in ruminants and human granulocytotropic anaplasmosis (HGA). The bacterium is able to survive for several months in immune-competent sheep by modifying important cellular and humoral defence mechanisms. Little is known about how different strains of A. phagocytophilum propagate in their natural hosts during persistent infection. METHODS Two groups of five lambs were infected with each of two 16S rRNA gene variants of A. phagocytophilum, i.e. 16S variant 1 which is identical to GenBank no M73220 and 16S variant 2 which is identical to GenBank no AF336220, respectively. The lambs were infected intravenously and followed by blood sampling for six months. A. phagocytophilum infection in the peripheral blood was detected by absolute quantitative real-time PCR. RESULTS Both 16S rRNA gene variants of A. phagocytophilum established persistent infection for at least six months and showed cyclic bacteraemias, but variant 1 introduced more frequent periods of bacteraemia and higher number of organisms than 16S rRNA gene variant 2 in the peripheral blood. CONCLUSION Organisms were available from blood more or less constantly during the persistent infection and there were individual differences in cyclic activity of A. phagocytophilum in the infected animals. Two 16S rRNA gene variants of A. phagocytophilum show differences in cyclic activity during persistent infection in lambs.
Collapse
|
19
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
20
|
Foley JE, Nieto NC, Barbet A, Foley P. Antigen diversity in the parasitic bacterium Anaplasma phagocytophilum arises from selectively-represented, spatially clustered functional pseudogenes. PLoS One 2009; 4:e8265. [PMID: 20016821 PMCID: PMC2789410 DOI: 10.1371/journal.pone.0008265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022] Open
Abstract
Anaplasma phagocytophilum is a tick-transmitted bacterial pathogen of humans and other animals, and is an obligate intracellular parasite. Throughout the course of infection, hosts acquire temporary resistance to granulocytic anaplasmosis as they develop immunity specific for the major antigen, major surface protein 2 (Msp2). However, the bacterium then utilizes a novel recombination mechanism shuffling functional pseudogenes sequentially into an expression cassette with conserved 5' and 3' ends, bypassing host immunity. Approximately 100 pseudogenes are present in the only fully sequenced human-origin HZ genome, representing the possibility for almost unlimited antigenic diversity. In the present study, we identified a select group of 20% of the A. phagocytophilum HZ msp2 pseudogenes that have matched preferentially to human, canine, and equine expression cassettes. Pseudogenes cluster predominantly in one spatial run limited to a single genomic island in less than 50% of the genome but phylogenetically related pseudogenes are neither necessarily located in close proximity on the genome nor share similar percent identity with expression cassettes. Pseudogenes near the expression cassette (and the origin) are more likely to be expressed than those farther away. Taken together, these findings suggest that there may be natural selection pressure to retain pseudogenes in one cluster near the putative origin of replication, even though global recombination shuffles pseudogenes around the genome, separating pseudogenes that share genetic origins as well as those with similar identities.
Collapse
Affiliation(s)
- Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
21
|
Carrade D, Foley J, Borjesson D, Sykes J. Canine Granulocytic Anaplasmosis: A Review. J Vet Intern Med 2009; 23:1129-41. [DOI: 10.1111/j.1939-1676.2009.0384.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Plier ML, Breitschwerdt EB, Hegarty BC, Kidd LB. Lack of evidence for perinatal transmission of canine granulocytic anaplasmosis from a bitch to her offspring. J Am Anim Hosp Assoc 2009; 45:232-8. [PMID: 19723846 DOI: 10.5326/0450232] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Granulocytic anaplasmosis is an emerging infectious disease affecting dogs and humans in the United States and other regions of the world. Relatively few cases have been described in pregnant women, and perinatal transmission appears to occur infrequently in humans. Infection in pregnant dogs has not been reported. Diagnosis of infection during pregnancy poses therapeutic challenges, because doxycycline, the treatment of choice, is teratogenic. Also, infection during pregnancy may result in more severe disease. When infection is diagnosed after parturition, knowledge of the risk of perinatal transmission to offspring is important, because prophylactic therapy in neonates is also not without risk. In this report, we describe relatively severe clinical manifestations of Anaplasma phagocytophilum infection in a postpartum bitch and a lack of perinatal transmission to her puppies.
Collapse
Affiliation(s)
- Michelle L Plier
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
23
|
Wuritu, Ozawa Y, Gaowa, Kawamori F, Masuda T, Masuzawa T, Fujita H, Ohashi N. Structural analysis of a p44/msp2 expression site of Anaplasma phagocytophilum in naturally infected ticks in Japan. J Med Microbiol 2009; 58:1638-1644. [PMID: 19713360 DOI: 10.1099/jmm.0.011775-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anaplasma phagocytophilum, an agent of human granulocytic anaplasmosis, infects neutrophils and causes an emerging tickborne febrile disease. The genome of this bacterium contains a large number of p44/msp2-related genes encoding 44 kDa major outer-membrane proteins, and it is known that a specific p44/msp2 gene is predominantly transcribed from a single expression locus. This study successfully characterized the genomic expression site for p44/msp2 (3.8 kb) in uncultured A. phagocytophilum from Ixodes persulcatus ticks inhabiting a northern part of Japan. Comparative analysis of the sequences revealed that the structures of the expression sites in Japanese A. phagocytophilum were similar to those of US strains from human patients and European strains from a dog and sheep, but omp-1N (upstream from p44/msp2) and a truncated recA (downstream from p44/msp2) in the p44/msp2 expression site seemed to share similarities with those of US and European strains. The central hypervariable region sequences of Japanese p44/msp2 were found to be quite diverse (24.4-100 % amino acid similarities) and distinct from their closest relatives from US human patients or animal host origins (56.3-97.6 % amino acid similarities) with some exceptions. Thus, this study provides significant information about the molecular characteristics of A. phagocytophilum in East Asia, as well as the global diversity of p44/msp2.
Collapse
Affiliation(s)
- Wuritu
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Yutaka Ozawa
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Gaowa
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Fumihiko Kawamori
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan.,Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Takashi Masuda
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Toshiyuki Masuzawa
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science, Choshi 288-0025, Japan
| | - Hiromi Fujita
- Ohara Research Laboratory, Ohara General Hospital, Fukushima 960-0195, Japan
| | - Norio Ohashi
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| |
Collapse
|
24
|
Granquist EG, Stuen S, Crosby L, Lundgren AM, Alleman AR, Barbet AF. Variant-specific and diminishing immune responses towards the highly variable MSP2(P44) outer membrane protein of Anaplasma phagocytophilum during persistent infection in lambs. Vet Immunol Immunopathol 2009; 133:117-24. [PMID: 19695712 DOI: 10.1016/j.vetimm.2009.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022]
Abstract
Anaplasma phagocytophilum is the causative agent of tick-borne fever in small ruminants and has been identified as the zoonotic agent of human granulocytic anaplasmosis. The Norwegian strains of the rickettsia are naturally persistent in lambs and represent a suitable experimental system for analyzing the mechanisms of persistence. Variation of the outer membrane protein MSP2(P44) by recombination of variable pseudogene segments into an expression site is believed to play a key role in persistence of the organism. The goal of the present study was to analyze the dynamics of the immune response towards A. phagocytophilum and MSP2(P44) during persistent infection of lambs. Responses to the hypervariable region of MSP2(P44) were detected shortly after appearance of the respective variants in cyclic rickettsemic peaks, consistent with a process of antigenic variation. In addition, there was a diminishing antibody response to MSP2(P44) and to other A. phagocytophilum antigens overall with time of infection, that was not associated with clearance of the infection.
Collapse
Affiliation(s)
- Erik G Granquist
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, Norwegian School of Veterinary Science, Kyrkjevegen 332/334, Sandnes N-4325, Norway.
| | | | | | | | | | | |
Collapse
|
25
|
Galindo RC, Ayoubi P, García-Pérez AL, Naranjo V, Kocan KM, Gortazar C, de la Fuente J. Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. Vet Immunol Immunopathol 2008; 126:27-34. [PMID: 18640728 DOI: 10.1016/j.vetimm.2008.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/20/2008] [Accepted: 06/11/2008] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum infects a wide variety of host species and causes the diseases tick-borne fever (TBF) in ruminants and granulocytic anaplasmosis in humans, horses and dogs. TBF in sheep has become one of the more prevalent tick-borne diseases in some regions of Europe. A. phagocytophilum infection modifies host gene expression and immune response. The objective of this research was to characterize differential gene expression in sheep experimentally and naturally infected with A. phagocytophilum by microarray hybridization and real-time RT-PCR. The results of these studies demonstrated in sheep the activation of inflammatory and innate immune pathways and the impairment of adaptive immunity during A. phagocytophilum infection. The characterization of the genes and their expression profiles in sheep in response to A. phagocytophilum infection advances our understanding of the molecular mechanisms of pathogen infection and the pathogenesis of TBF. Collectively, these results expand current information on the mammalian host response to A. phagocytophilum infection.
Collapse
Affiliation(s)
- Ruth C Galindo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Dynamic transmission of numerous Anaplasma phagocytophilum genotypes among lambs in an infected sheep flock in an area of anaplasmosis endemicity. J Clin Microbiol 2008; 46:1686-91. [PMID: 18367562 PMCID: PMC2395098 DOI: 10.1128/jcm.02068-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmission dynamics of Anaplasma phagocytophilum strains circulating within juvenile members of a sheep flock grazing on an Ixodes ricinus-infested pasture in southern Norway were monitored. PCR-based detection of the bacterial p44 fragments in the blood of 16 lambs sampled weekly for 16 weeks following their release into pasture revealed rickettsemia in all animals, with an increasing proportion of infected animals as the survey progressed. Comparison of partial msp4 sequences obtained from infected blood samples revealed 24 distinct genotypes, some of which were repeatedly encountered, occurring in up to six sheep over a 14-week period, whereas others were observed only once. Individual sheep were infected by up to five distinct genotypes, with a specific genotype being encountered for between one and three consecutive weeks, and in some sheep, genotypes detected early in the study were also present in later samples. In general, detection of A. phagocytophilum by PCR correlated well with the observation of infected neutrophils in blood smears. Together these results reveal a previously unrecognized diversity of A. phagocytophilum strains simultaneously circulating within an infected population in an area of endemicity and are consistent with a remarkably dynamic transmission of strains among infected animals.
Collapse
|
27
|
Anaplasma phagocytophilum MSP2(P44)-18 predominates and is modified into multiple isoforms in human myeloid cells. Infect Immun 2008; 76:2090-8. [PMID: 18285495 PMCID: PMC2346672 DOI: 10.1128/iai.01594-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis. MSP2(P44), the bacterium's major surface protein, is encoded by a paralogous gene family and has been implicated in a variety of pathobiological processes, including antigenic variation, host adaptation, adhesion, porin activity, and structural integrity. The consensus among several studies performed at the DNA and RNA levels is that a heterogeneous mix of a limited number of msp2(p44) transcripts is expressed by A. phagocytophilum during in vitro cultivation. Such analyses have yet to be extended to the protein level. In this study, we used proteomic and molecular approaches to determine that MSP2(P44)-18 is the predominant if not the only paralog expressed and is modified into multiple 42- to 44-kDa isoforms by A. phagocytophilum strain HGE1 during infection of HL-60 cells. The msp2(p44) expression profile was homogeneous for msp2(p44)-18. Thus, MSP2(P44)-18 may have a fitness advantage in HL-60 cell culture in the absence of selective immune pressure. Several novel 22- to 27-kDa MSP2 isoforms lacking most of the N-terminal conserved region were also identified. A. phagocytophilum MSP2(P44) orthologs expressed by other pathogens in the family Anaplasmataceae are glycosylated. Gas chromatography revealed that recombinant MSP2(P44)-18 is modified by glucose, galactose, xylose, mannose, and trace amounts of other glycosyl residues. These data are the first to confirm differential modification of any A. phagocytophilum MSP2(P44) paralog and the first to provide evidence for expression of truncated versions of such proteins.
Collapse
|