1
|
Jin T, Zhan X, Pang L, Peng B, Zhang X, Zhu W, Yang B, Xia X. CpxAR two-component system contributes to virulence properties of Cronobacter sakazakii. Food Microbiol 2024; 117:104393. [PMID: 37919015 DOI: 10.1016/j.fm.2023.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen which threaten susceptible hosts including infants. CpxA/CpxR, a regulatory two-component system (TSC), contributes to stress response and virulence in various Gram-negative pathogens, but its role in C. sakazakii has not been thoroughly studied. In this study, we constructed CpxA, CpxR, CpxAR deletion and complementation strains. The mutants showed weakened bacterial adhesion to and invasion of HBMEC and Caco-2, reduced intracellular survival and replication of C. sakazakii within RAW264.7 macrophages, and decreased translocation of HBMEC and Caco-2 monolayers. Mutants demonstrated lower levels of tight junction proteins disruption and reduced apoptosis and cytotoxicity in Caco-2 monolayer compared to wild type strain. CpxAR TCS deletion mutants demonstrate attenuated virulence in newborn mice, which was evidenced by fewer bacterial cells loads in tissues and organs, lower levels of intestinal epithelial barrier dysfuction and milder damages in intestinal tissues. All these phenotypes were recovered in complemented strains. In addition, qRT-PCR results showed that CpxAR TCS of C. sakazakii played roles in regulating the expression of several genes associated with bacterial virulence and cellular invasion. These findings indicate that CpxAR TCS is an important regulatory mechanism for virulence of C. sakazakii, which enrich our understanding of genetic determinants of pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liuxin Pang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bo Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xinpeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
2
|
Zhu D, Fan Y, Wang X, Li P, Huang Y, Jiao J, Zhao C, Li Y, Wang S, Du X. Characterization of Molecular Chaperone GroEL as a Potential Virulence Factor in Cronobacter sakazakii. Foods 2023; 12:3404. [PMID: 37761113 PMCID: PMC10528849 DOI: 10.3390/foods12183404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular chaperone GroEL of C. sakazakii, a highly conserved protein encoded by the gene grol, has the basic function of responding to heat shock, thus enhancing the bacterium's adaptation to dry and high-temperature environments, which poses a threat to food safety and human health. Our previous study demonstrated that GroEL was found in the bacterial membrane fraction and caused a strong immune response in C. sakazakii. In this study, we tried to elucidate the subcellular location and virulent effects of GroEL. In live C. sakazakii cells, GroEL existed in both the soluble and insoluble fractions. To study the secretory mechanism of GroEL protein, a non-reduced Western immunoblot was used to analyze the form of the protein, and the result showed that the exported GroEL protein was mainly in monomeric form. The exported GroEL could also be located on bacterial surface. To further research the virulent effect of C. sakazakii GroEL, an indirect immunofluorescence assay was used to detect the adhesion of recombinant GroEL protein to HCT-8 cells. The results indicated that the recombinant GroEL protein could adhere to HCT-8 cells in a short period of time. The recombinant GroEL protein could activate the NF-κB signaling pathway to release more pro-inflammatory cytokines (TNF-α, IL-6 and IL-8), downregulating the expression of tight-junction proteins (claudin-1, occluding, ZO-1 and ZO-2), which collectively resulted in dose-dependent virulent effects on host cells. Inhibition of the grol gene expression resulted in a significant decrease in bacterial adhesion to and invasion of HCT-8 cells. Moreover, the deficient GroEL also caused slow growth, decreased biofilm formation, defective motility and abnormal filamentation of the bacteria. In brief, C. sakazakii GroEL was an important virulence factor. This protein was not only crucial for the physiological activity of C. sakazakii but could also be secreted to enhance the bacterium's adhesion and invasion capabilities.
Collapse
Affiliation(s)
- Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Xiaoyi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yaping Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| |
Collapse
|
3
|
Fan Y, Li P, Zhu D, Zhao C, Jiao J, Ji X, Du X. Effects of ESA_00986 Gene on Adhesion/Invasion and Virulence of Cronobacter sakazakii and Its Molecular Mechanism. Foods 2023; 12:2572. [PMID: 37444309 DOI: 10.3390/foods12132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic Gram-negative pathogen that has been identified as a causative agent of severe foodborne infections with a higher risk of mortality in neonates, premature infants, the elderly, and immunocompromised populations. The specific pathogenesis mechanisms of C. sakazakii, such as adhesion and colonization, remain unclear. Previously, we conducted comparative proteomic studies on the two strains with the stronger and weaker infection ability, respectively, and found an interesting protein, ESA_00986, which was more highly expressed in the strain with the stronger ability. This unknown protein, predicted to be a type of invasitin related to invasion, may be a critical factor contributing to its virulence. This study aimed to elucidate the precise roles of the ESA_00986 gene in C. sakazakii by generating gene knockout mutants and complementary strains. The mutant and complementary strains were assessed for their biofilm formation, mobility, cell adhesion and invasion, and virulence in a rat model. Compared with the wild-type strain, the mutant strain exhibited a decrease in motility, whereas the complementary strain showed comparable motility to the wild-type. The biofilm-forming ability of the mutant was weakened, and the mutant also exhibited attenuated adhesion to/invasion of intestinal epithelial cells (HCT-8, HICE-6) and virulence in a rat model. This indicated that ESA_00986 plays a positive role in adhesion/invasion and virulence. This study proves that the ESA_00986 gene encodes a novel virulence factor and advances our understanding of the pathogenic mechanism of C. sakazakii.
Collapse
Affiliation(s)
- Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Senevirathne A, Hewawaduge C, Lee JH. Assessing an O-antigen deficient, live attenuated Salmonella Gallinarium strain that is DIVA compatible, environmentally safe, and protects chickens against fowl typhoid. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104433. [PMID: 35568244 DOI: 10.1016/j.dci.2022.104433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The objective of the present study was to create a highly attenuated, safe Salmonella Gallinarium (SG) vaccine strain for chicken vaccination against fowl typhoid (FT) diseases. The SG vaccine strain (SGVS) consists of three virulence-related gene deletions, namely, lon, cpxR, and rfaL. The parent strain (SGPS) with Δlon ΔcpxR genotype was utilized as the host strain for in-frame rfaL gene deletion by lambda red recombination. The SGVS was highly attenuated with improved environmental safety by zero fecal contamination beyond seven days for both oral and intramuscular immunization routes. Upon inoculation into 1-month-old young chicken, no vaccine-induced adverse behaviors were observed and did not cause a chronic state of infection as the SG wild-type strain did. Immunization of chicken elicited both humoral and cell-mediated immune responses demarcated by, IgY antibody assessment, T-cell responses in peripheral blood mononuclear cells, and the induction of immunomodulatory cytokines, IFN-γ, IL-2, IL-12, and IL-4 to resemble both Th1 and Th2 type of immune responses. The immunological assessment revealed a high level of efficacy of the SGVS when inoculated via the IM route than the oral route. The strain was less cytotoxic with reduced cytotoxicity on chicken macrophages and was DIVA capable with minimum reactivity of immunized serum with purified SG lipopolysaccharides. The challenge study could generate 70% protection in chicken for SGVS, whereas no birds were protected in the PBS challenged group. The protection levels were evident in histopathological assessment of spleen and liver specimens and also the external appearance of the spleen with reduced lesions on immunized groups. Further experiments may be warranted to dose and route optimization for further increase in the protection level derived by present SGVS.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, South Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, South Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, South Korea.
| |
Collapse
|
5
|
Posautz A, Szostak MP, Cabal Rosel A, Allerberger F, Stöger A, Rab G, Feßler AT, Spergser J, Kübber-Heiss A, Schwarz S, Forsythe SJ, Ruppitsch W, Loncaric I. Outbreak of Cronobacter turicensis in European brown hares (Lepus europaeus). Lett Appl Microbiol 2022; 74:1008-1015. [PMID: 35263446 DOI: 10.1111/lam.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
This is the first report of acute deaths in five European brown hares (Lepus europaeus) attributed to mucoid and necrotizing typhlocolitis caused by genetically different Cronobacter (C.) turicensis strains in northeastern Austria. As this opportunistic pathogen is mainly known for causing disease in immunocompromised humans and neonates, this previously unrecognized potential for a spillover from a wildlife reservoir to humans warrants further attention.
Collapse
Affiliation(s)
| | | | | | | | - Anna Stöger
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Gerhard Rab
- Institute of Hydraulic Engineering and Water Resources Management, University of Technology Vienna, Austria.,Institute for Land and Water Management Research, Federal Agency for Water Management, Petzenkirchen, Austria
| | - Andrea T Feßler
- Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | | | | | - Stefan Schwarz
- Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | | | | | | |
Collapse
|
6
|
Wang L, Zhu W, Lu G, Wu P, Wei Y, Su Y, Jia T, Li L, Guo X, Huang M, Yang Q, Huang D, Liu B. In silico species identification and serotyping for Cronobacter isolates by use of whole-genome sequencing data. Int J Food Microbiol 2021; 358:109405. [PMID: 34563883 DOI: 10.1016/j.ijfoodmicro.2021.109405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Cronobacter spp. are foodborne pathogens that can cause severe infections in neonates through contaminated powdered infant formula. Accurate and rapid pathogen identification and serotyping are crucial to limit the detrimental effects of bacterial infections, and to prevent outbreaks and sporadic infections. Conventional serotyping is tedious, laborious, and time-consuming; however, with whole-genome sequencing (WGS) becoming faster and cheaper, WGS has vast potential in routine typing and surveillance. Hence, in this study, we developed a publicly available tool, CroTrait (CronobacterTraits), for in silico species identification and O serotyping of Cronobacter isolates based on WGS data. CroTrait showed excellent performance in species identification and O serotyping when 810 genomes with known species identities and 276 genomes with known O serotype were tested. Moreover, CroTrait allows rapid prediction of new potential O serotypes. We identified 11 novel potential O serotypes of Cronobacter using CroTrait. Therefore, CroTrait is a convenient and promising tool for species identification and O serotyping of Cronobacter isolates.
Collapse
Affiliation(s)
- Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Wenxuan Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Gege Lu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Yingying Su
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Linxing Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China.
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China; Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People's Republic of China.
| |
Collapse
|
7
|
Senevirathne A, Park JY, Hewawaduge C, Perumalraja K, Lee JH. Eukaryotic expression system complemented with expressivity of Semliki Forest Virus's RdRp and invasiveness of engineered Salmonella demonstrate promising potential for bacteria mediated gene therapy. Biomaterials 2021; 279:121226. [PMID: 34736150 DOI: 10.1016/j.biomaterials.2021.121226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
This study describes an efficient eukaryotic expression system (pJHL204) built into the Salmonella delivery system to enhance the essential efficacy and effectiveness of conventional DNA therapy. The expression system utilizes RNA-dependent RNA polymerase activity (RdRp) of Semiliki Forest Virus attributing to dramatic antigen expression by cytoplasmic mRNA amplification. Functional characterization of the pJHL204 by in vitro and in vivo transfection studies revealed the improved expression of mRNA at least 150 folds than the RdRp mutant plasmid under in vitro conditions. Using green fluorescence protein (GFP) and mCherry as bait proteins this system was extensively characterized for plasmid delivery capacity, antigen expression, and safety using in vivo and in vitro models by employing flow cytometry, fluorescence microscopy, and immunohistochemical staining. Employment of Salmonella as a carrier significantly extends plasmid in vivo survivability and prolongs the effective duration until the elimination of the Salmonella carrier strain in the host. The strategy can be easily adapted for P2A connected multiple antigen delivery in a single vector system due to the significantly high cargo capacity of Salmonella. A mouse challenge study was carried out utilizing P2A connected H1N1 hemagglutinin (HA) and neuraminidase (NA) via the Salmonella carrier strain JOL2500 significantly reduced viral activity and protected mice against the H1N1 challenge and demonstrates potential to redefine in vivo DNA therapy as a reliable and safe system to treat human diseases using useful microbes like Salmonella.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Kirthika Perumalraja
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
8
|
Parra-Flores J, Holý O, Riffo F, Lepuschitz S, Maury-Sintjago E, Rodríguez-Fernández A, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W, Forsythe S. Profiling the Virulence and Antibiotic Resistance Genes of Cronobacter sakazakii Strains Isolated From Powdered and Dairy Formulas by Whole-Genome Sequencing. Front Microbiol 2021; 12:694922. [PMID: 34276629 PMCID: PMC8278472 DOI: 10.3389/fmicb.2021.694922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an enteropathogen that causes neonatal meningitis, septicemia, and necrotizing enterocolitis in preterm infants and newborns with a mortality rate of 15 to 80%. Powdered and dairy formulas (P-DF) have been implicated as major transmission vehicles and subsequently the presence of this pathogen in P-DF led to product recalls in Chile in 2017. The objective of this study was to use whole genome sequencing (WGS) and laboratory studies to characterize Cronobacter strains from the contaminated products. Seven strains were identified as C. sakazakii, and the remaining strain was Franconibacter helveticus. All C. sakazakii strains adhered to a neuroblastoma cell line, and 31 virulence genes were predicted by WGS. The antibiograms varied between strains. and included mcr-9.1 and bla CSA genes, conferring resistance to colistin and cephalothin, respectively. The C. sakazakii strains encoded I-E and I-F CRISPR-Cas systems, and carried IncFII(pECLA), Col440I, and Col(pHHAD28) plasmids. In summary, WGS enabled the identification of C. sakazakii strains and revealed multiple antibiotic resistance and virulence genes. These findings support the decision to recall the contaminated powdered and dairy formulas from the Chilean market in 2017.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Department of Public Health, Palacký University Olomouc, Olomouc, Czechia
| | | | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | |
Collapse
|
9
|
Senevirathne A, Hewawaduge C, Lee JH. Immunization of chicken with flagellin adjuvanted Salmonella enteritidis bacterial ghosts confers complete protection against chicken salmonellosis. Poult Sci 2021; 100:101205. [PMID: 34116354 PMCID: PMC8193624 DOI: 10.1016/j.psj.2021.101205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022] Open
Abstract
The present study describes the generation of Salmonella enteritidis (SE) ghosts with a surface decorated Salmonella Typhimurium (ST) flagellin (FliC) antigen for immune enhancement and strain-specific protection. The ghosts were generated by biological means using pJHL184::fliC temperature inducible plasmid where the lysis occurs by phage PhiX174 lysis gene E expression. Being an inactivated strain, no environmental contamination was observed by fecal shedding upon inoculation into the chicken. To test the protective immune responses, ghost vaccination was conducted via the intramuscular route using chicken as the model organism. The development of antigen-specific humoral, cell-mediated, and protective immune responses was assessed. Compared to vector alone and phosphate-buffered saline (PBS) control groups, pJHL184::fliC ghost could generate significantly high antigen-specific IgY and cell-mediated immune (CMI) responses measured by a peripheral blood mononuclear cell proliferation, flow cytometer, and cytokine responses elicited by stimulated splenic T-cells (P < 0.05). The adjuvant effect induced by FliC was demonstrated by elicitation of Toll-like receptor 5 (TLR5). To test the protection efficacy, chickens were challenged with both SE and ST wild type (WT) strains, and the protection efficacy was assessed by determining the presence of challenging strains in the spleen and liver, and by assessing the histopathological alterations. Complete clearance of the challenged strain and least inflammatory signs were evident in the SE ghosts vaccinated group compared to the vector and PBS control. The elimination of both SE and ST in chicken organs ensures the intramuscular immunization of the present SE ghost vaccine can reduce SE and ST contamination levels in chicken that can be beneficial to prevent enteric infections in humans.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
10
|
Kirthika P, Senevirathne A, Jawalagatti V, Park S, Lee JH. Deletion of the lon gene augments expression of Salmonella Pathogenicity Island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes 2020; 11:1695-1712. [PMID: 32567462 PMCID: PMC7524146 DOI: 10.1080/19490976.2020.1777923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/03/2023] Open
Abstract
In the present study, we characterized the involvement of Lon protease in bacterial virulence and intracellular survival in Salmonella under abiotic stress conditions resembling the conditions of a natural infection. Wild type (JOL401) and the lon mutant (JOL909) Salmonella Typhimurium were exposed to low temperature, pH, osmotic, and oxidative stress conditions and changes in gene expression profiles related to virulence and metal ion uptake were investigated. Expression of candidate genes invF and hilC of Salmonella Pathogenicity Island (SPI)-1 and sifA and sseJ of SPI-2 revealed that Lon protease controls SPI-1 genes and not SPI-2 genes under all stress conditions tested. The lon mutant exhibited increased accumulation of hydroxyl (OH·) ions that lead to cell damage due to oxidative stress. This oxidative damage can also be linked to an unregulated influx of iron due to the upregulation of ion channel genes such as fepA in the lon mutant. The deletion of lon from the Salmonella genome causes oxidative damage and increased expression of virulence genes. It also prompts the secretion of host pro-inflammatory cytokines leading to early clearance of the bacteria from host cells. We conclude that poor bacterial recovery from mice infected with the lon mutant is a result of disrupted bacterial intracellular equilibrium and rapid activation of cytokine expression leading to bacterial lysis.
Collapse
Affiliation(s)
- Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | | | - SungWoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
11
|
Cui J, Hu J, Du X, Yan C, Xue G, Li S, Cui Z, Huang H, Yuan J. Genomic Analysis of Putative Virulence Factors Affecting Cytotoxicity of Cronobacter. Front Microbiol 2020; 10:3104. [PMID: 32117082 PMCID: PMC7019382 DOI: 10.3389/fmicb.2019.03104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
Cronobacter spp. can cause systemic infections, such as meningitis, sepsis, and necrotizing enterocolitis, in immunocompromised patients, especially neonates. Although some virulence factors have been reported previously, the pathogenesis of Cronobacter remains unclear. In this study, we compared genome sequences from different Cronobacter species, sequence types, and sources, with the virulence genes in the virulence factor database. The results showed that Cronobacter has species specificity for these virulence genes. Additionally, two gene clusters, including sfp encoding fimbriae and hly encoding hemolysin, were discovered. Through cell adhesion, cytotoxicity, and hemolysis assays, we found that the isolates possessing the two gene clusters had higher cytotoxicity and stronger hemolysis capacity than those of other isolates in this study. Moreover, analysis of type VI secretion system (T6SS) cluster and putative fimbria gene clusters of Cronobacter revealed that T6SS have species specificity and isolates with high cytotoxicity possessed more complete T6SS cluster construction than that of the rest. In conclusion, the two novel gene clusters and T6SS cluster were involved in the mechanism underlying the cytotoxicity of Cronobacter.
Collapse
Affiliation(s)
- Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinrui Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoli Du
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zhigang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hua Huang
- Beijing Products Quality Supervision and Inspection Institute, Beijing, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
12
|
Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples. Microb Pathog 2018; 127:250-256. [PMID: 30550840 DOI: 10.1016/j.micpath.2018.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cronobacter spp. are Gram-negative, facultative-anaerobic, non-spore forming, enteric coliform bacteria, which belongs to the Enterobacteriaceae family. Cronobacter spp. are opportunistic pathogens that have brought rare but life-threatening infections such as meningitis, necrotizing enterocolitis and bloodstream infections in neonates and infants. Information on the diversity, pathogenicity and virulence of Cronobacter species obtained from various sources is still relatively scarce and fragmentary. The aim of this study was to examine and analyse different pathogenicity and virulence factors among C. sakazakii and C. malonaticus strains isolated from clinical samples. METHODS The thirty-six clinical Cronobacter strains have been used in this study. This bacterial collection consists of 25 strains of C. sakazakii and 11 strains of C. malonaticus, isolated from different clinical materials. Seven genes (ompA, inv, sip, aut, hly, fliC, cpa) were amplified by PCR. Moreover, the motility and the ability of these strains to adhere and invade human colorectal adenocarcinoma (HT-29) and mouse neuroblastoma (N1E-115) cell lines were investigated. RESULTS Our results showed that all tested strains were able to adhere to both used cell lines, HT-29 and N1E-115 cells. The invasion assay showed that 66.7% (24/36) of isolates were able to invade N1-E115 cells while 83% (30/36) of isolates were able to invade HT-29 cells. On the average, 68% of the C. sakazakii strains exhibited seven virulence factors and only 18% in C. malonaticus. All strains amplified ompA and fliC genes. The other genes were detected as follow: sip 97% (35/36), hlyA 92% (33/36), aut 94% (34/36), cpa 67% (24/36), and inv 69% (25/36). CONCLUSIONS C. sakazakii and C malonaticus strains demonstrate the diversity of the virulence factors present among these pathogens. It is necessary to permanently monitor the hospital environment to appropriately treat and resolve cases associated with disease. Furthermore, in-depth knowledge is needed about the source and transmission vehicles of pathogens in hospitals to adopt pertinent prevention measures.
Collapse
|
13
|
Kim S, Yoon H, Ryu S. New virulence factor CSK29544_02616 as LpxA binding partner in Cronobacter sakazakii. Sci Rep 2018; 8:835. [PMID: 29339761 PMCID: PMC5770445 DOI: 10.1038/s41598-018-19306-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/29/2017] [Indexed: 01/13/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that can cause meningitis and necrotizing enterocolitis in premature infants, but its virulence determinants remain largely unknown. In this study, a transposon-mediated random-mutant library of C. sakazakii was used to identify new virulence factors. Compared to wild-type bacteria, a mutant lacking CSK29544_02616 (referred to as labp) was defective in invasion into intestinal epithelial cells (by at least 1000-fold) and showed less phagocytosis by macrophages (by at least 50-fold). The lack of labp in C. sakazakii changed the profile of outer membrane proteins, decreased the production of lipopolysaccharides, and increased the production of membrane phospholipids. Bacterial physiological characteristics including surface hydrophobicity and motility were also altered in the absence of labp, presumably because of changes in the bacterial-envelope structure. To systematically determine the role of labp, ligand fishing was conducted using Labp as a bait, which revealed LpxA as a binding partner of Labp. LpxA is UDP-N-acetylglucosamine (GlcNAc) acyltransferase, the first enzyme in the pathway of lipid A biosynthesis. Labp increased the enzymatic activity of LpxA without influencing lpxA expression. Considering multifaceted roles of lipopolysaccharides in virulence regulation, Labp is a novel virulence factor that promotes the production of lipid A by LpxA in Cronobacter.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea.,Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, South Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
14
|
Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microb Pathog 2017; 110:359-364. [DOI: 10.1016/j.micpath.2017.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
|
15
|
Bao X, Yang L, Chen L, Li B, Li L, Li Y, Xu Z. Analysis on pathogenic and virulent characteristics of the Cronobacter sakazakii strain BAA-894 by whole genome sequencing and its demonstration in basic biology science. Microb Pathog 2017; 109:280-286. [DOI: 10.1016/j.micpath.2017.05.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
|
16
|
McEvoy K, Hayes J, Kealey C, Brady D. Influence of sweet whey protein concentrate and its hydrolysates on host-pathogen interactions in the emerging foodborne pathogen Cronobacter sakazakii. J Appl Microbiol 2016; 121:873-82. [PMID: 27337492 DOI: 10.1111/jam.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022]
Abstract
AIMS Antimicrobial resistance poses a significant global healthcare predicament. An attractive approach to the dilemma of drug-resistant bacteria is the development and use of agents that interfere with the ability of pathogens to adhere to human tissue. The influence of sweet whey protein concentrate (SWPC), and selected hydrolysates of this material, on host-pathogen interactions of Cronobacter sakazakii (ATCC 29544) was investigated. METHODS AND RESULTS CaCo-2 cell line was selected as a suitable model for the human intestinal epithelium. Cronobacter sakazakiiATCC 29544 was identified as the strain with the highest adhesion efficiency. SWPC reduced its association by 80% (P < 0·01), invasion 35% (P < 0·01), and translocation >95% (P < 0·001). SWPC enzymatically modified with lipase, trypsin and pepsin had variable effects on these behaviours with the most significant effect exhibited with the lipase treatment. SWPC produced an almost total inhibition of translocation of C. sakazakii across a CaCo-2 cell monolayer. Lipase and pepsin treated SWPC also reduced translocation by 75% and 90% respectively. However, trypsin treatment nullified the effect SWPC had on translocation. The presence of viable bacterial cells and SWPC both increased expression of IL-8 following Cronobacter invasion into CaCo-2 cells. CONCLUSIONS Factors governing adherence, invasion and translocation of Cronobacter spp. to human intestinal cells are multi-factorial and digested milk products exhibit varying effects dependant on their enzyme modification and protein lipid content. SIGNIFICANCE AND IMPACT OF THE STUDY These findings contribute to our, as yet, incomplete understanding of Cronobacter pathogenesis, and suggest that SWPC in whole and enzymatically hydrolysed forms, may provide a cost-effective source of bioactive materials with inhibitory effects on bacterial virulence.
Collapse
Affiliation(s)
- K McEvoy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| | - J Hayes
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - C Kealey
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| | - D Brady
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
17
|
Chen Y, Duan R, Li X, Li K, Liang J, Liu C, Qiu H, Xiao Y, Jing H, Wang X. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis. Mol Immunol 2015; 68:290-9. [PMID: 26435220 DOI: 10.1016/j.molimm.2015.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
Abstract
The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia.
Collapse
Affiliation(s)
- Yuhuang Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xu Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Kewei Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Chang Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Haiyan Qiu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yuchun Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China.
| |
Collapse
|
18
|
Leo JC, Oberhettinger P, Schütz M, Linke D. The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 2014; 305:276-82. [PMID: 25596886 DOI: 10.1016/j.ijmm.2014.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane β-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters.
Collapse
Affiliation(s)
- Jack C Leo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Philipp Oberhettinger
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Monika Schütz
- Interfaculty Institute for Microbiology and Infection Medicine, University Clinics Tübingen, 72076 Tübingen, Germany
| | - Dirk Linke
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Max Planck Institute for Developmental Biology, Department of Protein Evolution, 72076 Tübingen, Germany.
| |
Collapse
|
19
|
A Cronobacter turicensis O1 antigen-specific monoclonal antibody inhibits bacterial motility and entry into epithelial cells. Infect Immun 2014; 83:876-87. [PMID: 25534937 DOI: 10.1128/iai.02211-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cronobacter turicensis is an opportunistic foodborne pathogen that can cause a rare but sometimes lethal infection in neonates. Little is known about the virulence mechanisms and intracellular lifestyle of this pathogen. In this study, we developed an IgG monoclonal antibody (MAb; MAb 2G4) that specifically recognizes the O1 antigen of C. turicensis cells. The antilipopolysaccharide antibody bound predominantly monovalently to the O antigen and reduced bacterial growth without causing cell agglutination. Furthermore, binding of the antibody to the O1 antigen of C. turicensis cells caused a significant reduction of the membrane potential which is required to energize flagellar rotation, accompanied by a decreased flagellum-based motility. These results indicate that binding of IgG to the O antigen of C. turicensis causes a direct antimicrobial effect. In addition, this feature of the antibody enabled new insight into the pathogenicity of C. turicensis. In a tissue culture infection model, pretreatment of C. turicensis with MAb 2G4 showed no difference in adhesion to human epithelial cells, whereas invasion of bacteria into Caco-2 cells was significantly inhibited.
Collapse
|