1
|
Prajapati A, Palva A, von Ossowski I, Krishnan V. The crystal structure of the N-terminal domain of the backbone pilin LrpA reveals a new closure-and-twist motion for assembling dynamic pili in Ligilactobacillus ruminis. Acta Crystallogr D Struct Biol 2024; 80:474-492. [PMID: 38935340 DOI: 10.1107/s2059798324005114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.
Collapse
Affiliation(s)
- Amar Prajapati
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR, Biotech Science Cluster, Faridabad 121 001, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR, Biotech Science Cluster, Faridabad 121 001, India
| |
Collapse
|
2
|
Sue CK, Cheung NA, Mahoney BJ, McConnell SA, Scully JM, Fu JY, Chang C, Ton-That H, Loo JA, Clubb RT. The basal and major pilins in the Corynebacterium diphtheriae SpaA pilus adopt similar structures that competitively react with the pilin polymerase. Biopolymers 2024; 115:e23539. [PMID: 37227047 PMCID: PMC11164409 DOI: 10.1002/bip.23539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.
Collapse
Affiliation(s)
- Christopher K. Sue
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Nicole A. Cheung
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Scott A. McConnell
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Jack M. Scully
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Janine Y. Fu
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Chungyu Chang
- Molecular Biology Institute
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Hung Ton-That
- Molecular Biology Institute
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| |
Collapse
|
3
|
Raynes JM, Young PG, Lorenz N, Loh JM, McGregor R, Baker EN, Proft T, Moreland NJ. Identification of an immunodominant region on a group A Streptococcus T-antigen reveals temperature-dependent motion in pili. Virulence 2023; 14:2180228. [PMID: 36809931 PMCID: PMC9980535 DOI: 10.1080/21505594.2023.2180228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Group A Streptococcus (GAS) is a globally important pathogen causing a broad range of human diseases. GAS pili are elongated proteins with a backbone comprised repeating T-antigen subunits, which extend from the cell surface and have important roles in adhesion and establishing infection. No GAS vaccines are currently available, but T-antigen-based candidates are in pre-clinical development. This study investigated antibody-T-antigen interactions to gain molecular insight into functional antibody responses to GAS pili. Large, chimeric mouse/human Fab-phage libraries generated from mice vaccinated with the complete T18.1 pilus were screened against recombinant T18.1, a representative two-domain T-antigen. Of the two Fab identified for further characterization, one (designated E3) was cross-reactive and also recognized T3.2 and T13, while the other (H3) was type-specific reacting with only T18.1/T18.2 within a T-antigen panel representative of the major GAS T-types. The epitopes for the two Fab, determined by x-ray crystallography and peptide tiling, overlapped and mapped to the N-terminal region of the T18.1 N-domain. This region is predicted to be buried in the polymerized pilus by the C-domain of the next T-antigen subunit. However, flow cytometry and opsonophagocytic assays showed that these epitopes were accessible in the polymerized pilus at 37°C, though not at lower temperature. This suggests that there is motion within the pilus at physiological temperature, with structural analysis of a covalently linked T18.1 dimer indicating "knee-joint" like bending occurs between T-antigen subunits to expose this immunodominant region. This temperature dependent, mechanistic flexing provides new insight into how antibodies interact with T-antigens during infection.
Collapse
Affiliation(s)
- Jeremy M. Raynes
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,School of Biological Sciences, The University of Auckland, Auckland, New Zealand,CONTACT Paul G. Young
| | - Natalie Lorenz
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M.S. Loh
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Edward N. Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Nicole J. Moreland
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,Nicole J. Moreland
| |
Collapse
|
4
|
Takebe K, Suzuki M, Sangawa T, Kreikemeyer B, Yamaguchi M, Uzawa N, Sumitomo T, Kawabata S, Nakata M. Analysis of FctB3 crystal structure and insight into its structural stabilization and pilin linkage mechanisms. Arch Microbiol 2023; 206:4. [PMID: 37994962 DOI: 10.1007/s00203-023-03727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023]
Abstract
Streptococcus pyogenes harboring an FCT type 3 genomic region display pili composed of three types of pilins. In this study, the structure of the base pilin FctB from a serotype M3 strain (FctB3) was determined at 2.8 Å resolution. In accordance with the previously reported structure of FctB from a serotype T9 strain (FctB9), FctB3 was found to consist of an immunoglobulin-like domain and proline-rich tail region. Data obtained from structure comparison revealed main differences in the omega (Ω) loop structure and the proline-rich tail direction. In the Ω loop structure, a differential hydrogen bond network was observed, while the lysine residue responsible for linkage to growing pili was located at the same position in both structures, which indicated that switching of the hydrogen bond network in the Ω loop without changing the lysine position is advantageous for linkage to the backbone pilin FctA. The difference in direction of the proline-rich tail is potentially caused by a single residue located at the root of the proline-rich tail. Also, the FctB3 structure was found to be stabilized by intramolecular large hydrophobic interactions instead of an isopeptide bond. Comparisons of the FctB3 and FctA structures indicated that the FctA structure is more favorable for linkage to FctA. In addition, the heterodimer formation of FctB with Cpa or FctA was shown to be mediated by the putative chaperone SipA. Together, these findings provide an alternative FctB structure as well as insight into the interactions between pilin proteins.
Collapse
Grants
- 19K22715, 19H03825, 22H03262, 22H03263 JSPS KAKENHI Grants-in-Aid for Scientific Research
- 19K22715, 19H03825, 22H03262, 22H03263 JSPS KAKENHI Grants-in-Aid for Scientific Research
- 19K22715, 19H03825, 22H03262, 22H03263 JSPS KAKENHI Grants-in-Aid for Scientific Research
- 19K22715, 19H03825, 22H03262, 22H03263 JSPS KAKENHI Grants-in-Aid for Scientific Research
Collapse
Affiliation(s)
- Katsuki Takebe
- Department of Oral and Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
- Department of Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
| | - Takeshi Sangawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057, Rostock, Germany
| | - Masaya Yamaguchi
- Department of Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan
- Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, 2-8, Yamadaoka, Suita, Osaka, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15, Kuramoto-cho, Tokushima, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, 2-8, Yamadaoka, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, Japan.
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
5
|
Takahashi R, Radcliff FJ, Proft T, Tsai CJ. Pilus proteins from
Streptococcus pyogenes
stimulate innate immune responses through Toll‐like receptor 2. Immunol Cell Biol 2022; 100:174-185. [PMID: 35124861 PMCID: PMC9303359 DOI: 10.1111/imcb.12523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
The group A Streptococcus (GAS) pilus is a long, flexible, hair‐like structure anchored to the cell surface that facilitates the adherence of GAS to host cells, thus playing a critical role in initiating infections. Because of its important role in GAS virulence, the pilus has become an attractive target for vaccine development. While current research mainly focuses on pilus function and its potential as a vaccine component, there is a lack of knowledge on how the host immune system recognizes and responds to this abundant surface structure. Here we show that both assembled GAS pili and individual pilus proteins induce a potent release of the proinflammatory cytokines tumor necrosis factor and interleukin‐8. We further show that the surface‐exposed backbone pilin and ancillary pilin 1 subunits are Toll‐like receptor 2 (TLR2) agonists. Using reporter cell lines coexpressing human TLR2 in combination with either TLR1 or TLR6, we determined that activation was mediated by the TLR2/TLR6 heterodimer. Finally, we used solid‐phase and flow cytometry binding assays to illustrate a direct interaction between the pilus subunits and TLR2. These results provide further support for the suitability of the pilus as a vaccine component and opens potential avenues for using GAS pili as an adjuvant or immune‐modulation agent.
Collapse
Affiliation(s)
- Risa Takahashi
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries The University of Auckland Auckland New Zealand
| | - Thomas Proft
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries The University of Auckland Auckland New Zealand
| | - Catherine J‐Y Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Biomolecular Discoveries The University of Auckland Auckland New Zealand
| |
Collapse
|
6
|
Sortase-assembled pili in Corynebacterium diphtheriae are built using a latch mechanism. Proc Natl Acad Sci U S A 2021; 118:2019649118. [PMID: 33723052 DOI: 10.1073/pnas.2019649118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria assemble pili (fimbriae) on their surfaces to adhere to host tissues and to promote polymicrobial interactions. These hair-like structures, although very thin (1 to 5 nm), exhibit impressive tensile strengths because their protein components (pilins) are covalently crosslinked together via lysine-isopeptide bonds by pilus-specific sortase enzymes. While atomic structures of isolated pilins have been determined, how they are joined together by sortases and how these interpilin crosslinks stabilize pilus structure are poorly understood. Using a reconstituted pilus assembly system and hybrid structural biology methods, we elucidated the solution structure and dynamics of the crosslinked interface that is repeated to build the prototypical SpaA pilus from Corynebacterium diphtheriae We show that sortase-catalyzed introduction of a K190-T494 isopeptide bond between adjacent SpaA pilins causes them to form a rigid interface in which the LPLTG sorting signal is inserted into a large binding groove. Cellular and quantitative kinetic measurements of the crosslinking reaction shed light onto the mechanism of pilus biogenesis. We propose that the pilus-specific sortase in C. diphtheriae uses a latch mechanism to select K190 on SpaA for crosslinking in which the sorting signal is partially transferred from the enzyme to a binding groove in SpaA in order to facilitate catalysis. This process is facilitated by a conserved loop in SpaA, which after crosslinking forms a stabilizing latch that covers the K190-T494 isopeptide bond. General features of the structure and sortase-catalyzed assembly mechanism of the SpaA pilus are likely conserved in Gram-positive bacteria.
Collapse
|
7
|
Abstract
Intramolecular isopeptide bonds, formed autocatalytically between Lys and Asn/Asp side chains, are widely present in the immunoglobulin-like domains of Gram-positive bacterial adhesins, including Group A Streptococcus, and confer considerable mechanical and chemical stability. These properties make them attractive for applications in biotechnology. Here, we detail the practical considerations that are involved in engineering isopeptide bonds into Ig-like proteins, including the choice of a site where bond-forming residues could be introduced and the appropriate methodology for mutagenesis. We specify how to determine whether an isopeptide bond has formed, what strategies can be adopted to overcome problems, and how to monitor the stability of the engineered protein.
Collapse
|
8
|
Loh JMS, Rivera-Hernandez T, McGregor R, Khemlani AHJ, Tay ML, Cork AJ, M Raynes J, Moreland NJ, Walker MJ, Proft T. A multivalent T-antigen-based vaccine for Group A Streptococcus. Sci Rep 2021; 11:4353. [PMID: 33623073 PMCID: PMC7902606 DOI: 10.1038/s41598-021-83673-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Pili of Group A Streptococcus (GAS) are surface-exposed structures involved in adhesion and colonisation of the host during infection. The major protein component of the GAS pilus is the T-antigen, which multimerises to form the pilus shaft. There are currently no licenced vaccines against GAS infections and the T-antigen represents an attractive target for vaccination. We have generated a multivalent vaccine called TeeVax1, a recombinant protein that consists of a fusion of six T-antigen domains. Vaccination with TeeVax1 produces opsonophagocytic antibodies in rabbits and confers protective efficacy in mice against invasive disease. Two further recombinant proteins, TeeVax2 and TeeVax3 were constructed to cover 12 additional T-antigens. Combining TeeVax1–3 produced a robust antibody response in rabbits that was cross-reactive to a full panel of 21 T-antigens, expected to provide over 95% vaccine coverage. These results demonstrate the potential for a T-antigen-based vaccine to prevent GAS infections.
Collapse
Affiliation(s)
- Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Cátedras CONACYT-Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Reuben McGregor
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Adrina Hema J Khemlani
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mei Lin Tay
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jeremy M Raynes
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Nicole J Moreland
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
9
|
Ness S, Hilleringmann M. Streptococcus pneumoniae Type 1 Pilus - A Multifunctional Tool for Optimized Host Interaction. Front Microbiol 2021; 12:615924. [PMID: 33633703 PMCID: PMC7899983 DOI: 10.3389/fmicb.2021.615924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae represents a major Gram-positive human pathogen causing bacterial pneumonia, otitis media, meningitis, and other invasive diseases. Several pneumococcal isolates show increasing resistance rates against antibacterial agents. A variety of virulence factors promote pneumococcal pathogenicity with varying importance in different stages of host infection. Virulence related hair-like structures ("pili") are complex, surface located protein arrays supporting proper host interaction. In the last two decades different types of pneumococcal pili have been identified: pilus-1 (P1) and pilus-2 (P2) are formed by the catalytic activity of sortases that covalently assemble secreted polypeptide pilin subunits in a defined order and finally anchor the resulting pilus in the peptidoglycan. Within the long pilus fiber the presence of intramolecular isopeptide bonds confer high stability to the sequentially arranged individual pilins. This mini review will focus on S. pneumoniae TIGR4 P1 molecular architecture, the subunits it builds and provides insights into P1 sortase-mediated assembly. The complex P1 architecture (anchor-/backbone-/tip-subunits) allows the specific interaction with various target structures facilitating different steps of colonization, invasion and spreading within the host. Optimized pilin subunit confirmation supports P1 function under physiological conditions. Finally, aspects of P1- host interplay are summarized, including recent insights into P1 mechanobiology, which have important implications for P1 mediated pathogenesis.
Collapse
Affiliation(s)
| | - Markus Hilleringmann
- FG Protein Biochemistry & Cellular Microbiology, Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| |
Collapse
|
10
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
12
|
Tamai E, Katayama S, Sekiya H, Nariya H, Kamitori S. Structures of major pilins in Clostridium perfringens demonstrate dynamic conformational change. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:718-732. [PMID: 31373571 DOI: 10.1107/s2059798319009689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
Pili in Gram-positive bacteria are flexible rod proteins associated with the bacterial cell surface, and they play important roles in the initial adhesion to host tissues and colonization. The pilus shaft is formed by the covalent polymerization of major pilins, catalyzed by sortases, a family of cysteine transpeptidases. Here, X-ray structures of the major pilins from Clostridium perfringens strains 13 and SM101 and of sortase from strain SM101 are presented with biochemical analysis to detect the formation of pili in vivo. The major pilin from strain 13 adopts an elongated structure to form noncovalently linked polymeric chains in the crystal, yielding a practical model of the pilus fiber structure. The major pilin from strain SM101 adopts a novel bent structure and associates to form a left-handed twist like an antiparallel double helix in the crystal, which is likely to promote bacterial cell-cell interactions. A modeling study showed that pilin with a bent structure interacts favorably with sortase. The major pilin from strain SM101 was considered to be in an equilibrium state between an elongated and a bent structure through dynamic conformational change, which may be involved in pili-mediated colonization and sortase-mediated polymerization of pili.
Collapse
Affiliation(s)
- Eiji Tamai
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Seiichi Katayama
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Hiroshi Sekiya
- Department of Infectious Disease, College of Pharmaceutical Science, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Hirofumi Nariya
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama-cho, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
13
|
Group A Streptococcus T Antigens Have a Highly Conserved Structure Concealed under a Heterogeneous Surface That Has Implications for Vaccine Design. Infect Immun 2019; 87:IAI.00205-19. [PMID: 30936156 DOI: 10.1128/iai.00205-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Group A Streptococcus (GAS) (Streptococcus pyogenes) is an important human pathogen associated with significant global morbidity and mortality for which there is no safe and efficacious vaccine. The T antigen, a protein that polymerizes to form the backbone of the GAS pilus structure, is a potential vaccine candidate. Previous surveys of the tee gene, which encodes the T antigen, have identified 21 different tee types and subtypes such that any T antigen-based vaccine must be multivalent and carefully designed to provide broad strain coverage. In this study, the crystal structures of three two-domain T antigens (T3.2, T13, and T18.1) were determined and found to have remarkable structural similarity to the previously reported T1 antigen, despite moderate overall sequence similarity. This has enabled reliable modeling of all major two-domain T antigens to reveal that T antigen sequence variation is distributed along the full length of the protein and shields a highly conserved core. Immunoassays performed with sera from immunized animals and commercial T-typing sera identified a significant cross-reactive antibody response between T18.1, T18.2, T3.2, and T13. The existence of shared epitopes between T antigens, combined with the remarkably conserved structure and high level of surface sequence divergence, has important implications for the design of multivalent T antigen-based vaccines.
Collapse
|
14
|
Fischetti VA. Vaccine Approaches To Protect against Group A Streptococcal Pharyngitis. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0010-2018. [PMID: 31111819 PMCID: PMC11026073 DOI: 10.1128/microbiolspec.gpp3-0010-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcal pharyngitis (or strep throat) is a common childhood disease affecting millions of children each year, but it is one of the only childhood diseases for which a vaccine does not exist. While for decades the development of a vaccine has been the center of attention in many laboratories worldwide, with some successes, no corporate development has yet to be initiated. The reason for this probably lies in our inability to conclusively identify the streptococcal molecule or molecules responsible for the heart cross-reactive antibodies observed in the serum of rheumatic fever patients. Without this specific knowledge, any streptococcal vaccine antigen is suspect and thus not the target for a billion-dollar investment, despite the fact that the exact role of cross-reactive antibodies in rheumatic fever is still questionable. This article will describe the development of several approaches to protect against Streptococcus pyogenes infections over the past several decades.
Collapse
|
15
|
Jones S, Moreland NJ, Zancolli M, Raynes J, Loh JMS, Smeesters PR, Sriskandan S, Carapetis JR, Fraser JD, Goldblatt D. Development of an opsonophagocytic killing assay for group a streptococcus. Vaccine 2018; 36:3756-3763. [PMID: 29776751 DOI: 10.1016/j.vaccine.2018.05.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
Abstract
Group A Streptococcus (GAS) or Streptococcus pyogenes is responsible for an estimated 500,000 deaths worldwide each year. Protection against GAS infection is thought to be mediated by phagocytosis, enhanced by bacteria-specific antibody. There are no licenced GAS vaccines, despite many promising candidates in preclinical and early stage clinical development, the most advanced of which are based on the GAS M-protein. Vaccine progress has been hindered, in part, by the lack of a standardised functional assay suitable for vaccine evaluation. Current assays, developed over 50 years ago, rely on non-immune human whole blood as a source of neutrophils and complement. Variations in complement and neutrophil activity between donors result in variable data that is difficult to interpret. We have developed an opsonophagocytic killing assay (OPKA) for GAS that utilises dimethylformamide (DMF)-differentiated human promyelocytic leukemia cells (HL-60) as a source of neutrophils and baby rabbit complement, thus removing the major sources of variation in current assays. We have standardised the OPKA for several clinically relevant GAS strain types (emm1, emm6 and emm12) and have shown antibody-specific killing for each emm-type using M-protein specific rabbit antisera. Specificity was demonstrated by pre-incubation of the antisera with homologous M-protein antigens that blocked antibody-specific killing. Additional qualifications of the GAS OPKA, including the assessment of the accuracy, precision, linearity and the lower limit of quantification, were also performed. This GAS OPKA assay has the potential to provide a robust and reproducible platform to accelerate GAS vaccine development.
Collapse
Affiliation(s)
- Scott Jones
- Immunobiology, UCL Great Ormond Street Institute of Child Health Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Nicole J Moreland
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Marta Zancolli
- Immunobiology, UCL Great Ormond Street Institute of Child Health Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Jeremy Raynes
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Universite ́ Libre de Bruxelles and Academic Children Hospital, Brussels, Belgium; Murdoch Children's Research Institute and University of Melbourne, Melbourne, Australia
| | - Shiranee Sriskandan
- Faculty of Medicine, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Jonathan R Carapetis
- Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, Australia
| | - John D Fraser
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David Goldblatt
- Immunobiology, UCL Great Ormond Street Institute of Child Health Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
16
|
Chaurasia P, Pratap S, Palva A, von Ossowski I, Krishnan V. Bent conformation of a backbone pilin N-terminal domain supports a three-stage pilus assembly mechanism. Commun Biol 2018; 1:94. [PMID: 30271975 PMCID: PMC6123636 DOI: 10.1038/s42003-018-0100-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Effective colonization of host cells by some Gram-positive bacteria often involves using lengthy, adhesive macromolecular structures called sortase-dependent pili. Among commensals, the gut-adapted Lactobacillus rhamnosus GG strain encodes the operons for two varieties of these pili (SpaCBA and SpaFED), with each structure consisting of backbone, tip, and basal pilin subunits. Although the tertiary structure was recently solved for the backbone subunit (SpaA) of the SpaCBA pilus, no structural information exists for its counterpart in the SpaFED pilus. Here, we report several crystal structures for the SpaD backbone pilin, two of which capture the N-terminal domain in either the closed (linear) or open (bent) conformation. To our knowledge, this is the first observation of the bent conformation in Gram-positive pilin structures. Based on this bent conformation, we suggest a three-stage model, which we call the expose-ligate-seal mechanism, for the docking and assembly of backbone pilins into the sortase-dependent pilus. Priyanka Chaurasia et al. report crystal structures of the SpaD backbone pilin from a gut-adapted bacteria, Lactobacillus rhamnosus. The observed bent conformation of the N-terminal domain has not been seen in other Gram-positive pilin structures.
Collapse
Affiliation(s)
- Priyanka Chaurasia
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.,Department of Biotechnology, Manipal University, Manipal, Karnataka, 576104, India
| | - Shivendra Pratap
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Ingemar von Ossowski
- Department of Veterinary Biosciences, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
17
|
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29530660 DOI: 10.1016/j.meegid.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease.
Collapse
|
18
|
Raynes JM, Young PG, Proft T, Williamson DA, Baker EN, Moreland NJ. Protein adhesins as vaccine antigens for Group A Streptococcus. Pathog Dis 2018; 76:4919728. [DOI: 10.1093/femspd/fty016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- J M Raynes
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - P G Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - T Proft
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - D A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - E N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - N J Moreland
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
19
|
Identification and Characterization of Serotype-Specific Variation in Group A Streptococcus Pilus Expression. Infect Immun 2018; 86:IAI.00792-17. [PMID: 29158432 DOI: 10.1128/iai.00792-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Isolates of a given bacterial pathogen often display phenotypic variation, and this can negatively impact public health, for example, by reducing the efficacy of preventative measures. Here, we identify that the human pathogen group A Streptococcus (GAS; Streptococcus pyogenes) expresses pili on its cell surface in a serotype-specific manner. Specifically, we show that serotype M3 GAS isolates, which are nonrandomly associated with causing particularly severe and lethal invasive infections, produce negligible amounts of pili relative to serotype M1 and M49 isolates. Performance of an interserotype transcriptome comparison (serotype M1 versus serotype M3) was instrumental in this discovery. We also identified that the transcriptional regulator Nra positively regulates pilus expression in M3 GAS isolates and that the low level of pilus expression of these isolates correlates with a low level of nra transcription. Finally, we discovered that the phenotypic consequences of low levels of pilus expression by M3 GAS isolates are a reduced ability to adhere to host cells and an increased ability to survive and proliferate in human blood. We propose that an enhanced ability to survive in human blood, in part due to reduced pilus expression, is a contributing factor in the association of serotype M3 isolates with highly invasive infections. In conclusion, our data show that GAS isolates express pili in a serotype-dependent manner and may inform vaccine development, given that pilus proteins are being discussed as possible GAS vaccine antigens.
Collapse
|
20
|
Mucosal vaccination with pili from Group A Streptococcus expressed on Lactococcus lactis generates protective immune responses. Sci Rep 2017; 7:7174. [PMID: 28775292 PMCID: PMC5543120 DOI: 10.1038/s41598-017-07602-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/28/2017] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Group A Streptococcus (GAS) produces pili that are involved in adhesion and colonisation of the host. These surface-exposed pili are immunogenic and therefore represent an attractive target for vaccine development. The pilus is encoded in the genomic region known as the fibronectin-collagen-T-antigen (FCT)-region, of which at least nine different types have been identified. In this study we investigate expressing two of the most common FCT-types (FCT-3 and FCT-4) in the food-grade bacteria Lactococcus lactis for use as a mucosal vaccine. We show that mucosally delivered L. lactis expressing GAS pili generates specific antibody responses in rabbits. Rabbit anti-pilus antibodies were shown to have both a neutralising effect on bacterial adhesion, and immunised rabbit antiserum was able to facilitate immune-mediated killing of bacteria via opsonophagocytosis. Furthermore, intranasal immunisation of mice improved clearance rates of GAS after nasopharyngeal challenge. These results demonstrate the potential for a novel, pilus-based vaccine to protect against GAS infections.
Collapse
|
21
|
Lorenz N, Loh JMS, Moreland NJ, Proft T. Development of a high-throughput opsonophagocytic assay for the determination of functional antibody activity against Streptococcus pyogenes using bioluminescence. J Microbiol Methods 2017; 134:58-61. [PMID: 28115206 DOI: 10.1016/j.mimet.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
The lack of standardised protocols for the assessment of functional antibodies has hindered Streptococcus pyogenes research and the development of vaccines. A robust, high throughput opsonophagocytic bactericidal assay to determine protective antibodies in human and rabbit serum has been developed that utilises bioluminescence as a rapid read out.
Collapse
Affiliation(s)
- Natalie Lorenz
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Nicole J Moreland
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
22
|
Donnarumma D, Faleri A, Costantino P, Rappuoli R, Norais N. The role of structural proteomics in vaccine development: recent advances and future prospects. Expert Rev Proteomics 2016; 13:55-68. [PMID: 26714563 DOI: 10.1586/14789450.2016.1121113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vaccines are the most effective way to fight infectious diseases saving countless lives since their introduction. Their evolution during the last century made use of the best technologies available to continuously increase their efficacy and safety. Mass spectrometry (MS) and proteomics are already playing a central role in the identification and characterization of novel antigens. Over the last years, we have been witnessing the emergence of structural proteomics in vaccinology, as a major tool for vaccine candidate discovery, antigen design and life cycle management of existing products. In this review, we describe the MS techniques associated to structural proteomics and we illustrate the contribution of structural proteomics to vaccinology discussing potential applications.
Collapse
|
23
|
Raynes JM, Frost HRC, Williamson DA, Young PG, Baker EN, Steemson JD, Loh JM, Proft T, Dunbar PR, Atatoa Carr PE, Bell A, Moreland NJ. Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever. Front Microbiol 2016; 7:1119. [PMID: 27499748 PMCID: PMC4957554 DOI: 10.3389/fmicb.2016.01119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023] Open
Abstract
Acute rheumatic fever (ARF) is an autoimmune response to Group A Streptococcus (GAS) infection. Repeated GAS exposures are proposed to ‘prime’ the immune system for autoimmunity. This notion of immune-priming by multiple GAS infections was first postulated in the 1960s, but direct experimental evidence to support the hypothesis has been lacking. Here, we present novel methodology, based on antibody responses to GAS T-antigens, that enables previous GAS exposures to be mapped in patient sera. T-antigens are surface expressed, type specific antigens and GAS strains fall into 18 major clades or T-types. A panel of recombinant T-antigens was generated and immunoassays were performed in parallel with serum depletion experiments allowing type-specific T-antigen antibodies to be distinguished from cross-reactive antibodies. At least two distinct GAS exposures were detected in each of the ARF sera tested. Furthermore, no two sera had the same T-antigen reactivity profile suggesting that each patient was exposed to a unique series of GAS T-types prior to developing ARF. The methods have provided much-needed experimental evidence to substantiate the immune-priming hypothesis, and will facilitate further serological profiling studies that explore the multifaceted interactions between GAS and the host.
Collapse
Affiliation(s)
- Jeremy M Raynes
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - Hannah R C Frost
- School of Biological Sciences, University of Auckland Auckland, New Zealand
| | - Deborah A Williamson
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand; Institute of Environmental Science and ResearchWellington, New Zealand; The Peter Doherty Institute, University of MelbourneMelbourne, Australia
| | - Paul G Young
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - Edward N Baker
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | - John D Steemson
- School of Biological Sciences, University of Auckland Auckland, New Zealand
| | - Jacelyn M Loh
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand; School of Medical Sciences, University of AucklandAuckland, New Zealand
| | - Thomas Proft
- Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand; School of Medical Sciences, University of AucklandAuckland, New Zealand
| | - P R Dunbar
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| | | | - Anita Bell
- Waikato District Health Board Hamilton, New Zealand
| | - Nicole J Moreland
- School of Biological Sciences, University of AucklandAuckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of AucklandAuckland, New Zealand
| |
Collapse
|
24
|
Bessen DE. Tissue tropisms in group A Streptococcus: what virulence factors distinguish pharyngitis from impetigo strains? Curr Opin Infect Dis 2016; 29:295-303. [PMID: 26895573 PMCID: PMC5373551 DOI: 10.1097/qco.0000000000000262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Group A streptococci (GAS) are a common cause of pharyngitis and impetigo, and distinct throat strains and skin strains have been long recognized. This review aims to describe recent advances in molecular differences between throat and skin strains, and the pathogenic mechanisms used by virulence factors that may distinguish between these two groups. RECENT FINDINGS Recent findings include a new typing scheme for GAS strains based on sequence clusters of genes encoding the entire surface-exposed portion of M protein; correlations between emm-based typing schemes, clinical disease and surface adhesins; covalent bond formation mediated by GAS pili and other adhesins in binding to host ligands; a key role for superantigens in oropharyngeal infection via binding major histocompatibility complex class II antigen; and migration of GAS-specific Th17 cells from the upper respiratory tract to the brain, which may be relevant to autoimmune sequelae. SUMMARY The gap between molecular markers of disease (correlation) and virulence mechanisms (causation) in the establishment of tissue tropisms for GAS infection currently remains wide, but the gap also continues to narrow. Whole genome sequencing combined with mutant construction and improvements in animal models for oropharyngeal infection by GAS may help pave the way for new discoveries.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, New York, USA
| |
Collapse
|
25
|
Status of research and development of vaccines for Streptococcus pyogenes. Vaccine 2016; 34:2953-2958. [DOI: 10.1016/j.vaccine.2016.03.073] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022]
|
26
|
Jacobitz AW, Naziga EB, Yi SW, McConnell SA, Peterson R, Jung ME, Clubb RT, Wereszczynski J. The "Lid" in the Streptococcus pneumoniae SrtC1 Sortase Adopts a Rigid Structure that Regulates Substrate Access to the Active Site. J Phys Chem B 2016; 120:8302-12. [PMID: 27109553 DOI: 10.1021/acs.jpcb.6b01930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many species of Gram-positive bacteria use sortase enzymes to assemble long, proteinaceous pili structures that project from the cell surface to mediate microbial adhesion. Sortases construct highly stable structures by catalyzing a transpeptidation reaction that covalently links pilin subunits together via isopeptide bonds. Most Gram-positive pili are assembled by class C sortases that contain a "lid", a structurally unique N-terminal extension that occludes the active site. It has been hypothesized that the "lid" in many sortases is mobile and thus capable of readily being displaced from the enzyme to facilitate substrate binding. Here, we show using NMR dynamics measurements, in vitro assays, and molecular dynamics simulations that the lid in the class C sortase from Streptococcus pneumoniae (SrtC1) adopts a rigid conformation in solution that is devoid of large magnitude conformational excursions that occur on mechanistically relevant time scales. Additionally, we show that point mutations in the lid induce dynamic behavior that correlates with increased hydrolytic activity and sorting signal substrate access to the active site cysteine residue. These results suggest that the lid of the S. pneumoniae SrtC1 enzyme has a negative regulatory function and imply that a significant energetic barrier must be surmounted by currently unidentified factors to dislodge it from the active site to initiate pilus biogenesis.
Collapse
Affiliation(s)
- Alex W Jacobitz
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Emmanuel B Naziga
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , 3440 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Scott A McConnell
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Robert Peterson
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Michael E Jung
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Robert T Clubb
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , 3440 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
27
|
Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria. Biochem Soc Trans 2015; 43:787-94. [DOI: 10.1042/bst20150066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength.
Collapse
|
28
|
Krishnan V. Pilins in gram-positive bacteria: A structural perspective. IUBMB Life 2015; 67:533-43. [PMID: 26178080 DOI: 10.1002/iub.1400] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 11/11/2022]
Abstract
Pilins or fimbrilins are a class of proteins found in bacterial surface pilus, a hair-like surface appendage. Both the Gram-negative and -positive bacteria produce pilins to assemble pili on their cell-surface for different purposes including adherence, twitching motility, conjugation, immunomodulation, biofilm formation, and electron transfer. Immunogenic properties of the pilins make them attractive vaccine candidates. The polymerized pilins play a key role in the initiation of host adhesion, which is a critical step for bacterial colonization and infection. Because of their key role in adhesion and exposure on the cell surface, targeting the pilins-mediated adhesion (anti-adhesion therapy) is also seen as a promising alternative approach for preventing and treating bacterial infections, one that may overcome their ever-increasing repertoires of resistance mechanisms. Individual pilins interact with each other non-covalently to assemble the pilus fiber with the help of associated proteins like chaperones and Usher in Gram-negative bacteria. In contrast, the pilins in Gram-positive bacteria often connect with each other covalently, with the help of sortases. Certain unique structural features present on the pilins distinguish them from one another across different bacterial strains, and these dictate their cellular targets and functions. While the structure of pilins has been extensively studied in Gram-negative pathogenic bacteria, the pilins in Gram-positive pathogenic bacteria have been in only during the last decade. Recently, the discovery of pilins in non-pathogenic bacteria, such as Lactobacillus rhamnosus GG, has received great attention, though traditionally the attention was on pathogenic bacteria. This review summarizes and discusses the current structural knowledge of pilins in Gram-positive bacteria with emphasis on those pilins which are sortase substrates.
Collapse
Affiliation(s)
- Vengadesan Krishnan
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad-121 001, Haryana, India
| |
Collapse
|
29
|
Steemson JD, Moreland NJ, Williamson D, Morgan J, Carter PE, Proft T. Survey of the bp/tee genes from clinical group A streptococcus isolates in New Zealand - implications for vaccine development. J Med Microbiol 2014; 63:1670-1678. [PMID: 25190737 DOI: 10.1099/jmm.0.080804-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group A streptococcus (GAS) is responsible for a wide range of diseases ranging from superficial infections, such as pharyngitis and impetigo, to life-threatening diseases, such as toxic shock syndrome and acute rheumatic fever (ARF). GAS pili are hair-like extensions protruding from the cell surface and consist of highly immunogenic structural proteins: the backbone pilin (BP) and one or two accessory pilins (AP1 and AP2). The protease-resistant BP builds the pilus shaft and has been recognized as the T-antigen, which forms the basis of a major serological typing scheme that is often used as a supplement to M typing. A previous sequence analysis of the bp gene (tee gene) in 39 GAS isolates revealed 15 different bp/tee types. In this study, we sequenced the bp/tee gene from 100 GAS isolates obtained from patients with pharyngitis, ARF or invasive disease in New Zealand. We found 20 new bp/tee alleles and four new bp/tee types/subtypes. No association between bp/tee type and clinical outcome was observed. We confirmed earlier reports that the emm type and tee type are associated strongly, but we also found exceptions, where multiple tee types could be found in certain M/emm type strains, such as M/emm89. We also reported, for the first time, the existence of a chimeric bp/tee allele, which was assigned into a new subclade (bp/tee3.1). A strong sequence conservation of the bp/tee gene was observed within the individual bp/tee types/subtypes (>97 % sequence identity), as well as between historical and contemporary New Zealand and international GAS strains. This temporal and geographical sequence stability provided further evidence for the potential use of the BP/T-antigen as a vaccine target.
Collapse
Affiliation(s)
- John D Steemson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Nicole J Moreland
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah Williamson
- Institute of Environmental Science and Research, Wellington, New Zealand.,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Julie Morgan
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Philip E Carter
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Thomas Proft
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|