1
|
Zavala-Alvarado C, Sismeiro O, Legendre R, Varet H, Bussotti G, Bayram J, G. Huete S, Rey G, Coppée JY, Picardeau M, Benaroudj N. The transcriptional response of pathogenic Leptospira to peroxide reveals new defenses against infection-related oxidative stress. PLoS Pathog 2020; 16:e1008904. [PMID: 33021995 PMCID: PMC7567364 DOI: 10.1371/journal.ppat.1008904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/16/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Pathogenic Leptospira spp. are the causative agents of the waterborne zoonotic disease leptospirosis. Leptospira are challenged by numerous adverse conditions, including deadly reactive oxygen species (ROS), when infecting their hosts. Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. In L. interrogans, genes encoding defenses against ROS are repressed by the peroxide stress regulator, PerR. In this study, RNA sequencing was performed to characterize both the L. interrogans response to low and high concentrations of hydrogen peroxide and the PerR regulon. We showed that Leptospira solicit three main peroxidase machineries (catalase, cytochrome C peroxidase and peroxiredoxin) and heme to detoxify oxidants produced during peroxide stress. In addition, canonical molecular chaperones of the heat shock response and DNA repair proteins from the SOS response were required for Leptospira recovering from oxidative damage. Identification of the PerR regulon upon exposure to H2O2 allowed to define the contribution of this regulator in the oxidative stress response. This study has revealed a PerR-independent regulatory network involving other transcriptional regulators, two-component systems and sigma factors as well as non-coding RNAs that putatively orchestrate, in concert with PerR, the oxidative stress response. We have shown that PerR-regulated genes encoding a TonB-dependent transporter and a two-component system (VicKR) are involved in Leptospira tolerance to superoxide. This could represent the first defense mechanism against superoxide in L. interrogans, a bacterium lacking canonical superoxide dismutase. Our findings provide an insight into the mechanisms required by pathogenic Leptospira to overcome oxidative damage during infection-related conditions. This will participate in framing future hypothesis-driven studies to identify and decipher novel virulence mechanisms in this life-threatening pathogen. Leptospirosis is a zoonotic infectious disease responsible for over one million of severe cases and 60 000 fatalities annually worldwide. This neglected and emerging disease has a worldwide distribution, but it mostly affects populations from developing countries in sub-tropical areas. The causative agents of leptospirosis are pathogenic bacterial Leptospira spp. There is a considerable deficit in our knowledge of these atypical bacteria, including their virulence mechanisms. During infection, Leptospira are confronted with the deadly oxidants produced by the host tissues and immune response. Here, we have identified the leptospiral factors necessary for overcoming infection-related oxidative stress. We found that Leptospira solicit peroxidases to detoxify oxidants as well as chaperones of the heat shock response and DNA repair proteins of the SOS response to recover from oxidative damage. Moreover, our study indicates that the oxidative stress response is orchestrated by a regulatory network involving PerR and other transcriptional regulators, sigma factors, two component systems, and putative non-coding RNAs. These findings provide insights into the mechanisms required by pathogenic Leptospira to tolerate infection-related oxidants and could help identifying novel virulence factors and developing new therapeutic targets.
Collapse
Affiliation(s)
- Crispin Zavala-Alvarado
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, COMUE BioSPC, Paris, France
| | - Odile Sismeiro
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Hugo Varet
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Giovanni Bussotti
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Jan Bayram
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Samuel G. Huete
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Guillaume Rey
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Biomics Technological Plateform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
| | - Nadia Benaroudj
- Unité de Biologie des Spirochètes, Department of Microbiology, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
2
|
Characterization of LE3 and LE4, the only lytic phages known to infect the spirochete Leptospira. Sci Rep 2018; 8:11781. [PMID: 30082683 PMCID: PMC6078989 DOI: 10.1038/s41598-018-29983-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Leptospira is a phylogenetically unique group of bacteria, and includes the causative agents of leptospirosis, the most globally prevalent zoonosis. Bacteriophages in Leptospira are largely unexplored. To date, a genomic sequence is available for only one temperate leptophage called LE1. Here, we sequenced and analysed the first genomes of the lytic phages LE3 and LE4 that can infect the saprophyte Leptospira biflexa using the lipopolysaccharide O-antigen as receptor. Bioinformatics analysis showed that the 48-kb LE3 and LE4 genomes are similar and contain 62% genes whose function cannot be predicted. Mass spectrometry led to the identification of 21 and 23 phage proteins in LE3 and LE4, respectively. However we did not identify significant similarities with other phage genomes. A search for prophages close to LE4 in the Leptospira genomes allowed for the identification of a related plasmid in L. interrogans and a prophage-like region in the draft genome of a clinical isolate of L. mayottensis. Long-read whole genome sequencing of the L. mayottensis revealed that the genome contained a LE4 phage-like circular plasmid. Further isolation and genomic comparison of leptophages should reveal their role in the genetic evolution of Leptospira.
Collapse
|
3
|
Schons-Fonseca L, da Silva JB, Milanez JS, Domingos RH, Smith JL, Nakaya HI, Grossman AD, Ho PL, da Costa RMA. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans. Nucleic Acids Res 2016; 44:1179-91. [PMID: 26762976 PMCID: PMC4756842 DOI: 10.1093/nar/gkv1536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 12/15/2015] [Accepted: 12/25/2015] [Indexed: 11/13/2022] Open
Abstract
We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination.
Collapse
Affiliation(s)
- Luciane Schons-Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Josefa B da Silva
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Juliana S Milanez
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Renan H Domingos
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Helder I Nakaya
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA
| | - Paulo L Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo 05503-900, Brazil
| | - Renata M A da Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210580, Brazil
| |
Collapse
|
4
|
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403. [PMID: 26890609 PMCID: PMC4758666 DOI: 10.1371/journal.pntd.0004403] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Collapse
Affiliation(s)
- Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Australia
| | - Luciane Amorim-Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Douglas E. Berg
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
| | - Yung-Fu Chang
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Renee L. Galloway
- Centers for Disease Control and Prevention (DHHS, CDC, OID, NCEZID, DHCPP, BSPB), Atlanta, Georgia, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rudy Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Paul N. Levett
- Government of Saskatchewan, Disease Control Laboratory Regina, Canada
| | - James Matsunaga
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ariel E. Mechaly
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ana L. T. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
5
|
Martins-Pinheiro M, Schons-Fonseca L, da Silva JB, Domingos RH, Momo LHS, Simões ACQ, Ho PL, da Costa RMA. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira. Mol Genet Genomics 2015; 291:703-22. [PMID: 26527082 DOI: 10.1007/s00438-015-1135-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.
Collapse
Affiliation(s)
- Marinalva Martins-Pinheiro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-900, Brazil.,Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Luciane Schons-Fonseca
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Josefa B da Silva
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Renan H Domingos
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | | | - Ana Carolina Quirino Simões
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André, 09210-170, Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Renata M A da Costa
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170, Brazil.
| |
Collapse
|
6
|
Zhu W, Wang J, Zhu Y, Tang B, Zhang Y, He P, Zhang Y, Liu B, Guo X, Zhao G, Qin J. Identification of three extra-chromosomal replicons in Leptospira pathogenic strain and development of new shuttle vectors. BMC Genomics 2015; 16:90. [PMID: 25887950 PMCID: PMC4338851 DOI: 10.1186/s12864-015-1321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
Abstract
Background The genome of pathogenic Leptospira interrogans contains two chromosomes. Plasmids and prophages are known to play specific roles in gene transfer in bacteria and can potentially serve as efficient genetic tools in these organisms. Although plasmids and prophage remnants have recently been reported in Leptospira species, their characteristics and potential applications in leptospiral genetic transformation systems have not been fully evaluated. Results Three extrachromosomal replicons designated lcp1 (65,732 bp), lcp2 (56,757 bp), and lcp3 (54,986 bp) in the L. interrogans serovar Linhai strain 56609 were identified through whole genome sequencing. All three replicons were stable outside of the bacterial chromosomes. Phage particles were observed in the culture supernatant of 56609 after mitomycin C induction, and lcp3, which contained phage-related genes, was considered to be an inducible prophage. L. interrogans–Escherichia coli shuttle vectors, constructed with the predicted replication elements of single rep or rep combined with parAB loci from the three plasmids were shown to successfully transform into both saprophytic and pathogenic Leptospira species, suggesting an essential function for rep genes in supporting auto-replication of the plasmids. Additionally, a wide distribution of homologs of the three rep genes was identified in L. interrogans isolates, and correlation tests showed that the transformability of the shuttle vectors in L. interrogans isolates depended, to certain extent, on genetic compatibility between the rep sequences of both plasmid and host. Conclusions Three extrachromosomal replicons co-exist in L. interrogans, one of which we consider to be an inducible prophage. The vectors constructed with the rep genes of the three replicons successfully transformed into saprophytic and pathogenic Leptospira species alike, but this was partly dependent on genetic compatibility between the rep sequences of both plasmid and host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Biao Tang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yunyi Zhang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Ping He
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Boyu Liu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
Abstract
Recent advances in molecular genetics, such as the ability to construct defined mutants, have allowed the study of virulence factors and more generally the biology in Leptospira. However, pathogenic leptospires remain much less easily transformable than the saprophyte L. biflexa and further development and improvement of genetic tools are required. Here, we review tools that have been used to genetically manipulate Leptospira. We also describe the major advances achieved in both genomics and postgenomics technologies, including transcriptomics and proteomics.
Collapse
|
8
|
Lehmann JS, Matthias MA, Vinetz JM, Fouts DE. Leptospiral pathogenomics. Pathogens 2014; 3:280-308. [PMID: 25437801 PMCID: PMC4243447 DOI: 10.3390/pathogens3020280] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022] Open
Abstract
Leptospirosis, caused by pathogenic spirochetes belonging to the genus Leptospira, is a zoonosis with important impacts on human and animal health worldwide. Research on the mechanisms of Leptospira pathogenesis has been hindered due to slow growth of infectious strains, poor transformability, and a paucity of genetic tools. As a result of second generation sequencing technologies, there has been an acceleration of leptospiral genome sequencing efforts in the past decade, which has enabled a concomitant increase in functional genomics analyses of Leptospira pathogenesis. A pathogenomics approach, by coupling of pan-genomic analysis of multiple isolates with sequencing of experimentally attenuated highly pathogenic Leptospira, has resulted in the functional inference of virulence factors. The global Leptospira Genome Project supported by the U.S. National Institute of Allergy and Infectious Diseases to which key scientific contributions have been made from the international leptospirosis research community has provided a new roadmap for comprehensive studies of Leptospira and leptospirosis well into the future. This review describes functional genomics approaches to apply the data generated by the Leptospira Genome Project towards deepening our knowledge of virulence factors of Leptospira using the emerging discipline of pathogenomics.
Collapse
Affiliation(s)
- Jason S Lehmann
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | - Michael A Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | | |
Collapse
|
9
|
Zhao X, Wang P, Zhu G, Wang B, Zhu G. Enzymatic characterization of a type II isocitrate dehydrogenase from pathogenic Leptospira interrogans serovar Lai strain 56601. Appl Biochem Biotechnol 2013; 172:487-96. [PMID: 24092452 DOI: 10.1007/s12010-013-0521-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/15/2013] [Indexed: 01/20/2023]
Abstract
Leptospira interrogans, a Gram-negative pathogen, could cause infections in a wide variety of mammalian hosts, but due to their fastidious cultivation requirements and the lack of genetic systems, the pathogenic factor is still not clear. Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylation (TCA) cycle, which could have an important impact on the growth and pathogenesis of the bacteria. In the present study, we first report the cloning, heterologous expression, and detailed characterization of the IDH gene from L. interrogans serovar Lai strain 56601(LiIDH). The molecular weight of LiIDH was determined to be 87 kDa by filtration chromatography, suggesting LiIDH is a typical homodimer. The optimum activity of LiIDH was found at 60 °C, and its optimum pH was 7.0 (Mn(2+)) and 8.0 (Mg(2+)). Heat inactivation studies showed that heat treatment for 20 min at 50 °C caused a 50 % loss of enzyme activity. LiIDH was completely divalent cation dependent as other typical dimeric IDHs and Mg(2+) was its best activator. The recombinant LiIDH specificities (kcat/Km values for NADP(+) and NAD(+)) in the presence of Mg(2+) and Mn(2+) were 6,269-fold and 1,000-fold greater for NADP(+) than NAD(+), respectively. This current work is expected to shed light on the functions of metabolic enzymes in L. interrogans and provide useful information for LiIDH to be considered as a possible candidate for serological diagnostics and detection of L. interrogans infection.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | | | | | | | | |
Collapse
|
10
|
Lehmann JS, Fouts DE, Haft DH, Cannella AP, Ricaldi JN, Brinkac L, Harkins D, Durkin S, Sanka R, Sutton G, Moreno A, Vinetz JM, Matthias MA. Pathogenomic inference of virulence-associated genes in Leptospira interrogans. PLoS Negl Trop Dis 2013; 7:e2468. [PMID: 24098822 PMCID: PMC3789758 DOI: 10.1371/journal.pntd.0002468] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.
Collapse
Affiliation(s)
- Jason S Lehmann
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ricaldi JN, Fouts DE, Selengut JD, Harkins DM, Patra KP, Moreno A, Lehmann JS, Purushe J, Sanka R, Torres M, Webster NJ, Vinetz JM, Matthias MA. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity. PLoS Negl Trop Dis 2012; 6:e1853. [PMID: 23145189 PMCID: PMC3493377 DOI: 10.1371/journal.pntd.0001853] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/25/2012] [Indexed: 12/25/2022] Open
Abstract
The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835) provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae) that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT). Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for its infectiousness and its unique antigenic characteristics. Leptospirosis is one of the most common diseases transmitted by animals worldwide and is important because it is a major cause of febrile illness in tropical areas and also occurs in epidemic form associated with natural disasters and flooding. The mechanisms through which Leptospira cause disease are not well understood. In this study we have sequenced the genomes of two strains of Leptospira licerasiae isolated from a person and a marsupial in the Peruvian Amazon. These strains were thought to be able to cause only mild disease in humans. We have compared these genomes with other leptospires that can cause severe illness and death and another leptospire that does not infect humans or animals. These comparisons have allowed us to demonstrate similarities among the disease-causing Leptospira. Studying genes that are common among infectious strains will allow us to identify genetic factors necessary for infecting, causing disease and determining the severity of disease. We have also found that L. licerasiae seems to be able to uptake and incorporate genetic information from other bacteria found in the environment. This information will allow us to begin to understand how Leptospira species have evolved.
Collapse
Affiliation(s)
- Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jeremy D. Selengut
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Derek M. Harkins
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kailash P. Patra
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Angelo Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Jason S. Lehmann
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Janaki Purushe
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ravi Sanka
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael Torres
- Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nicholas J. Webster
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Departamento de Ciencias Celulares y Moleculares, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (JMV); (MAM)
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail: (JMV); (MAM)
| |
Collapse
|
12
|
Zhang Q, Zhang Y, Zhong Y, Ma J, Peng N, Cao X, Yang C, Zeng R, Guo X, Zhao G. Leptospira interrogans encodes an ROK family glucokinase involved in a cryptic glucose utilization pathway. Acta Biochim Biophys Sin (Shanghai) 2011; 43:618-29. [PMID: 21705346 DOI: 10.1093/abbs/gmr049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although Leptospira interrogans is unable to utilize glucose as its carbon/energy source, the LA_1437 gene of L. interrogans serovar Lai potentially encodes a group III glucokinase (GLK). The L. interrogans GLK (LiGLK) heterogeneously expressed in Escherichia coli was purified and proved to be a homodimeric enzyme with its specific activity of 12.3 ± 0.6 U/mg x protein determined under an improved assay condition (pH 9.0, 50 ° C), 7.5-fold higher than that assayed under the previously used condition (pH 7.3, 25 ° C). The improved sensitivity allowed us to detect this enzymatic activity of (5.0 ± 0.6) × 10(-3) U/mg x protein in the crude extract of L. interrogans serovar Lai cultured in standard Ellinghausen-McCullough-Johnson-Harris medium. The k(cat) and K(m) values for d-glucose and ATP were similar to those of other group III GLKs, although the K(m) value for ATP was slightly higher. Site-directed mutagenesis analysis targeting the conserved amino acid residues in the potential ATP-binding motif hinted that a proper array of Gly residues in the motif might be important for maintaining the conformation that was essential for its function. Gene expression profiling and quantitative proteomic data mining provided preliminary evidence for the absence of efficient systems involved in glucose transport and glycolysis that might account for the failure of glucose utilization in L. interrogans.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cai CS, Zhu YZ, Zhong Y, Xin XF, Jiang XG, Lou XL, He P, Qin JH, Zhao GP, Wang SY, Guo XK. Development of O-antigen gene cluster-specific PCRs for rapid typing six epidemic serogroups of Leptospira in China. BMC Microbiol 2010; 10:67. [PMID: 20196873 PMCID: PMC2843611 DOI: 10.1186/1471-2180-10-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/03/2010] [Indexed: 01/06/2023] Open
Abstract
Background Leptospira is the causative agent of leptospirosis. The O-antigen is the distal part of the lipopolysaccharide, which is a key component of outer membrane of Gram-negative bacteria and confers serological specificity. The epidemiology and clinical characteristics of leptospirosis are relative to the serology based taxonomic unit. Identification of Leptospira strains by serotyping is laborious and has several drawbacks. Results In this study, the O-antigen gene clusters of four epidemic Leptospira serogroups (serogroup Canicola, Autumnalis, Grippotyphosa and Hebdomadis) in China were sequenced and all genes were predicted in silico. Adding published sequences of two serogroups, Icterohaemorrhagiae (strain Lai and Fiocruz L1-130) and Sejroe (strain JB197 and L550), we identified six O-antigen-specific genes for six epidemic serogroups in China. PCR assays using these genes were developed and tested on 75 reference strains and 40 clinical isolates. Conclusion The results show that the PCR-based assays can be reliable and alternative means for rapid typing of these six serogroups of Leptospira.
Collapse
Affiliation(s)
- Cheng-Song Cai
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ko AI, Goarant C, Picardeau M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 2009; 7:736-47. [PMID: 19756012 PMCID: PMC3384523 DOI: 10.1038/nrmicro2208] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leptospirosis is a zoonotic disease that has emerged as an important cause of morbidity and mortality among impoverished populations. One hundred years after the discovery of the causative spirochaetal agent, little is understood about Leptospira spp. pathogenesis, which in turn has hampered the development of new intervention strategies to address this neglected disease. However, the recent availability of complete genome sequences for Leptospira spp. and the discovery of genetic tools for their transformation have led to important insights into the biology of these pathogens and their pathogenesis. We discuss the life cycle of the bacterium, the recent advances in our understanding and the implications for the future prevention of leptospirosis.
Collapse
Affiliation(s)
- Albert I. Ko
- Division of Infectious Disease, Weill Medical College of Cornell University, New York, USA
- Gonçalo Moniz Research Centre, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Cyrille Goarant
- Institut Pasteur de Nouvelle-Calédonie, Laboratoire de Recherche en Bactériologie, Nouméa, New-Caledonia
| | | |
Collapse
|