1
|
Yihunie W, Kebede B, Tegegne BA, Getachew M, Abebe D, Aschale Y, Belew H, Bahiru B. Systematic Review of Safety of RTS,S with AS01 and AS02 Adjuvant Systems Using Data from Randomized Controlled Trials in Infants, Children, and Adults. Clin Pharmacol 2023; 15:21-32. [PMID: 36941908 PMCID: PMC10024506 DOI: 10.2147/cpaa.s400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Background Emergence of antimalarial drugs and insecticides resistance alarms scientists to develop a safe and effective malaria vaccine. A pre-erythrocytic malaria vaccine called RTS,S has made great strides. Aim The review was aimed to assess the safety of the candidate malaria vaccine RTS,S with AS01 and AS02 adjuvants using data from Phase I-III randomized controlled clinical trials (RCTs). Methods This systematic review was conducted based on PRISMA 2020. Regardless of time of publication year, all articles related with safety of RTS,S, RCTs published in the English language were included in the study. The last search of databases, and registry was conducted on 30 May, 2022. Pubmed, Google Scholar, Cochrane Library, Wiley Online Library, and Clinical trials.gov were thoroughly searched for accessible RCTs on the safety of RTS,S malaria vaccine. The studies were screened in three steps: duplicate removal, title and abstract screening, and full-text review. The included studies' bias risk was assessed using the Cochrane risk of bias tool for RCTs. This systematic review is registered at Prospero (registration number: CRD42021285888). The qualitative descriptive findings from the included published studies were reported stratified by clinical trial phases. Findings A total of thirty-five eligible safety studies were identified. Injection site pain and swelling, febrile convulsion, fever, headache, meningitis, fatigue, gastroenteritis, myalgia, pneumonia, reactogenicity, and anemia were the most commonly reported adverse events. Despite few clinical trials reported serious adverse events, none of them were related to vaccination. Conclusion Most of the adverse events observed from RTS,S/AS01 and RTS,S/AS02 malaria vaccines were reported in the control group and shared by other vaccines. Hence, the authors concluded that both RTS,S/AS01 and RTS,S/AS02 malaria vaccines are safe.
Collapse
Affiliation(s)
- Wubetu Yihunie
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bekalu Kebede
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bereket Bahiru
- Department of Pharmacy, College of Medicine and health sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
2
|
Marsay L, Dold C, Paterson GK, Yamaguchi Y, Derrick JP, Chan H, Feavers IM, Maiden MCJ, Wyllie D, Hill AV, Pollard AJ, Rollier CS. Viral vectors expressing group B meningococcal outer membrane proteins induce strong antibody responses but fail to induce functional bactericidal activity. J Infect 2022; 84:658-667. [PMID: 35245584 PMCID: PMC7616632 DOI: 10.1016/j.jinf.2022.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Adenoviral vectored vaccines, with the appropriate gene insert, induce cellular and antibody responses against viruses, parasites and intracellular pathogens such as Mycobacterium tuberculosis. Here we explored their capacity to induce functional antibody responses to meningococcal transmembrane outer membrane proteins. METHODS Vectors expressing porin A and ferric enterobactin receptor A antigens were generated, and their immunogenicity assessed in mice using binding and bactericidal assays. RESULTS The viral vectors expressed the bacterial proteins in an in vitro cell-infection assay and, after immunisation of mice, induced higher titres (>105 end-point titre) and longer lasting (>32 weeks) transgene-specific antibody responses in vivo than did outer membrane vesicles containing the same antigens. However, bactericidal antibodies, which are the primary surrogate of protection against meningococcus, were undetectable, despite different designs to support the presentation of the protective B-cell epitopes. CONCLUSION These results demonstrate that, while the transmembrane bacterial proteins expressed by the viral vector induced strong and persistent antigen-specific antibodies, this platform failed to induce bactericidal antibodies. The results suggest that conformation or post-translational modifications of bacterial outer membrane antigens produced in eukaryote cells might not result in presentation of the necessary epitopes for induction of functional antibodies.
Collapse
Affiliation(s)
- Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Gavin K Paterson
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Yuko Yamaguchi
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hannah Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | - David Wyllie
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Adrian V Hill
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom; Section of Immunology, Department of Biochemical sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Dorothy Hodgkin Building (AY), Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
3
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
4
|
Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations. NPJ Vaccines 2019; 4:54. [PMID: 31885877 PMCID: PMC6925274 DOI: 10.1038/s41541-019-0150-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) can cause severe respiratory disease, yet a licensed vaccine is not available. We determined the immunogenicity of two homologous and one heterologous intramuscular prime-boost vaccination regimens using replication-incompetent adenoviral vectors of human serotype 26 and 35 (Ad26 and Ad35), expressing a prototype antigen based on the wild-type fusion (F) protein of RSV strain A2 in adult, RSV-naive cynomolgus macaques. All regimens induced substantial, boostable antibody responses that recognized the F protein in pre- and postfusion conformation, neutralized multiple strains of RSV, and persisted for at least 80 weeks. Vaccination induced durable systemic RSV-F-specific T-cell responses characterized mainly by CD4+ T cells expressing Th1-type cytokines, as well as RSV-F-specific CD4+ and CD8+ T cells, IgG, and IgA in the respiratory tract. Intramuscular immunization with Ad26 and 35 vectors thus is a promising approach for the development of an optimized RSV vaccine expected to induce long-lasting humoral and cellular immune responses that distribute systemically and to mucosal sites.
Collapse
|
5
|
Martin ML, Bitzer AA, Schrader A, Bergmann-Leitner ES, Soto K, Zou X, Beck Z, Matyas GR, Dutta S. Comparison of immunogenicity and safety outcomes of a malaria vaccine FMP013/ALFQ in rhesus macaques (Macaca mulatta) of Indian and Chinese origin. Malar J 2019; 18:377. [PMID: 31775762 PMCID: PMC6880475 DOI: 10.1186/s12936-019-3014-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
Background Indian-origin rhesus (InR) are preferred for research, but strict export restrictions continue to limit their use. Chinese-origin rhesus (ChR), although easier to procure, are genetically distinct from InR and differ in their immune response to infectious agents, such as the Simian Immunodeficiency Virus. The most advanced malaria vaccine, RTS,S (GlaxoSmithKline), is based on the circumsporozoite protein (CSP) of Plasmodium falciparum. The efficacy of RTS,S vaccine in the field remains low and short-lived; efforts are underway to improve CSP-based vaccines. Rhesus models can accelerate preclinical down-selection of the next generation of malaria vaccines. This study was used to determine if the safety and immunogenicity outcomes following vaccination with a CSP vaccine would differ in the InR and ChR models, given the genetic differences between the two sub-populations of rhesus. Methods The FMP013 vaccine, was composed of nearly full-length soluble P. falciparum CSP produced in Escherichia coli and was adjuvanted with the Army liposomal formulation (ALFQ). Three doses of the vaccine were administered in InR and ChR (n = 6) at 1-month intervals and the antibody and T cell responses were assessed. Results Local and systemic toxicity profile of FMP013 vaccine in InR and ChR were similar and they revealed that the FMP013 vaccine was safe and caused only mild and transient inflammatory adverse reactions. Following the first 2 vaccines, there was a slower acquisition of antibodies to the CSP repeat region in ChR. However after the 3rd vaccination the titers in the two models were comparable. The ChR group repeat-specific antibodies had higher avidity and ChR group showed higher inhibition of liver stage development activity compared to InR. There was no difference in T-cell responses to the FMP013 vaccine between the two models. Conclusions A difference in the quality of serological responses was detected between the two sub-populations of rhesus. However, both models confirmed that FMP013/ALFQ vaccine was safe, highly immunogenic, elicited functional antibodies and T-cell responses. Overall, the data suggests that rhesus of Indian and Chinese origins can be interchangeably used to compare the safety and immunogenicity of next-generation of malaria vaccines and adjuvants.
Collapse
Affiliation(s)
- Monica L Martin
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Alexis A Bitzer
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Andrew Schrader
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Elke S Bergmann-Leitner
- Immunology Core, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kim Soto
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Zoltan Beck
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,Henry M. Jackson Foundation, Rockville, MD, 20852, USA
| | - Gary R Matyas
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sheetij Dutta
- Structural Biologics Laboratory, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| |
Collapse
|
6
|
Cawlfield A, Genito CJ, Beck Z, Bergmann-Leitner ES, Bitzer AA, Soto K, Zou X, Hadiwidjojo SH, Gerbasi RV, Mullins AB, Noe A, Waters NC, Alving CR, Matyas GR, Dutta S. Safety, toxicity and immunogenicity of a malaria vaccine based on the circumsporozoite protein (FMP013) with the adjuvant army liposome formulation containing QS21 (ALFQ). Vaccine 2019; 37:3793-3803. [PMID: 31151801 DOI: 10.1016/j.vaccine.2019.05.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/21/2023]
Abstract
Antibodies to Circumsporozoite protein (CSP) confer protection against controlled human malaria infection (CHMI) caused by the parasite Plasmodium falciparum. Although CSP is highly immunogenic, it does not induce long lasting protection and efforts to improve CSP-specific immunological memory and duration of protection are underway. We have previously reported that the clinical grade CSP vaccine FMP013 was immunogenic and protective against malaria challenge in mice when combined with the Army Liposomal Formulation adjuvant containing immune modulators 3D-PHAD™ and QS21 (ALFQ). To move forward with clinical evaluation, we now report the safety, toxicity and immunogenicity of clinical grade FMP013 and ALFQ in Rhesus macaques. Three groups of Rhesus (n = 6) received half or full human dose of FMP013 + ALFQ on a 0-1-2 month schedule, which showed mild local site reactions with no hematologic derangements in red blood cell homeostasis, liver function or kidney function. Immunization induced a transient systemic inflammatory response, including elevated white blood cell counts, mild fever, and a few incidences of elevated creatine kinase, receding to normal range by day 7 post vaccination. Optimal immunogenicity in Rhesus was observed using a 1 mL ALFQ + 20 µg FMP013 dose. Doubling the FMP013 antigen dose to 40 µg had no effect while halving the ALFQ adjuvant dose to 0.5 mL lowered immunogenicity. Similar to data generated in mice, FMP013 + ALFQ induced serum antibodies that reacted to all regions of the CSP molecule and a Th1-biased cytokine response in Rhesus. Rhesus antibody response to FMP013 + ALFQ was found to be non-inferior to historical benchmarks including that of RTS,S + AS01 in humans. A four-dose GLP toxicity study in rabbits confirmed no local site reactions and transient systemic inflammation associated with ALFQ adjuvant administration. These safety and immunogenicity data support the clinical progression and testing of FMP013 + ALFQ in a CHMI trial in the near future.
Collapse
Affiliation(s)
- Alicia Cawlfield
- Department of Veterinary Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Christopher J Genito
- Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Zoltan Beck
- Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Elke S Bergmann-Leitner
- Flow-cytometeric Center, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Alexis A Bitzer
- Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Kimberly Soto
- Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Sri H Hadiwidjojo
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Robert V Gerbasi
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Anna B Mullins
- Department of Veterinary Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Amy Noe
- Leidos Life Sciences, 5202 Presidents Court, Suite 110, Fredrick, MD 21703, USA
| | - Norman C Waters
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Carl R Alving
- Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gary R Matyas
- Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Sheetij Dutta
- Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
7
|
Progress in Adenoviral Capsid-Display Vaccines. Biomedicines 2018; 6:biomedicines6030081. [PMID: 30049954 PMCID: PMC6165093 DOI: 10.3390/biomedicines6030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Adenoviral vectored vaccines against infectious diseases are currently in clinical trials due to their capacity to induce potent antigen-specific B- and T-cell immune responses. Heterologous prime-boost vaccination with adenoviral vector and, for example, adjuvanted protein-based vaccines can further enhance antigen-specific immune responses. Although leading to potent immune responses, these heterologous prime-boost regimens may be complex and impact manufacturing costs limiting efficient implementation. Typically, adenoviral vectors are engineered to genetically encode a transgene in the E1 region and utilize the host cell machinery to express the encoded antigen and thereby induce immune responses. Similarly, adenoviral vectors can be engineered to display foreign immunogenic peptides on the capsid-surface by insertion of antigens in capsid proteins hexon, fiber and protein IX. The ability to use adenoviral vectors as antigen-display particles, with or without using the genetic vaccine function, greatly increases the versatility of the adenoviral vector for vaccine development. This review describes the application of adenoviral capsid antigen-display vaccine vectors by focusing on their distinct advantages and possible limitations in vaccine development.
Collapse
|
8
|
Fonseca JA, McCaffery JN, Caceres J, Kashentseva E, Singh B, Dmitriev IP, Curiel DT, Moreno A. Inclusion of the murine IgGκ signal peptide increases the cellular immunogenicity of a simian adenoviral vectored Plasmodium vivax multistage vaccine. Vaccine 2018; 36:2799-2808. [PMID: 29657070 DOI: 10.1016/j.vaccine.2018.03.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Cellular and humoral immune responses are both involved in protection against Plasmodium infections. The only malaria vaccine available, RTS,S, primarily induces short-lived antibodies and targets only a pre-erythrocytic stage antigen. Inclusion of erythrocytic stage targets and enhancing cellular immunogenicity are likely necessary for developing an effective second-generation malaria vaccine. Adenovirus vectors have been used to improve the immunogenicity of protein-based vaccines. However, the clinical assessment of adenoviral-vectored malaria vaccines candidates has shown the induction of robust Plasmodium-specific CD8+ but not CD4+ T cells. Signal peptides (SP) have been used to enhance the immunogenicity of DNA vaccines, but have not been tested in viral vector vaccine platforms. OBJECTIVES The objective of this study was to determine if the addition of the SP derived from the murine IgGκ light chain within a recombinant adenovirus vector encoding a multistage P. vivax vaccine candidate could improve the CD4+ T cell response. METHODS In this proof-of-concept study, we immunized CB6F1/J mice with either the recombinant simian adenovirus 36 vector containing the SP (SP-SAd36) upstream from a transgene encoding a chimeric P. vivax multistage protein or the same SAd36 vector without the SP. Mice were subsequently boosted twice with the corresponding recombinant proteins emulsified in Montanide ISA 51 VG. Immunogenicity was assessed by measurement of antibody quantity and quality, and cytokine production by T cells after the final immunization. RESULTS The SP-SAd36 immunization regimen induced significantly higher antibody avidity against the chimeric P. vivax proteins tested and higher frequencies of IFN-γ and IL-2 CD4+ and CD8+ secreting T cells, when compared to the unmodified SAd36 vector. CONCLUSIONS The addition of the murine IgGκ signal peptide significantly enhances the immunogenicity of a SAd36 vectored P. vivax multi-stage vaccine candidate in mice. The potential of this approach to improve upon existing viral vector vaccine platforms warrants further investigation.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States
| | - Jessica N McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Juan Caceres
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Elena Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States
| | - Igor P Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine 660 S. Euclid Ave., 4511 Forest Park Blvd, St. Louis, MO 63108, United States
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, United States.
| |
Collapse
|
9
|
Moris P, Jongert E, van der Most RG. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum Vaccin Immunother 2017; 14:17-27. [PMID: 28934066 PMCID: PMC5791571 DOI: 10.1080/21645515.2017.1381809] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP), which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the stage between mosquito bite and liver infection. Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies, associations between protection and various types of CMI (CSP-specific CD4+ T cells and INF-γ ELISPOTs) have been identified, but not consistently. It is plausible that certain CD4+ T cells support antibody responses or co-operate with other immune-cell types to potentially elicit protection. However, the identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can be informed by the results of controlled human malaria infection studies.
Collapse
|
10
|
Vujadinovic M, Wunderlich K, Callendret B, Koning M, Vermeulen M, Sanders B, van der Helm E, Gecgel A, Spek D, de Boer K, Stalknecht M, Serroyen J, Grazia Pau M, Schuitemaker H, Zahn R, Custers J, Vellinga J. Adenoviral Type 35 and 26 Vectors with a Bidirectional Expression Cassette in the E1 Region Show an Improved Genetic Stability Profile and Potent Transgene-Specific Immune Response. Hum Gene Ther 2017; 29:337-351. [PMID: 28816084 DOI: 10.1089/hum.2017.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic vaccines based on replication-incompetent adenoviral (AdV) vectors are currently in clinical development. Monovalent AdV vectors express one antigen from an expression cassette placed in most cases in the E1 region. For many vaccines, inclusion of several antigens is necessary in order to raise protective immunity and/or target more than one pathogen or pathogen strain. On the basis of the current technology, a mix of several monovalent vectors can be employed. However, a mix of the standard monovalent AdV vectors may not be optimal with respect to manufacturing costs and the final dose per vector in humans. Alternatively, a variety of bivalent recombinant AdV vector approaches is described in the literature. It remains unclear whether all strategies are equally suitable for clinical development while preserving all the beneficial properties of the monovalent AdV (e.g., immunogenic potency). Therefore, a thorough assessment of different bivalent AdV strategies was performed in a head-to-head fashion compared with the monovalent benchmark. The vectors were tested for rescue efficiency, genetic stability, transgene expression, and potency to induce transgene-specific immune responses. We report that the vector expressing multiple antigens from a bidirectional expression cassette in E1 shows a better genetic stability profile and a potent transgene-specific immune response compared with the other tested bivalent vectors.
Collapse
Affiliation(s)
- Marija Vujadinovic
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Kerstin Wunderlich
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Benoit Callendret
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Marina Koning
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Mark Vermeulen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Barbara Sanders
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Esmeralda van der Helm
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Adile Gecgel
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Dirk Spek
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Karin de Boer
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Masha Stalknecht
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Maria Grazia Pau
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jerome Custers
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jort Vellinga
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| |
Collapse
|
11
|
Antigen capsid-display on human adenovirus 35 via pIX fusion is a potent vaccine platform. PLoS One 2017; 12:e0174728. [PMID: 28362809 PMCID: PMC5375148 DOI: 10.1371/journal.pone.0174728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
Durable protection against complex pathogens is likely to require immunity that comprises both humoral and cellular responses. While heterologous prime-boost regimens based on recombinant, replication-incompetent Adenoviral vectors (AdV) and adjuvanted protein have been able to induce high levels of concomitant humoral and cellular responses, complex manufacturing and handling in the field may limit their success. To combine the benefits of genetic and protein-based vaccination within one vaccine construct and to facilitate their use, we generated Human Adenovirus 35 (HAdV35) vectors genetically encoding a model antigen based on the Plasmodium falciparum (P. falciparum) circumsporozoite (CS) protein and displaying a truncated version of the same antigen (CSshort) via protein IX on the capsid, with or without a flexible glycine-linker and/or a 45Å-spacer. The four tested pIX-antigen display variants were efficiently incorporated and presented on the HAdV35 capsid irrespective of whether a transgene was encoded or not. Transgene-expression and producibility of the display-/expression vectors were not impeded by the pIX-display. In mice, the pIX-modified vectors induced strong humoral antigen-specific immunity that increased with the inclusion of the linker-/spacer molecules, exceeded the responses induced by the genetic, transgene-expressing HAdV35 vector, and surpassed recombinant protein in potency. In addition, the pIX- display/expression vectors elicited high antigen-specific cellular immune responses that matched those of the genetic HAdV35 vector expressing CS. pIX-modified display-/expression HAdV vectors may therefore be a valuable technology for the development of vaccines against complex pathogens, especially in resource-limited settings.
Collapse
|
12
|
Chlamydial Type III Secretion System Needle Protein Induces Protective Immunity against Chlamydia muridarum Intravaginal Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3865802. [PMID: 28459057 PMCID: PMC5385227 DOI: 10.1155/2017/3865802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis imposes serious health problems and causes infertility. Because of asymptomatic onset, it often escapes antibiotic treatment. Therefore, vaccines offer a better option for the prevention of unwanted inflammatory sequelae. The existence of serologically distinct serovars of C. trachomatis suggests that a vaccine will need to provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of structural and effector proteins which is an essential virulence factor. In this study, we expressed the T3SS needle protein of Chlamydia muridarum, TC_0037, an ortholog of C. trachomatis CdsF, in a replication-defective adenoviral vector (AdTC_0037) and evaluated its protective efficacy in an intravaginal Chlamydia muridarum model. For better immune responses, we employed a heterologous prime-boost immunization protocol in which mice were intranasally primed with AdTC_0037 and subcutaneously boosted with recombinant TC_0037 and Toll-like receptor 4 agonist monophosphoryl lipid A mixed in a squalene nanoscale emulsion. We found that immunization with TC_0037 antigen induced specific humoral and T cell responses, decreased Chlamydia loads in the genital tract, and abrogated pathology of upper genital organs. Together, our results suggest that TC_0037, a highly conserved chlamydial T3SS protein, is a good candidate for inclusion in a Chlamydia vaccine.
Collapse
|
13
|
Phares TW, May AD, Genito CJ, Hoyt NA, Khan FA, Porter MD, DeBot M, Waters NC, Saudan P, Dutta S. Rhesus macaque and mouse models for down-selecting circumsporozoite protein based malaria vaccines differ significantly in immunogenicity and functional outcomes. Malar J 2017; 16:115. [PMID: 28288639 PMCID: PMC5347822 DOI: 10.1186/s12936-017-1766-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-human primates, such as the rhesus macaques, are the preferred model for down-selecting human malaria vaccine formulations, but the rhesus model is expensive and does not allow for direct efficacy testing of human malaria vaccines. Transgenic rodent parasites expressing genes of human Plasmodium are now routinely used for efficacy studies of human malaria vaccines. Mice have however rarely predicted success in human malaria trials and there is scepticism whether mouse studies alone are sufficient to move a vaccine candidate into the clinic. METHODS A comparison of immunogenicity, fine-specificity and functional activity of two Alum-adjuvanted Plasmodium falciparum circumsporozoite protein (CSP)-based vaccines was conducted in mouse and rhesus models. One vaccine was a soluble recombinant protein (CSP) and the other was the same CSP covalently conjugated to the Qβ phage particle (Qβ-CSP). RESULTS Mice showed different kinetics of antibody responses and different sensitivity to the NANP-repeat and N-terminal epitopes as compared to rhesus. While mice failed to discern differences between the protective efficacy of CSP versus Qβ-CSP vaccine following direct challenge with transgenic Plasmodium berghei parasites, rhesus serum from the Qβ-CSP-vaccinated animals induced higher in vivo sporozoite neutralization activity. CONCLUSIONS Despite some immunologic parallels between models, these data demonstrate that differences between the immune responses induced in the two models risk conflicting decisions regarding potential vaccine utility in humans. In combination with historical observations, the data presented here suggest that although murine models may be useful for some purposes, non-human primate models may be more likely to predict the human response to investigational vaccines.
Collapse
Affiliation(s)
- Timothy W Phares
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anthony D May
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Christopher J Genito
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Nathan A Hoyt
- Division of Veterinary Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Farhat A Khan
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Michael D Porter
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Margot DeBot
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Norman C Waters
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Philippe Saudan
- Cytos Biotechnology, Wagistrasse 25, 8952, Schlieren, Switzerland
| | - Sheetij Dutta
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| |
Collapse
|
14
|
Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc Natl Acad Sci U S A 2017; 114:2425-2430. [PMID: 28193898 DOI: 10.1073/pnas.1621489114] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
Collapse
|
15
|
Hegge SR, Hickey BW, Mcgrath SM, Stewart VA. Using Hematology Data from Malaria Vaccine Research Trials in Humans and Rhesus Macaques ( Macaca mulatta) To Guide Volume Limits for Blood Withdrawal. Comp Med 2016; 66:474-479. [PMID: 28304251 PMCID: PMC5157963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/21/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
Guidelines on safe volume limits for blood collection from research participants in both humans and laboratory animals vary widely between institutions. The main adverse event that may be encountered in large blood volume withdrawal is iron-deficiency anemia. Monitoring various parameters in a standard blood panel may help to prevent this outcome. To this end, we analyzed the Hgb and MCV values from 43 humans and 46 macaques in malaria vaccine research trials. Although the percentage of blood volume removed was greater for macaques than humans, macaques demonstrated an overall increase of MCV over time, indicating the ability to respond appropriately to frequent volume withdrawals. In contrast, humans showed a consistent declining trend in MCV. These declines in human MCV and Hgb were significant from the beginning to end of the study despite withdrawals that were smaller than recommended volume limits. Limiting the volume withdrawn to no more than 12.5% seemed to be sufficient for macaques, and at 14% or more individual animals tended to fail to respond appropriately to large-volume blood loss, as demonstrated by a decrease in MCV. The overall positive erythropoietic response seen in macaques was likely due to the controlled, iron-fortified diet they received. The lack of erythropoietic response in the human subjects may warrant iron supplementation or reconsideration of current blood volume withdrawal guidelines.
Collapse
Affiliation(s)
- Sara R Hegge
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland;,
| | - Bradley W Hickey
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, Maryland
| | | | - V Ann Stewart
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
16
|
Ifeonu OO, Simon R, Tennant SM, Sheoran AS, Daly MC, Felix V, Kissinger JC, Widmer G, Levine MM, Tzipori S, Silva JC. Cryptosporidium hominis gene catalog: a resource for the selection of novel Cryptosporidium vaccine candidates. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw137. [PMID: 28095366 PMCID: PMC5070614 DOI: 10.1093/database/baw137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/19/2023]
Abstract
Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children under 5 years of age in developing countries and can lead to nutritional stunting and death. Cryptosporidiosis is particularly severe and potentially lethal in immunocompromised hosts. Biological and technical challenges have impeded traditional vaccinology approaches to identify novel targets for the development of vaccines against C. hominis, the predominant species associated with human disease. We deemed that the existence of genomic resources for multiple species in the genus, including a much-improved genome assembly and annotation for C. hominis, makes a reverse vaccinology approach feasible. To this end, we sought to generate a searchable online resource, termed C. hominis gene catalog, which registers all C. hominis genes and their properties relevant for the identification and prioritization of candidate vaccine antigens, including physical attributes, properties related to antigenic potential and expression data. Using bioinformatic approaches, we identified ∼400 C. hominis genes containing properties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol (GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the encoded protein to the secretory pathway. This set can be narrowed further, e.g. by focusing on potential GPI-anchored proteins lacking homologs in the human genome, but with homologs in the other Cryptosporidium species for which genomic data are available, and with low amino acid polymorphism. Additional selection criteria related to recombinant expression and purification include minimizing predicted post-translation modifications and potential disulfide bonds. Forty proteins satisfying these criteria were selected from 3745 proteins in the updated C. hominis annotation. The immunogenic potential of a few of these is currently being tested. Database URL:http://cryptogc.igs.umaryland.edu
Collapse
Affiliation(s)
- Olukemi O Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA.,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA
| | - Raphael Simon
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Sharon M Tennant
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Abhineet S Sheoran
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Maria C Daly
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA
| | - Victor Felix
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA
| | - Jessica C Kissinger
- Department of Genetics, Institute of Bioinformatics and Center for Topical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA and
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Myron M Levine
- Center for Vaccine Development, Institute for Global Health, and Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA .,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Sedegah M, Peters B, Hollingdale MR, Ganeshan HD, Huang J, Farooq F, Belmonte MN, Belmonte AD, Limbach KJ, Diggs C, Soisson L, Chuang I, Villasante ED. Vaccine Strain-Specificity of Protective HLA-Restricted Class 1 P. falciparum Epitopes. PLoS One 2016; 11:e0163026. [PMID: 27695088 PMCID: PMC5047630 DOI: 10.1371/journal.pone.0163026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
A DNA prime/adenovirus boost malaria vaccine encoding Plasmodium falciparum strain 3D7 CSP and AMA1 elicited sterile clinical protection associated with CD8+ T cell interferon-gamma (IFN-γ) cells responses directed to HLA class 1-restricted AMA1 epitopes of the vaccine strain 3D7. Since a highly effective malaria vaccine must be broadly protective against multiple P. falciparum strains, we compared these AMA1 epitopes of two P. falciparum strains (7G8 and 3D7), which differ by single amino acid substitutions, in their ability to recall CD8+ T cell activities using ELISpot and flow cytometry/intracellular staining assays. The 7G8 variant peptides did not recall 3D7 vaccine-induced CD8+ T IFN-γ cell responses in these assays, suggesting that protection may be limited to the vaccine strain. The predicted MHC binding affinities of the 7G8 variant epitopes were similar to the 3D7 epitopes, suggesting that the amino acid substitutions of the 7G8 variants may have interfered with TCR recognition of the MHC:peptide complex or that the 7G8 variant may have acted as an altered peptide ligand. These results stress the importance of functional assays in defining protective epitopes. Clinical Trials Registrations: NCT00870987, NCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
- * E-mail:
| | - Harini D. Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Fouzia Farooq
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Maria N. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Arnel D. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Keith J. Limbach
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Carter Diggs
- USAID, Washington, DC, 20523, United States of America
| | | | - Ilin Chuang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Eileen D. Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| |
Collapse
|
18
|
Cabrera-Mora M, Fonseca JA, Singh B, Zhao C, Makarova N, Dmitriev I, Curiel DT, Blackwell J, Moreno A. A Recombinant Chimeric Ad5/3 Vector Expressing a Multistage Plasmodium Antigen Induces Protective Immunity in Mice Using Heterologous Prime-Boost Immunization Regimens. THE JOURNAL OF IMMUNOLOGY 2016; 197:2748-61. [PMID: 27574299 DOI: 10.4049/jimmunol.1501926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
An ideal malaria vaccine should target several stages of the parasite life cycle and induce antiparasite and antidisease immunity. We have reported a Plasmodium yoelii chimeric multistage recombinant protein (P. yoelii linear peptide chimera/recombinant modular chimera), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein and the merozoite surface protein 1. This chimeric protein elicits protective immunity, mediated by CD4(+) T cells and neutralizing Abs. However, experimental evidence, from pre-erythrocytic vaccine candidates and irradiated sporozoites, has shown that CD8(+) T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8(+) T cell responses. The human adenovirus (Ad) serotype 5 has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing Abs in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity, we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing Abs. Furthermore, we implemented heterologous Ad/protein immunization regimens that include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrates that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development.
Collapse
Affiliation(s)
- Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Jairo Andres Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Chunxia Zhao
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Natalia Makarova
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Igor Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108
| | - Jerry Blackwell
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| |
Collapse
|
19
|
Moreno A, Joyner C. Malaria vaccine clinical trials: what's on the horizon. Curr Opin Immunol 2015; 35:98-106. [PMID: 26172291 DOI: 10.1016/j.coi.2015.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Significant progress toward a malaria vaccine, specifically for Plasmodium falciparum, has been made in the past few years with the completion of numerous clinical trials. Each trial has utilized a unique combination of antigens, delivery platforms, and adjuvants, which has provided the research community with a wealth of critical information to apply towards the development of next generation malaria vaccines. Despite the progress toward a P. falciparum vaccine, P. vivax vaccine research requires more momentum and additional investigations to identify novel vaccine candidates. In this review, recently completed and ongoing malaria vaccine clinical trials as well as vaccine candidates that are in the development pipeline are reviewed. Perspectives for future research using post-genomic mining, nonhuman primate models, and systems biology are also discussed.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University, 69 Jesse Hill, Jr. Drive, SE, Atlanta, GA 30303, USA.
| | - Chester Joyner
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| |
Collapse
|
20
|
de Cassan SC, Shakri AR, Llewellyn D, Elias SC, Cho JS, Goodman AL, Jin J, Douglas AD, Suwanarusk R, Nosten FH, Rénia L, Russell B, Chitnis CE, Draper SJ. Preclinical Assessment of Viral Vectored and Protein Vaccines Targeting the Duffy-Binding Protein Region II of Plasmodium Vivax. Front Immunol 2015. [PMID: 26217340 PMCID: PMC4495344 DOI: 10.3389/fimmu.2015.00348] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malaria vaccine development has largely focused on Plasmodium falciparum; however, a reawakening to the importance of Plasmodium vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII) with the human Duffy antigen receptor for chemokines (DARC) makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5), chimpanzee adenovirus serotype 63 (ChAd63), and modified vaccinia virus Ankara (MVA) vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime or in “mixed-modality” adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants). Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII, and have recently entered clinical trials, which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.
Collapse
Affiliation(s)
| | - A Rushdi Shakri
- International Center for Genetic Engineering and Biotechnology , New Delhi , India
| | | | - Sean C Elias
- The Jenner Institute, University of Oxford , Oxford , UK
| | - Jee Sun Cho
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore ; Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - Anna L Goodman
- The Jenner Institute, University of Oxford , Oxford , UK
| | - Jing Jin
- The Jenner Institute, University of Oxford , Oxford , UK
| | | | - Rossarin Suwanarusk
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore ; Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - François H Nosten
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University , Mae Sot , Thailand
| | - Laurent Rénia
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore ; Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - Bruce Russell
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore
| | - Chetan E Chitnis
- International Center for Genetic Engineering and Biotechnology , New Delhi , India
| | - Simon J Draper
- The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|
21
|
Ockenhouse CF, Regules J, Tosh D, Cowden J, Kathcart A, Cummings J, Paolino K, Moon J, Komisar J, Kamau E, Oliver T, Chhoeu A, Murphy J, Lyke K, Laurens M, Birkett A, Lee C, Weltzin R, Wille-Reece U, Sedegah M, Hendriks J, Versteege I, Pau MG, Sadoff J, Vanloubbeeck Y, Lievens M, Heerwegh D, Moris P, Guerra Mendoza Y, Jongert E, Cohen J, Voss G, Ballou WR, Vekemans J. Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naïve Adults. PLoS One 2015; 10:e0131571. [PMID: 26148007 PMCID: PMC4492580 DOI: 10.1371/journal.pone.0131571] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Methods In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection. Results ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-γ enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001). Conclusions An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens. Trial Registration ClinicalTrials.gov NCT01366534
Collapse
Affiliation(s)
- Christian F. Ockenhouse
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- * E-mail:
| | - Jason Regules
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Donna Tosh
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jessica Cowden
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - April Kathcart
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - James Cummings
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Kristopher Paolino
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - James Moon
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jack Komisar
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Edwin Kamau
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Thomas Oliver
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Austin Chhoeu
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jitta Murphy
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Kirsten Lyke
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Matthew Laurens
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | | - Cynthia Lee
- PATH-MVI, Washington, DC, United States of America
| | - Rich Weltzin
- PATH-MVI, Washington, DC, United States of America
| | | | - Martha Sedegah
- Naval Medical Research Center, Silver Spring, MD, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Noe AR, Espinosa D, Li X, Coelho-dos-Reis JGA, Funakoshi R, Giardina S, Jin H, Retallack DM, Haverstock R, Allen JR, Vedvick TS, Fox CB, Reed SG, Ayala R, Roberts B, Winram SB, Sacci J, Tsuji M, Zavala F, Gutierrez GM. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate. PLoS One 2014; 9:e107764. [PMID: 25247295 PMCID: PMC4172688 DOI: 10.1371/journal.pone.0107764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.
Collapse
Affiliation(s)
- Amy R. Noe
- Leidos Inc., Frederick, Maryland, United States of America
| | - Diego Espinosa
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jordana G. A. Coelho-dos-Reis
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Ryota Funakoshi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Steve Giardina
- Leidos Inc., Frederick, Maryland, United States of America
| | - Hongfan Jin
- Pfenex Inc., San Diego, California, United States of America
| | | | - Ryan Haverstock
- Pfenex Inc., San Diego, California, United States of America
| | | | - Thomas S. Vedvick
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Ramses Ayala
- Leidos Inc., Frederick, Maryland, United States of America
| | - Brian Roberts
- Leidos Inc., Frederick, Maryland, United States of America
| | | | - John Sacci
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
23
|
Hodgson SH, Choudhary P, Elias SC, Milne KH, Rampling TW, Biswas S, Poulton ID, Miura K, Douglas AD, Alanine DG, Illingworth JJ, de Cassan SC, Zhu D, Nicosia A, Long CA, Moyle S, Berrie E, Lawrie AM, Wu Y, Ellis RD, Hill AVS, Draper SJ. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial. Mol Ther 2014; 22:2142-2154. [PMID: 25156127 PMCID: PMC4250079 DOI: 10.1038/mt.2014.157] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising “mixed-modality” regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.
Collapse
Affiliation(s)
- Susanne H Hodgson
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK; Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | - Sean C Elias
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Kathryn H Milne
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Thomas W Rampling
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK; Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK
| | - Sumi Biswas
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Ian D Poulton
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | | | | | | | | | - Daming Zhu
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Alfredo Nicosia
- Okairòs, Rome, Italy; CEINGE, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Sarah Moyle
- Clinical Biomanufacturing Facility, University of Oxford, Churchill Hospital, Oxford, UK
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Churchill Hospital, Oxford, UK
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, University of Oxford, Churchill Hospital, Oxford, UK
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, Maryland, USA
| | - Ruth D Ellis
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, Maryland, USA
| | - Adrian V S Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Simon J Draper
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Birkett AJ, Moorthy VS, Loucq C, Chitnis CE, Kaslow DC. Malaria vaccine R&D in the Decade of Vaccines: breakthroughs, challenges and opportunities. Vaccine 2014; 31 Suppl 2:B233-43. [PMID: 23598488 DOI: 10.1016/j.vaccine.2013.02.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/06/2013] [Accepted: 02/25/2013] [Indexed: 01/23/2023]
Abstract
While recent progress has been made in reducing malaria mortality with other interventions, vaccines are still urgently needed to further reduce the incidence of clinical disease, including during pregnancy, and to provide "herd protection" by blocking parasite transmission. The most clinically advanced candidate, RTS,S, is presently undergoing Phase 3 evaluation in young African children across 13 clinical sites in eight African countries. In the 12-month period following vaccination, RTS,S conferred approximately 50% protection from clinical Plasmodium falciparum disease in children aged 5-17 months, and approximately 30% protection in children aged 6-12 weeks when administered in conjunction with Expanded Program for Immunization (EPI) vaccines. The development of more highly efficacious vaccines to prevent clinical disease caused by both P. falciparum and Plasmodium vivax, as well as vaccines to support elimination efforts by inducing immunity that blocks malaria parasite transmission, are priorities. Some key barriers to malaria vaccine development include: a paucity of well-characterized target immunogens and an absence of clear correlates of protection to enable vaccine development targeting all stages of the P. falciparum and P. vivax lifecycles; a limited number of safe and effective delivery systems, including adjuvants, that induce potent, long-lived protective immunity, be it by antibody, CD4+, and/or CD8+ T cell responses; and, for vaccines designed to provide "herd protection" by targeting sexual stage and/or mosquito antigens, the lack of a clear clinical and regulatory pathway to licensure using non-traditional endpoints. Recommendations to overcome these, and other key challenges, are suggested in this document.
Collapse
Affiliation(s)
- Ashley J Birkett
- PATH Malaria Vaccine Initiative, Washington, DC 20001-2621, USA.
| | | | | | | | | |
Collapse
|
25
|
Levast B, Awate S, Babiuk L, Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S. Vaccine Potentiation by Combination Adjuvants. Vaccines (Basel) 2014; 2:297-322. [PMID: 26344621 PMCID: PMC4494260 DOI: 10.3390/vaccines2020297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023] Open
Abstract
Adjuvants are crucial components of vaccines. They significantly improve vaccine efficacy by modulating, enhancing, or extending the immune response and at the same time reducing the amount of antigen needed. In contrast to previously licensed adjuvants, current successful adjuvant formulations often consist of several molecules, that when combined, act synergistically by activating a variety of immune mechanisms. These "combination adjuvants" are already registered with several vaccines, both in humans and animals, and novel combination adjuvants are in the pipeline. With improved knowledge of the type of immune responses needed to successfully induce disease protection by vaccination, combination adjuvants are particularly suited to not only enhance, but also direct the immune responses desired to be either Th1-, Th2- or Th17-biased. Indeed, in view of the variety of disease and population targets for vaccine development, a panel of adjuvants will be needed to address different disease targets and populations. Here, we will review well-known and new combination adjuvants already licensed or currently in development-including ISCOMs, liposomes, Adjuvant Systems Montanides, and triple adjuvant combinations-and summarize their performance in preclinical and clinical trials. Several of these combination adjuvants are promising having promoted improved and balanced immune responses.
Collapse
Affiliation(s)
- Benoît Levast
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada.
| | - Sunita Awate
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada.
| | - Lorne Babiuk
- University Hall, University of Alberta, Edmonton, AB T6G 2J9, Canada.
| | - George Mutwiri
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada.
- School of Public Health, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Volker Gerdts
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada.
- Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada.
- Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
26
|
Regules JA, Cummings JF, Ockenhouse CF. The RTS,S vaccine candidate for malaria. Expert Rev Vaccines 2014; 10:589-99. [DOI: 10.1586/erv.11.57] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
de Cassan SC, Draper SJ. Recent advances in antibody-inducing poxviral and adenoviral vectored vaccine delivery platforms for difficult disease targets. Expert Rev Vaccines 2014; 12:365-78. [DOI: 10.1586/erv.13.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Demirjian A, Levy O. Novel Vaccines: Bridging Research, Development and Production. Expert Rev Vaccines 2014; 7:1321-4. [DOI: 10.1586/14760584.7.9.1321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Ouédraogo A, Tiono AB, Kargougou D, Yaro JB, Ouédraogo E, Kaboré Y, Kangoye D, Bougouma EC, Gansane A, Henri N, Diarra A, Sanon S, Soulama I, Konate AT, Watson NL, Brown V, Hendriks J, Pau MG, Versteege I, Wiesken E, Sadoff J, Nebie I, Sirima SB. A phase 1b randomized, controlled, double-blinded dosage-escalation trial to evaluate the safety, reactogenicity and immunogenicity of an adenovirus type 35 based circumsporozoite malaria vaccine in Burkinabe healthy adults 18 to 45 years of age. PLoS One 2013; 8:e78679. [PMID: 24244339 PMCID: PMC3823848 DOI: 10.1371/journal.pone.0078679] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022] Open
Abstract
Background Ad35.CS.01 is a pre-erythrocytic malaria candidate vaccine. It is a codon optimized nucleotide sequence representing the P. falciparum circumsporozoite (CS) surface antigen inserted in a replication deficient Adenovirus 35 backbone. A Phase 1a trial has been conducted in the USA in naïve adults and showed that the vaccine was safe. The aim of this study is to assess the safety and immunogenicity of ascending dosages in sub Saharan Africa. Methods A double blind, randomized, controlled, dose escalation, phase Ib trial was conducted in a rural area of Balonghin, the Saponé health district (Burkina Faso). Forty-eight healthy adults aged 18-45 years were randomized into 4 cohorts of 12 to receive three vaccine doses (day 0, 28 and 84) of 109, 1010, 5X1010, 1011 vp of Ad35.CS.01 or normal saline by intra muscular injection. Subjects were monitored carefully during the 14 days following each vaccination for non serious adverse events. Severe and serious adverse events were collected throughout the participant study duration (12 months from the first vaccination). Humoral and cellular immune responses were measured on study days 0, 28, 56, 84, 112 and 140. Results Of the forty-eight subjects enrolled, forty-four (91.7%) received all three scheduled vaccine doses. Local reactions, all of mild severity, occurred in thirteen (27.1%) subjects. Severe (grade 3) laboratory abnormalities occurred in five (10.4%) subjects. One serious adverse event was reported and attributed to infection judged unrelated to vaccine. The vaccine induced both antibody titers and CD8 T cells producing IFNγ and TNFα with specificity to CS while eliciting modest neutralizing antibody responses against Ad35. Conclusion Study vaccine Ad35.CS.01 at four different dose levels was well-tolerated and modestly immunogenic in this population. These results suggest that Ad35.CS.01 should be further investigated for preliminary efficacy in human challenge models and as part of heterologous prime-boost vaccination strategies. Trial Registration ClinicalTrials.gov NCT01018459 http://clinicaltrials.gov/ct2/show/NCT01018459
Collapse
Affiliation(s)
- Alphonse Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred B. Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Jean Baptiste Yaro
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Esperance Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssouf Kaboré
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - David Kangoye
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C. Bougouma
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Adama Gansane
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Henri
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Souleymane Sanon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amadou T. Konate
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nora L. Watson
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Valerie Brown
- The EMMES Corporation, Rockville, Maryland, United States of America
| | | | | | | | | | | | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Sodiomon B. Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe d’action et de Recherche en Santé, Ouagadougou, Burkina Faso
- * E-mail:
| |
Collapse
|
30
|
Creech CB, Dekker CL, Ho D, Phillips S, Mackey S, Murray-Krezan C, Grazia Pau M, Hendriks J, Brown V, Dally LG, Versteege I, Edwards KM. Randomized, placebo-controlled trial to assess the safety and immunogenicity of an adenovirus type 35-based circumsporozoite malaria vaccine in healthy adults. Hum Vaccin Immunother 2013; 9:2548-57. [PMID: 23955431 DOI: 10.4161/hv.26038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria results in over 650,000 deaths each year; thus, there is an urgent need for an effective vaccine. Pre-clinical studies and recently reported human trials suggest that pre-erythrocytic stage vaccines can provide protection against infection. A Phase 1, randomized, placebo-controlled, dose-escalation study was conducted with a vaccine composed of a replication-deficient adenovirus-35 backbone with P. falciparum circumsporozoite (CS) surface antigen (Ad35.CS.01). Healthy adult subjects received three doses of 10 (8), 10 (9), 10 (10), or 10 (11) vp/mL Ad35.CS.01 vaccine or saline placebo intramuscularly at 0, 1, and 6-mo intervals. Adverse events were assessed and anti-CS antibody responses were determined by ELISA. Seventy-two individuals were enrolled, with age, gender, and ethnicity similar across each study arm. While the vaccine was generally well tolerated, adverse events were more frequent in the highest dose groups (10 (10) and 10 (11) vp/mL). More robust humoral responses were also noted at the highest doses, with 73% developing a positive ELISA response after the three dose series of 10 (11) vp/mL. The Ad35.CS.01 vaccine was most immunogenic at the highest dosages (10 (10) and 10 (11) vp/mL). Reactogenicity findings were more common after the 10 (11) vp/mL dose, although most were mild or moderate in nature and resolved without therapy.
Collapse
Affiliation(s)
- C Buddy Creech
- Vanderbilt Vaccine Research Program; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Cornelia L Dekker
- Stanford-LPCH Vaccine Program, Department of Pediatrics-Infectious Diseases; Stanford University School of Medicine; Stanford, CA USA
| | - Dora Ho
- Stanford-LPCH Vaccine Program, Department of Pediatrics-Infectious Diseases; Stanford University School of Medicine; Stanford, CA USA
| | - Shanda Phillips
- Vanderbilt Vaccine Research Program; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Sally Mackey
- Stanford-LPCH Vaccine Program, Department of Pediatrics-Infectious Diseases; Stanford University School of Medicine; Stanford, CA USA
| | - Cristina Murray-Krezan
- Division of Epidemiology, Biostatistics and Preventive Medicine; Department of Internal Medicine; University of New Mexico Health Sciences Center; Albuquerque, NM USA
| | | | | | | | | | | | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville, TN USA
| |
Collapse
|
31
|
Baldwin SL, Ching LK, Pine SO, Moutaftsi M, Lucas E, Vallur A, Orr MT, Bertholet S, Reed SG, Coler RN. Protection against tuberculosis with homologous or heterologous protein/vector vaccine approaches is not dependent on CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2514-2525. [PMID: 23904160 DOI: 10.4049/jimmunol.1301161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considerable effort has been directed to develop Mycobacterium tuberculosis vaccines to boost bacille Calmette-Guérin or for those who cannot be immunized with bacille Calmette-Guérin. We hypothesized that CD4(+) and CD8(+) T cell responses with a heterologous prime/boost vaccine approach could induce long-lived vaccine efficacy against M. tuberculosis in C57BL/6 mice. We produced an adenovirus vector expressing ID93 (Ad5-ID93) for induction of CD8 T cells to use with our candidate tuberculosis vaccine, ID93/glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE), which induces potent Th1 CD4 T cells. Ad5-ID93 generates ID93-specific CD8(+) T cell responses and induces protection against M. tuberculosis. When Ad5-ID93 is administered in a prime-boost strategy with ID93/GLA-SE, both CD4(+) and CD8(+) T cells are generated and provide protection against M. tuberculosis. In a MHC class I-deficient mouse model, all groups including the Ad5-ID93 group elicited an Ag-specific CD4(+) T cell response and significantly fewer Ag-specific CD8(+) T cells, but were still protected against M. tuberculosis, suggesting that CD4(+) Th1 T cells could compensate for the loss of CD8(+) T cells. Lastly, the order of the heterologous immunizations was critical. Long-lived vaccine protection was observed only when Ad5-ID93 was given as the boost following an ID93/GLA-SE prime. The homologous ID93/GLA-SE prime/boost regimen also induced long-lived protection. One of the correlates of protection between these two approaches was an increase in the total number of ID93-specific IFN-γ-producing CD4(+) T cells 6 mo following the last immunization. Our findings provide insight into the development of vaccines not only for tuberculosis, but other diseases requiring T cell immunity.
Collapse
Affiliation(s)
- Susan L Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102
| | - Lance K Ching
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102
| | - Samuel O Pine
- Allergan, Inc. 2525 Dupont Dr., Irvine, CA USA 92612
| | - Magdalini Moutaftsi
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102
| | - Elyse Lucas
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102
| | - Aarthy Vallur
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102
| | - Mark T Orr
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102
| | | | - Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102.,Department of Global Health, University of Washington, Seattle, WA, USA 98195.,Immune Design Corp., 1124 Columbia Street, Suite 700, Seattle, WA, USA 98104
| | - Rhea N Coler
- Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, USA 98102.,Department of Global Health, University of Washington, Seattle, WA, USA 98195
| |
Collapse
|
32
|
Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282913. [PMID: 23710439 PMCID: PMC3655447 DOI: 10.1155/2013/282913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
There is no malaria vaccine currently available, and the most advanced candidate has recently reported a modest 30% efficacy against clinical malaria. Although many efforts have been dedicated to achieve this goal, the research was mainly directed to identify antigenic targets. Nevertheless, the latest progresses on understanding how immune system works and the data recovered from vaccination studies have conferred to the vaccine formulation its deserved relevance. Additionally to the antigen nature, the manner in which it is presented (delivery adjuvants) as well as the immunostimulatory effect of the formulation components (immunostimulants) modulates the immune response elicited. Protective immunity against malaria requires the induction of humoral, antibody-dependent cellular inhibition (ADCI) and effector and memory cell responses. This review summarizes the status of adjuvants that have been or are being employed in the malaria vaccine development, focusing on the pharmaceutical and immunological aspects, as well as on their immunization outcomings at clinical and preclinical stages.
Collapse
|
33
|
Heppner DG. The malaria vaccine--status quo 2013. Travel Med Infect Dis 2013; 11:2-7. [PMID: 23454205 DOI: 10.1016/j.tmaid.2013.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 01/23/2023]
Abstract
It has been 40 years since David Clyde's landmark induction of sterile immunity against deadly falciparum malaria through immunization by exposure to 1000 irradiated mosquitoes, and the first recombinant Plasmodium falciparum vaccine, RTS,S/AS01, is now in Phase III testing. Interim reports from this largest ever Phase III pediatric trial in Africa show the malaria vaccine decreased clinical and severe disease by 56% and 47% respectively in 5-17 month olds, and by 31% and 26% respectively in infants participating in the Expanded Programme on Immunization. Final data in 2014 will more fully describe the efficacy of RTS,S/AS01 over time against all falciparum malaria cases under a variety of transmission conditions, results essential for decisions on licensure and deployment. Meanwhile, candidate components of a second-generation malaria vaccine are emerging. A field trial of the polymorphic blood stage vaccine AMA-1/AS02 demonstrated no overall efficacy (ve = 17%, P = 0.18), yet a sieve analysis revealed allele-specific efficacy (ve = 64%, P = 0.03) against the vaccine strain, suggesting AMA-1 antigens could be part of a multicomponent vaccine. Initial trials of new antigens include the highly conserved pre-erythrocytic candidate PfCelTOS, a synthetic Plasmodium vivax circumsporozoite antigen VMP-001, and sexual stage vaccines containing antigens from both P. falciparum (Pfs25) and P. vivax (Pvs25) intended to interrupt transmission. Targets for a vaccine to protect against placental malaria, the leading remediable cause of low birth weight infants in Africa, have been identified. Lastly, renewed efforts are underway to develop a practical attenuated-sporozoite vaccine to recapture the promise of David Clyde's experiment.
Collapse
Affiliation(s)
- D Gray Heppner
- Heppner Associates, LLC, 9441 Brenner Court, Vienna, VA 22180-3402, USA.
| |
Collapse
|
34
|
Riley EM, Stewart VA. Immune mechanisms in malaria: new insights in vaccine development. Nat Med 2013; 19:168-78. [DOI: 10.1038/nm.3083] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/07/2013] [Indexed: 02/07/2023]
|
35
|
Eradication of malaria through genetic engineering: the current situation. ASIAN PAC J TROP MED 2013; 6:85-94. [DOI: 10.1016/s1995-7645(13)60001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/15/2012] [Accepted: 01/15/2013] [Indexed: 01/03/2023] Open
|
36
|
Plowe CV. Malaria Vaccines. Infect Dis (Lond) 2013. [DOI: 10.1007/978-1-4614-5719-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Schuldt NJ, Aldhamen YA, Godbehere-Roosa S, Seregin SS, Kousa YA, Amalfitano A. Immunogenicity when utilizing adenovirus serotype 4 and 5 vaccines expressing circumsporozoite protein in naïve and adenovirus (Ad5) immune mice. Malar J 2012; 11:209. [PMID: 22720732 PMCID: PMC3472263 DOI: 10.1186/1475-2875-11-209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/16/2012] [Indexed: 12/13/2022] Open
Abstract
Background Induction of potent long lasting effector T cell responses against liver stage malaria antigens strongly correlates with protection from malaria. While Adenovirus serotype 5 (Ad5) based malaria vaccine platforms have the ability to induce potent effector T cell responses against transgenes, high rates of pre-existing Ad5 immunity in malaria endemic regions has prompted study of alternative Ad serotype based malaria vaccines as replacements for Ad5 based malaria vaccines. The research described in this article examines the utility of alternative serotype adenovirus serotype 4 (Ad4) expressing a sporozoite surface protein (circumsporozoite protein (CSP)) (Ad4-CSP) to induce immune responses against CSP. The immunogenicity of Ad4-CSP was also tested in homologous and heterologous prime boost vaccinations in both Ad5 naïve and Ad5 immune backgrounds as compared to use of Ad5-CSP. Results In Ad5 naïve animals, use of Ad4-CSP priming vaccinations followed by boosting with Ad5-CSP (Ad4-CSP/Ad5-CSP) maximally increased the numbers of CSP specific cytokine secreting cytotoxic T cells relative to repeated use of Ad5-CSP. The Ad4-CSP/Ad5-CSP regimen also induced equivalent levels of CSP specific cell killing as did homologous prime-boost vaccinations with Ad5-CSP, despite stimulating lower numbers of CSP specific cytotoxic T cells. Priming with Ad4-CSP followed by a homologous boost resulted in significantly less CSP specific humoral responses than any other vaccination regimen tested in Ad naïve animals. In Ad5 immune animals, addition of Ad4-CSP in homologous or heterologous prime boost resulted in inductions of higher CSP specific responses than animals repeatedly vaccinated with Ad5-CSP alone. However, the observed responses were well below those observed in similarly treated Ad naïve mice. Conclusions While the Ad4-CSP/Ad5-CSP and Ad5-CSP/Ad5-CSP vaccination regimens resulted in equivalent CSP specific killing in Ad naïve animals, Ad4-CSP/Ad5-CSP achieved this result with a lower percentage of CSP specific CD8+ T cells and a higher number of IFNγ secreting cells, suggesting that the Ad4-CSP/Ad5-CSP vaccination regimen elicits more efficient cytotoxic T cells. In Ad5 immune animals use of Ad4-CSP improved CSP specific immune responses as compared to repeated use of Ad5-CSP, but could not achieve the levels of immunogenicity observed when the same vaccine regimens were used in Ad naïve animals. These data indicate the existence of some level of immunological cross-reactivity between these two adenovirus subgroups. Based on these results, it is suggested that future studies should undertake similarly stringent analyses of alternative Ad serotypes to establish their effectiveness as replacements for Ad5.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Genetics Program, Michigan State University, 2240 E Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
38
|
Malaria vaccines: focus on adenovirus based vectors. Vaccine 2012; 30:5191-8. [PMID: 22683663 DOI: 10.1016/j.vaccine.2012.05.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
Abstract
Protection against malaria through vaccination is known to be achievable, as first demonstrated over 30 years ago. Vaccination via repeated bites with Plasmodium falciparum infected and irradiated mosquitoes provided short lived protection from malaria infection to these vaccinees. Though this method still remains the most protective malaria vaccine to date, it is likely impractical for widespread use. However, recent developments in sub-unit malaria vaccine platforms are bridging the gap between high levels of protection and feasibility. The current leading sub-unit vaccine, RTS,S (which consists of a fusion of a portion of the P. falciparum derived circumsporozoite protein to the Hepatitis B surface antigen), has demonstrated the ability to induce protection from malaria infection in up 56% of RTS,S vaccinees. Though encouraging, these results may fall short of protection levels generally considered to be required to achieve eradication of malaria. Therefore, the use of viral vectored vaccine platforms has recently been pursued to further improve the efficacy of malaria targeted vaccines. Adenovirus based vaccine platforms have demonstrated potent anti-malaria immune responses when used alone, as well when utilized in heterologous prime boost regimens. This review will provide an update as to the current advancements in malaria vaccine development, with a focus on the use of adenovirus vectored malaria vaccines.
Collapse
|
39
|
Arama C, Assefaw-Redda Y, Rodriguez A, Fernández C, Corradin G, Kaufmann SH, Reece ST, Troye-Blomberg M. Heterologous prime-boost regimen adenovector 35-circumsporozoite protein vaccine/recombinant Bacillus Calmette-Guérin expressing the Plasmodium falciparum circumsporozoite induces enhanced long-term memory immunity in BALB/c mice. Vaccine 2012; 30:4040-5. [DOI: 10.1016/j.vaccine.2012.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/30/2012] [Accepted: 04/07/2012] [Indexed: 10/28/2022]
|
40
|
Vijayan A, Gómez CE, Espinosa DA, Goodman AG, Sanchez-Sampedro L, Sorzano COS, Zavala F, Esteban M. Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:6407-17. [PMID: 22615208 DOI: 10.4049/jimmunol.1102492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Victor Nussenzweig
- Department of Pathology, New York University Langone Medical Center, New York, New York, USA
| | | | | |
Collapse
|
43
|
Abstract
Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants.
Collapse
Affiliation(s)
- Mahamadou A Thera
- Malaria Research and Training Center, Faculty of Medicine, University of Bamako, Bamako, Mali, West Africa.
| | | |
Collapse
|
44
|
Sedegah M, Tamminga C, McGrath S, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Manohar N, Richie NO, Wood C, Long CA, Regis D, Williams FT, Shi M, Chuang I, Spring M, Epstein JE, Mendoza-Silveiras J, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Soisson L, Diggs C, Carucci D, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults. PLoS One 2011; 6:e24586. [PMID: 22003383 PMCID: PMC3189181 DOI: 10.1371/journal.pone.0024586] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 08/15/2011] [Indexed: 11/24/2022] Open
Abstract
Background Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers. Methodology/Principal Findings The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). Group 1 (n = 6) healthy volunteers received one intramuscular injection of 2×10∧10 particle units (1×10∧10 each construct) and Group 2 (n = 6) a five-fold higher dose. Transient, mild to moderate adverse events were more pronounced with the higher dose. ELISpot responses to CSP and AMA1 peaked at 1 month, were higher in the low dose (geomean CSP = 422, AMA1 = 862 spot forming cells/million) than in the high dose (CSP = 154, p = 0.049, AMA1 = 423, p = 0.045) group and were still positive at 12 months in a number of volunteers. ELISpot depletion assays identified dependence on CD4+ or on both CD4+ and CD8+ T cells, with few responses dependent only on CD8+ T cells. Intracellular cytokine staining detected stronger CD8+ than CD4+ T cell IFN-γ responses (CSP p = 0.0001, AMA1 p = 0.003), but similar frequencies of multifunctional CD4+ and CD8+ T cells secreting two or more of IFN-γ, TNF-α or IL-2. Median fluorescence intensities were 7–10 fold higher in triple than single secreting cells. Antibody responses were low but trended higher in the high dose group and did not inhibit growth of cultured P. falciparum blood stage parasites. Significance As found in other trials, adenovectored vaccines appeared safe and well-tolerated at doses up to 1×10∧11 particle units. This is the first demonstration in humans of a malaria vaccine eliciting strong CD8+ T cell IFN-γ responses. Trial Registration ClinicalTrials.govNCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tamminga C, Sedegah M, Regis D, Chuang I, Epstein JE, Spring M, Mendoza-Silveiras J, McGrath S, Maiolatesi S, Reyes S, Steinbeiss V, Fedders C, Smith K, House B, Ganeshan H, Lejano J, Abot E, Banania GJ, Sayo R, Farooq F, Belmonte M, Murphy J, Komisar J, Williams J, Shi M, Brambilla D, Manohar N, Richie NO, Wood C, Limbach K, Patterson NB, Bruder JT, Doolan DL, King CR, Diggs C, Soisson L, Carucci D, Levine G, Dutta S, Hollingdale MR, Ockenhouse CF, Richie TL. Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS One 2011; 6:e25868. [PMID: 22003411 PMCID: PMC3189219 DOI: 10.1371/journal.pone.0025868] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 09/12/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge. METHODOLOGY/PRINCIPAL FINDINGS NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1 x 1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected. SIGNIFICANCE The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection. TRIAL REGISTRATION ClinicalTrials.gov NCT00392015.
Collapse
Affiliation(s)
- Cindy Tamminga
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Almeida APMM, Bruna-Romero O. Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:193-201. [PMID: 21881774 DOI: 10.1590/s0074-02762011000900024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022] Open
Abstract
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.
Collapse
|
47
|
de Cassan SC, Forbes EK, Douglas AD, Milicic A, Singh B, Gupta P, Chauhan VS, Chitnis CE, Gilbert SC, Hill AVS, Draper SJ. The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:2602-16. [PMID: 21813775 PMCID: PMC3160495 DOI: 10.4049/jimmunol.1101004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A central goal in vaccinology is the induction of high and sustained Ab responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent preclinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity, which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as aluminum hydroxide to new preclinical adjuvants and adjuvants in clinical development, such as Abisco 100, CoVaccine HT, Montanide ISA720, and stable emulsion-glucopyranosyl lipid A, for their ability to induce high and sustained Ab responses and T cell responses. These adjuvants induced a broad range of Ab responses when used in a three-shot protein-in-adjuvant regimen using the model Ag OVA and leading blood-stage malaria vaccine candidate Ags. Surprisingly, this range of Ab immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost Ab responses primed by a human adenovirus serotype 5 vaccine recombinant for the same Ag. This human adenovirus serotype 5-protein regimen also induced a more cytophilic Ab response and demonstrated improved efficacy of merozoite surface protein-1 protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination and may circumvent the need for more potent chemical adjuvants.
Collapse
Affiliation(s)
- Simone C de Cassan
- The Jenner Institute, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schuldt NJ, Aldhamen YA, Appledorn DM, Seregin SS, Kousa Y, Godbehere S, Amalfitano A. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses. PLoS One 2011; 6:e24147. [PMID: 21912619 PMCID: PMC3166157 DOI: 10.1371/journal.pone.0024147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 08/05/2011] [Indexed: 11/20/2022] Open
Abstract
Background Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses. Methods and Findings BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo. Conclusion Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo.
Collapse
Affiliation(s)
- Nathaniel J. Schuldt
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel M. Appledorn
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sergey S. Seregin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Youssef Kousa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Andrea Amalfitano
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pediatrics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
49
|
Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 2011; 10:471-86. [PMID: 21506645 DOI: 10.1586/erv.11.29] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immunostimulants 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and the saponin QS-21 are part of licensed or candidate vaccines. MPL and QS-21 directly affect the innate immune response to orchestrate the quality and intensity of the adaptive immune response to the vaccine antigens. The combination of immunostimulants in different adjuvant formulations forms the basis of Adjuvant Systems (AS) as a way to promote appropriate protective immune responses following vaccination. MPL and aluminum salts are present in AS04, and both MPL and QS-21 are present in AS01 and AS02, which are liposome- and emulsion-based formulations, respectively. The recent clinical performance of AS01-, AS02- and AS04-adjuvanted vaccines will be discussed in the context of the diseases being targeted. The licensing of two AS04-adjuvanted vaccines and the initiation of Phase III trials with an AS01-adjuvanted vaccine demonstrate the potential to develop new or improved human vaccines that contain MPL or MPL and QS-21.
Collapse
|
50
|
Schwenk RJ, Richie TL. Protective immunity to pre-erythrocytic stage malaria. Trends Parasitol 2011; 27:306-14. [PMID: 21435951 DOI: 10.1016/j.pt.2011.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/23/2023]
Abstract
The development of a vaccine against malaria is a major research priority given the burden of disease, death and economic loss inflicted upon the tropical world by this parasite. Despite decades of effort, however, a vaccine remains elusive. The best candidate is a subunit vaccine termed RTS,S but this provides only partial protection against clinical disease. This review examines what is known about protective immunity against pre-erythrocytic stage malaria by considering the humoral and T cell-mediated immune responses that are induced by attenuated sporozoites and by the RTS,S vaccine. On the basis of these observations a set of research priorities are defined that are crucial for the development of a vaccine capable of inducing long-lasting and high-grade protection against malaria.
Collapse
Affiliation(s)
- Robert J Schwenk
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Division of Malaria Vaccine Development, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | |
Collapse
|