1
|
Bisht K, Elmassry MM, Mahmud HA, Bhattacharjee S, Deonarine A, Black C, Francisco MJS, Hamood AN, Wakeman CA. Malonate is relevant to the lung environment and induces genome-wide stress responses in Pseudomonas aeruginosa. RESEARCH SQUARE 2024:rs.3.rs-4870062. [PMID: 39315254 PMCID: PMC11419262 DOI: 10.21203/rs.3.rs-4870062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Versatility in carbon source utilization is a major contributor to niche adaptation in Pseudomonas aeruginosa. Malonate is among the abundant carbon sources in the lung airways, yet it is understudied. Recently, we characterized how malonate impacts quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa. Herein, we show that malonate as a carbon source supports more robust growth in comparison to glycerol in several cystic fibrosis isolates of P. aeruginosa. Furthermore, we show phenotypic responses to malonate were conserved among clinical strains, i.e., formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin. Moreover, we explored transcriptional adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate versus glycerol as a sole carbon source using transcriptomics. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. We identified several genes that were required for optimal growth of P. aeruginosa in malonate. Our findings reveal important remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to the accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation.
Collapse
|
2
|
Bisht K, Elmassry MM, Al Mahmud H, Bhattacharjee S, Deonarine A, Black C, San Francisco MJ, Hamood AN, Wakeman CA. Global stress response in Pseudomonas aeruginosa upon malonate utilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586813. [PMID: 38585990 PMCID: PMC10996706 DOI: 10.1101/2024.03.26.586813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Versatility in carbon source utilization assists Pseudomonas aeruginosa in its adaptation to various niches. Recently, we characterized the role of malonate, an understudied carbon source, in quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa . These results indicate that global responses to malonate metabolism remain to be uncovered. We leveraged a publicly available metabolomic dataset on human airway and found malonate to be as abundant as glycerol, a common airway metabolite and carbon source for P. aeruginosa . Here, we explored and compared adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate or glycerol as a sole carbon source using transcriptomics and phenotypic assays. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. Some induced genes were required for optimal growth of P. aeruginosa in malonate. To assess the conservation of malonate-associated responses among P. aeruginosa strains, we compared our findings in strain PA14 with other lab strains and cystic fibrosis isolates of P. aeruginosa . Most strains grew on malonate as a sole carbon source as efficiently as or better than glycerol. While not all responses to malonate were conserved among strains, formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin were the most frequently observed phenotypes. Our findings reveal global remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation. Importance Pseudomonas aeruginosa is a notorious pathogen that causes local and systemic infections in immunocompromised individuals. Different carbon sources can uniquely modulate metabolic and virulence pathways in P. aeruginosa , highlighting the importance of the environment that the pathogen occupies. In this work, we used a combination of transcriptomic analysis and phenotypic assays to determine how malonate utilization impacts P. aeruginosa, as recent evidence indicates this carbon source may be relevant to certain niches associated within the human host. We found that malonate utilization can induce global stress responses, alter metabolic circuits, and influence various phenotypes of P. aeruginosa that could influence host colonization. Investigating the metabolism of malonate provides insight into P. aeruginosa adaptations to specific niches where this substrate is abundant, and how it can be leveraged in the development of much-needed antimicrobial agents or identification of new therapeutic targets of this difficult-to-eradicate pathogen.
Collapse
|
3
|
Emergence of Small Colony Variants Is an Adaptive Strategy Used by Pseudomonas aeruginosa to Mitigate the Effects of Redox Imbalance. mSphere 2023; 8:e0005723. [PMID: 36853007 PMCID: PMC10117050 DOI: 10.1128/msphere.00057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The ability to generate a subpopulation of small colony variants (SCVs) is a conserved feature of Pseudomonas aeruginosa and could represent a key adaptive strategy to colonize and persist in multiple niches. However, very little is known about the role of the SCV phenotype, the conditions that promote its emergence, and its possible involvement in an adaptive strategy. In the present work, we investigated the in vitro selective conditions promoting the emergence of SCVs from the prototypical strain PA14, which readily forms SCVs in nonagitated standing cultures. We found that O2 limitation, which causes a redox imbalance, is the main factor selecting for the SCV phenotype, which promotes survival of the population via formation of a biofilm at the air-liquid interface to access the electron acceptor. When this selective pressure is relieved by aeration or supplementation of an alternative electron acceptor, SCVs are barely detectable. We also observed that SCV emergence contributes to redox rebalancing, suggesting that it is involved in an adaptive strategy. We conclude that selection for the SCV phenotype is an adaptive solution adopted by P. aeruginosa to access poorly available O2. IMPORTANCE The bacterium Pseudomonas aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because it is a causative agent of nosocomial infections and the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is often related to the emergence of an alternative phenotype known as small colony variant (SCV). Identification of conditions selecting for the SCV phenotype contributes to knowledge regarding adaptive mechanisms exploited by P. aeruginosa to survive in multiple niches and persist during infections. Hindering this adaptation strategy could help control persistent P. aeruginosa infections.
Collapse
|
4
|
Williamson KS, Dlakić M, Akiyama T, Franklin MJ. The Pseudomonas aeruginosa RpoH (σ 32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance. Int J Mol Sci 2023; 24:1513. [PMID: 36675051 PMCID: PMC9866376 DOI: 10.3390/ijms24021513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.
Collapse
Affiliation(s)
- Kerry S. Williamson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tatsuya Akiyama
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
5
|
Huang Y, Chen J, Jiang Q, Huang N, Ding X, Peng L, Deng X. The molybdate-binding protein ModA is required for Proteus mirabilis-induced UTI. Front Microbiol 2023; 14:1156273. [PMID: 37180242 PMCID: PMC10174112 DOI: 10.3389/fmicb.2023.1156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023] Open
Abstract
Background Proteus mirabilis is one of the pathogens commonly causing urinary tract infections (UTIs). The molybdate-binding protein ModA encoded by modA binds molybdate with high affinity and transports it. Increasing evidence shows that ModA promotes the survival of bacteria in anaerobic environments and participates in bacterial virulence by obtaining molybdenum. However, the role of ModA in the pathogenesis of P. mirabilis remains unknown. Results In this study, a series of phenotypic assays and transcriptomic analyses were used to study the role of ModA in the UTIs induced by P. mirabilis. Our data showed that ModA absorbed molybdate with high affinity and incorporated it into molybdopterin, thus affecting the anaerobic growth of P. mirabilis. Loss of ModA enhanced bacterial swarming and swimming and up-regulated the expression of multiple genes in flagellar assembly pathway. The loss of ModA also resulted in decreased biofilm formation under anaerobic growth conditions. The modA mutant significantly inhibited bacterial adhesion and invasion to urinary tract epithelial cells and down-regulated the expression of multiple genes associated with pilus assembly. Those alterations were not due to anaerobic growth defects. In addition, the decreased bacteria in the bladder tissue, the weakened inflammatory damage, the low level of IL-6, and minor weight change was observed in the UTI mouse model infected with modA mutant. Conclusion Here, we reported that in P. mirabilis, ModA mediated the transport of molybdate, thereby affecting the activity of nitrate reductase and thus affecting the growth of bacteria under anaerobic conditions. Overall, this study clarified the indirect role of ModA in the anaerobic growth, motility, biofilm formation, and pathogenicity of P. mirabilis and its possible pathway, and emphasized the importance of the molybdate-binding protein ModA to P. mirabilis in mediating molybdate uptake, allowing the bacterium to adapt to complex environmental conditions and cause UTIs. Our results provided valuable information on the pathogenesis of ModA-induced P. mirabilis UTIs and may facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Yi Huang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinbin Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiao Jiang
- Guangdong 999 Brain Hospital, Guangzhou, Guangdong, China
| | - Nan Huang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Ding
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liang Peng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Xiaoyan Deng, ; Liang Peng,
| | - Xiaoyan Deng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Xiaoyan Deng, ; Liang Peng,
| |
Collapse
|
6
|
Spero MA, Jones J, Lomenick B, Chou TF, Newman DK. Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa. Mol Microbiol 2022; 118:321-335. [PMID: 36271736 PMCID: PMC9589919 DOI: 10.1111/mmi.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations. While chlorate itself is relatively nontoxic, it is enzymatically reduced to the toxic oxidizing agent, chlorite, by hypoxically induced nitrate reductase. To better assess chlorate's therapeutic potential, we investigated mechanisms of chlorate toxicity and resistance in P. aeruginosa. We used transposon mutagenesis to identify genes that alter P. aeruginosa fitness during chlorate treatment, finding that methionine sulfoxide reductases (Msr), which repair oxidized methionine residues, support survival during chlorate stress. Chlorate treatment leads to proteome-wide methionine oxidation, which is exacerbated in a ∆msrA∆msrB strain. In response to chlorate, P. aeruginosa upregulates proteins involved in a wide range of functions, including metabolism, DNA replication/repair, protein repair, transcription, and translation, and these newly synthesized proteins are particularly vulnerable to methionine oxidation. The addition of exogenous methionine partially rescues P. aeruginosa survival during chlorate treatment, suggesting that widespread methionine oxidation contributes to death. Finally, we found that mutations that decrease nitrate reductase activity are a common mechanism of chlorate resistance.
Collapse
Affiliation(s)
- Melanie A. Spero
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Jeff Jones
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
7
|
Qi S, Grossman AD, Ronen A, Bernstein R. Low-biofouling anaerobic electro-conductive membrane bioreactor: The role of pH changes in bacterial inactivation and biofouling mitigation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Khan F, Jeong GJ, Tabassum N, Mishra A, Kim YM. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Appl Microbiol Biotechnol 2022; 106:5835-5862. [PMID: 35989330 DOI: 10.1007/s00253-022-12128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Akanksha Mishra
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Shewaramani S, Kassen R. Niche, not phylogeny, governs the response to oxygen availability among diverse Pseudomonas aeruginosa strains. Front Microbiol 2022; 13:953964. [PMID: 36060748 PMCID: PMC9428489 DOI: 10.3389/fmicb.2022.953964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen, is a leading cause of chronic infection of airways in cystic fibrosis (CF) patients. Chronic infections typically arise from colonization by environmental strains, followed by adaptation of P. aeruginosa to the conditions within the CF airway. It has been suggested that oxygen availability can be an important source of selection causing trait changes associated with the transition to chronic infection, but little data exist on the response of P. aeruginosa to varying levels of oxygen. Here, we use a diverse collection of P. aeruginosa strains recovered from both CF patients and environmental sources to evaluate the role of oxygen availability in driving adaptation to the CF lung while also accounting for phylogenetic relatedness. While we can detect a signal of phylogeny in trait responses to oxygen availability, niche of origin is a far stronger predictor. Specifically, strains isolated from the lungs of CF patients are more sensitive to external oxidative stress but more resistant to antibiotics under anoxic conditions. Additionally, many, though not all, patho-adaptive traits we assayed are insensitive to oxygen availability. Our results suggest that inferences about trait expression, especially those associated with the transition to chronic infection, depend on both the available oxygen and niche of origin of the strains being studied.
Collapse
|
10
|
Secondary Metabolites Produced during Aspergillus fumigatus and Pseudomonas aeruginosa Biofilm Formation. mBio 2022; 13:e0185022. [PMID: 35856657 PMCID: PMC9426470 DOI: 10.1128/mbio.01850-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cystic fibrosis (CF), mucus plaques are formed in the patient's lungs, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that Aspergillus fumigatus can cocolonize CF patients with Pseudomonas aeruginosa, which has been associated with lung function decline. P. aeruginosa produces several compounds with inhibitory and antibiofilm effects against A. fumigatus in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms under normoxia and hypoxia conditions. We detected nine SM produced by P. aeruginosa. Phenazines and different analogs of pyoverdin were the main compounds produced by P. aeruginosa, and their secretion levels were increased by the fungal presence. The roles of the two operons responsible for phenazine production (phzA1 and phzA2) were also investigated, and mutants lacking one of those operons were able to produce partial sets of phenazines. We detected a total of 20 SM secreted by A. fumigatus either in monoculture or in coculture with P. aeruginosa. All these compounds were secreted during biofilm formation in either normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa under normoxia and hypoxia conditions. Overall, we showed how diverse SM secretion is during A. fumigatus and P. aeruginosa mixed culture and how this can affect biofilm formation in normoxia and hypoxia. IMPORTANCE The interaction between Pseudomonas aeruginosa and Aspergillus fumigatus has been well characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during coculture between P. aeruginosa and A. fumigatus during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins in response to presence of the fungus. In contrast, we were able to annotate 29 metabolites produced during A. fumigatus biofilm formation, but only 8 compounds were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa upon either normoxia or hypoxia. In conclusion, we detected many SM secreted during A. fumigatus and P. aeruginosa biofilm formation. This analysis provides several opportunities to understand the interactions between these two species.
Collapse
|
11
|
Baty JJ, Huffines JT, Stoner SN, Scoffield JA. A Commensal Streptococcus Dysregulates the Pseudomonas aeruginosa Nitrosative Stress Response. Front Cell Infect Microbiol 2022; 12:817336. [PMID: 35619650 PMCID: PMC9127344 DOI: 10.3389/fcimb.2022.817336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infections in the cystic fibrosis (CF) airway are composed of both pathogenic and commensal bacteria. However, chronic Pseudomonas aeruginosa infections are the leading cause of lung deterioration in individuals with CF. Interestingly, oral commensals can translocate to the CF lung and their presence is associated with improved lung function, presumably due to their ability to antagonize P. aeruginosa. We have previously shown that one commensal, Streptococcus parasanguinis, produces hydrogen peroxide that reacts with nitrite to generate reactive nitrogen intermediates (RNI) which inhibit P. aeruginosa growth. In this study, we sought to understand the global impact of commensal-mediated RNI on the P. aeruginosa transcriptome. RNA sequencing analysis revealed that S. parasanguinis and nitrite-mediated RNI dysregulated expression of denitrification genes in a CF isolate of P. aeruginosa compared to when this isolate was only exposed to S. parasanguinis. Further, loss of a nitric oxide reductase subunit (norB) rendered an acute P. aeruginosa isolate more susceptible to S. parasanguinis-mediated RNI. Additionally, S. parasanguinis-mediated RNI inactivated P. aeruginosa aconitase activity. Lastly, we report that P. aeruginosa isolates recovered from CF individuals are uniquely hypersensitive to S. parasanguinis-mediated RNI compared to acute infection or environmental P. aeruginosa isolates. These findings illustrate that S. parasanguinis hinders the ability of P. aeruginosa to respond to RNI, which potentially prevents P. aeruginosa CF isolates from resisting commensal and host-induced RNI in the CF airway.
Collapse
|
12
|
Pseudomonas aeruginosa Initiates a Rapid and Specific Transcriptional Response during Surface Attachment. J Bacteriol 2022; 204:e0008622. [PMID: 35467391 PMCID: PMC9112911 DOI: 10.1128/jb.00086-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic biofilm infections by Pseudomonas aeruginosa are a major contributor to the morbidity and mortality of patients. The formation of multicellular bacterial aggregates, called biofilms, is associated with increased resistance to antimicrobials and immune clearance and the persistence of infections. Biofilm formation is dependent on bacterial cell attachment to surfaces, and therefore, attachment plays a key role in chronic infections. We hypothesized that bacteria sense various surfaces and initiate a rapid, specific response to increase adhesion and establish biofilms. RNA sequencing (RNA-Seq) analysis identified transcriptional changes of adherent cells during initial attachment, identifying the bacterial response to an abiotic surface over a 1-h period. Subsequent screens investigating the most highly regulated genes in surface attachment identified 4 genes, pfpI, phnA, leuD, and moaE, all of which have roles in both metabolism and biofilm formation. In addition, the transcriptional responses to several different medically relevant abiotic surfaces were compared after initial attachment. Surprisingly, there was a specific transcriptional response to each surface, with very few genes being regulated in response to surfaces in general. We identified a set of 20 genes that were differentially expressed across all three surfaces, many of which have metabolic functions, including molybdopterin cofactor biosynthesis and nitrogen metabolism. This study has advanced the understanding of the kinetics and specificity of bacterial transcriptional responses to surfaces and suggests that metabolic cues are important signals during the transition from a planktonic to a biofilm lifestyle. IMPORTANCE Bacterial biofilms are a significant concern in many aspects of life, including chronic infections of airways, wounds, and indwelling medical devices; biofouling of industrial surfaces relevant for food production and marine surfaces; and nosocomial infections. The effects of understanding surface adhesion could impact many areas of life. This study utilized emerging technology in a novel approach to address a key step in bacterial biofilm development. These findings have elucidated both conserved and surface-specific responses to several disease-relevant abiotic surfaces. Future work will expand on this report to identify mechanisms of biofilm initiation with the aim of identifying bacterial factors that could be targeted to prevent biofilms.
Collapse
|
13
|
Weiler AJ, Spitz O, Gudzuhn M, Schott-Verdugo SN, Kamel M, Thiele B, Streit WR, Kedrov A, Schmitt L, Gohlke H, Kovacic F. A phospholipase B from Pseudomonas aeruginosa with activity towards endogenous phospholipids affects biofilm assembly. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159101. [DOI: 10.1016/j.bbalip.2021.159101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
|
14
|
Huffines JT, Stoner SN, Baty JJ, Scoffield JA. Nitrite Triggers Reprogramming of the Oral Polymicrobial Metabolome by a Commensal Streptococcus. Front Cell Infect Microbiol 2022; 12:833339. [PMID: 35300375 PMCID: PMC8923425 DOI: 10.3389/fcimb.2022.833339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Commensal streptococci regulate health and homeostasis within oral polymicrobial communities. Remarkably, high salivary nitrite concentrations have also been associated with improved health in the oral cavity. We previously demonstrated that nitrite assists hydrogen peroxide-producing oral commensal streptococci in regulating homeostasis via the generation of reactive nitrogen species (RNS), which have antimicrobial activity on oral pathogens. However, it is unknown how nitrite and commensal streptococci work in concert to influence the metabolome of oral polymicrobial communities. In this study, we report that nitrite aids commensal streptococci in the inhibition of multi-kingdom pathogens that reside in distinct oral niches, which supports commensal dominance. More importantly, we show that commensal streptococci utilize nitrite to drive the metabolic signature of multispecies biofilms in a manner that supports commensal metabolism and resistance to RNS, and restricts metabolic processes that are required for pathogen virulence. Taken together, our study provides insight into how commensal streptococci use nitrite to trigger shifts in the oral polymicrobial metabolome to support health and homeostasis.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Scoffield
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Ranjani J, Sivakumar R, Gunasekaran P, Velmurugan G, Ramasamy S, Rajendhran J. Genome-wide identification of genetic requirements of Pseudomonas aeruginosa PAO1 for rat cardiomyocyte (H9C2) infection by insertion sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105231. [PMID: 35104681 DOI: 10.1016/j.meegid.2022.105231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa is a major infectious agent among Gram-negative bacteria, which causes both acute and chronic infections. Infections due to P. aeruginosa are hard to treat, as it entails various strategies like virulence factors synthesis, drug efflux systems & resistance and protein secretion systems during pathogenesis. Despite extensive research in Pseudomonas pathogenesis, novel drug targets and potential therapeutic strategies are urgently needed. In this study, we investigated the genetic requirements of P. aeruginosa PAO1 for rat cardiomyocyte (H9C2) infection by insertion sequencing (INSeq). A mutant library comprising ~70,000 mutants of PAO1 was generated and the differentiated form of H9C2 cells (d-H9C2) was infected with the library. The infected d-H9C2 cells were maintained with antibiotic-protection and without any antibiotics in the growth media for 24 h. Subsequently, DNA library for INSeq was prepared, sequenced and fitness analysis was performed. One hundred and thirteen mutants were negatively selected in the infection condition with antibiotic-protection, whereas 143 mutants were negatively selected in antibiotic-free condition. Surprisingly, a higher number of mutants showed enriched fitness than the mutants of reduced fitness during the infection. We demonstrated that the genes associated with flagella and T3SS are important for adhesion and invasion of cardiomyocytes, while pili and proteases are conditionally essential during host cell lysis. Hence, our findings highlight the essential genes for cardiomyocyte infection, particularly during the intracellular phase. The aerotaxis receptor Aer, plays a critical role during intracellular life. Genes such as flgE, flgF, flhA, flhB, fliA, fliC, fliF, motA, aotJ, aer, wbpJ, ponA, fleQ, PA5205, hmgA, trkH and pslH are essential for infection.
Collapse
Affiliation(s)
- Jothi Ranjani
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Ramamoorthy Sivakumar
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Paramasamy Gunasekaran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, Department of Biochemistry & Microbiology, KMCH Research Foundation, Coimbatore 641014, Tamil Nadu, India
| | - Subbiah Ramasamy
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
16
|
Ferrara S, Carrubba R, Santoro S, Bertoni G. The Small RNA ErsA Impacts the Anaerobic Metabolism of Pseudomonas aeruginosa Through Post-Transcriptional Modulation of the Master Regulator Anr. Front Microbiol 2021; 12:691608. [PMID: 34759894 PMCID: PMC8575079 DOI: 10.3389/fmicb.2021.691608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most critical opportunistic pathogens in humans, able to cause both lethal acute and chronic lung infections. In previous work, we indicated that the small RNA ErsA plays a role in the regulatory network of P. aeruginosa pathogenicity in airways infection. To give further insight into the lifestyle functions that could be either directly or indirectly regulated by ErsA during infection, we reanalyzed the categories of genes whose transcription appeared dysregulated in an ersA knock-out mutant of the P. aeruginosa PAO1 reference strain. This preliminary analysis indicated ErsA as a candidate co-modulator of denitrification and in general, the anaerobiosis response, a characteristic physiologic state of P. aeruginosa during chronic infection of the lung of cystic fibrosis (CF) patients. To explain the pattern of dysregulation of the anaerobic-lifestyle genes in the lack of ErsA, we postulated that ErsA regulation could target the expression of Anr, a well-known transcription factor that modulates a broad regulon of anoxia-responsive genes, and also Dnr, required for the transcription activation of the denitrification machinery. Our results show that ErsA positively regulates Anr expression at the post-transcriptional level while no direct ErsA-mediated regulatory effect on Dnr was observed. However, Dnr is transcriptionally downregulated in the absence of ErsA and this is consistent with the well-characterized regulatory link between Anr and Dnr. Anr regulatory function is critical for P. aeruginosa anaerobic growth, both through denitrification and fermentation of arginine. Interestingly, we found that, differently from the laboratory strain PAO1, ErsA deletion strongly impairs the anaerobic growth by both denitrification and arginine fermentation of the RP73 clinical isolate, a multi-drug resistant P. aeruginosa CF-adapted strain. This suggests that P. aeruginosa adaptation to CF lung might result in a higher dependence on ErsA for the transduction of the multiple signals to the regulatory network of key functions for survivance in such a complex environment. Together, our results suggest that ErsA takes an upper place in the regulatory network of airways infection, transducing host inputs to biofilm-related factors, as underlined in our previous reports, and to functions that allow P. aeruginosa to thrive in low-oxygen conditions.
Collapse
Affiliation(s)
- Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Carrubba
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Santoro
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Bertoni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function. PLoS One 2021; 16:e0258385. [PMID: 34648550 PMCID: PMC8516228 DOI: 10.1371/journal.pone.0258385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The efficacy of antibiotics to treat bacterial infections declines rapidly due to antibiotic resistance. This problem has stimulated the development of novel antibiotics, but most attempts have failed. Consequently, the idea of mining uncharacterized genes of pathogens to identify potential targets for entirely new classes of antibiotics was proposed. Without knowing the biochemical function of a protein, it is difficult to validate its potential for drug targeting; therefore, the functional characterization of bacterial proteins of unknown function must be accelerated. Here, we present a paradigm for comprehensively predicting the biochemical functions of a large set of proteins encoded by hypothetical genes in human pathogens to identify candidate drug targets. A high-throughput approach based on homology modelling with ten templates per target protein was applied to the set of 2103 P. aeruginosa proteins encoded by hypothetical genes. The >21000 homology modelling results obtained and available biological and biochemical information about several thousand templates were scrutinized to predict the function of reliably modelled proteins of unknown function. This approach resulted in assigning one or often multiple putative functions to hundreds of enzymes, ligand-binding proteins and transporters. New biochemical functions were predicted for 41 proteins whose essential or virulence-related roles in P. aeruginosa were already experimentally demonstrated. Eleven of them were shortlisted as promising drug targets that participate in essential pathways (maintaining genome and cell wall integrity), virulence-related processes (adhesion, cell motility, host recognition) or antibiotic resistance, which are general drug targets. These proteins are conserved in other WHO priority pathogens but not in humans; therefore, they represent high-potential targets for preclinical studies. These and many more biochemical functions assigned to uncharacterized proteins of P. aeruginosa, made available as PaPUF database, may guide the design of experimental screening of inhibitors, which is a crucial step towards the validation of the highest-potential targets for the development of novel drugs against P. aeruginosa and other high-priority pathogens.
Collapse
|
18
|
Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, Xun L. Sulfane Sulfur Regulates LasR-Mediated Quorum Sensing and Virulence in Pseudomonas aeruginosa PAO1. Antioxidants (Basel) 2021; 10:antiox10091498. [PMID: 34573130 PMCID: PMC8469610 DOI: 10.3390/antiox10091498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfane sulfur, such as inorganic and organic polysulfide (HSn- and RSn-, n > 2), is a common cellular component, produced either from hydrogen sulfide oxidation or cysteine metabolism. In Pseudomonas aeruginosa PAO1, LasR is a quorum sensing master regulator. After binding its autoinducer, LasR binds to its target DNA to activate the transcription of a suite of genes, including virulence factors. Herein, we report that the production of hydrogen sulfide and sulfane sulfur were positively correlated in P. aeruginosa PAO1, and sulfane sulfur was able to modify LasR, which generated Cys188 persulfide and trisulfide and produced a pentasulfur link between Cys201 and Cys203. The modifications did not affect LasR binding to its target DNA site, but made it several-fold more effective than unmodified LasR in activating transcription in both in vitro and in vivo assays. On the contrary, H2O2 inactivates LasR via producing a disulfide bond between Cys201 and Cys203. P. aeruginosa PAO1 had a high cellular sulfane sulfur and high LasR activity in the mid log phase and early stationary phase, but a low sulfane sulfur and low LasR activity in the declination phase. Thus, sulfane sulfur is a new signaling factor in the bacterium, adding another level of control over LasR-mediated quorum sensing and turning down the activity in old cells.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Chuanjuan Lv
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| |
Collapse
|
19
|
Lee M, Ryu M, Joo M, Seo YJ, Lee J, Kim HM, Shin E, Yeom JH, Kim YH, Bae J, Lee K. Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathog 2021; 17:e1009263. [PMID: 33524062 PMCID: PMC7877770 DOI: 10.1371/journal.ppat.1009263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/11/2021] [Accepted: 01/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria utilize endoribonuclease-mediated RNA processing and decay to rapidly adapt to environmental changes. Here, we report that the modulation of hns mRNA stability by the endoribonuclease RNase G plays a key role in Salmonella Typhimurium pathogenicity. We found that RNase G determines the half-life of hns mRNA by cleaving its 5′ untranslated region and that altering its cleavage sites by genome editing stabilizes hns mRNA, thus decreasing S. Typhimurium virulence in mice. Under anaerobic conditions, the FNR-mediated transcriptional repression of rnc encoding RNase III, which degrades rng mRNA, and simultaneous induction of rng transcription resulted in rapid hns mRNA degradation, leading to the derepression of genes involved in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Together, our findings show that RNase III and RNase G levels-mediated control of hns mRNA abundance acts as a regulatory pathway upstream of a complex feed-forward loop for SPI-1 expression. Recent studies have shown that pathogenic bacteria with ribonuclease mutations display attenuated virulence, impaired mobility, and reduced proliferation in host cells. However, the molecular mechanisms underlying ribonuclease-associated pathogenesis have not yet been characterised. Here, we provide strong experimental evidence that the coordinated modulation of endoribonuclease activity constitutes an additional regulatory layer upstream of a complex feed-forward loop controlling global regulatory systems in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). In addition, we showed that this regulatory pathway plays a key role in the virulence of S. Typhimurium in the host. Thus, our study improves the understanding of the mechanisms through which bacterial pathogens sense the host environment and respond precisely by expressing gene products required for adaptation to that particular niche.
Collapse
Affiliation(s)
- Minho Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Jaejin Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Hong-Man Kim
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Jeehyeon Bae
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| |
Collapse
|
20
|
Abdelhamed H, Nho SW, Karsi A, Lawrence ML. The role of denitrification genes in anaerobic growth and virulence of Flavobacterium columnare. J Appl Microbiol 2020; 130:1062-1074. [PMID: 32955778 DOI: 10.1111/jam.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
AIMS Comparative genomics analyses indicated that the Flavobacterium columnare genome has unique denitrification genes relative to Flavobacterium psychrophilum and Flavobacterium johnsoniae, including nasA (nitrate reductase), nirS (nitrite reductase), norB (nitric oxide reductase) and nosZ (nitrous oxide reductase). The current study determines the roles of nasA, nirS, norB and nosZ in anaerobic growth, nitrate reduction, biofilm formation and virulence. METHODS AND RESULTS Four in-frame deletion mutants in virulent F. columnare strain 94-081 were constructed by allelic exchange using pCP29 plasmid. Compared with parent strain 94-081, FcΔnasA,FcΔnirS and FcΔnosZ mutants did not grow as well anaerobically, whereas the growth of FcΔnorB strain was similar to the parent strain (FcWT). Exogenous nitrate was not significantly consumed under anaerobic conditions in FcΔnasA, FcΔnirS and FcΔnosZ compared to parent strain 94-081. Under anaerobic conditions, Fc∆nasA, Fc∆norB and Fc∆nosZ formed significantly less biofilm than the wild type strain at 24 and 96 h, but FcΔnirS was not significantly affected. The nitrite reductase mutant FcΔnirS was highly attenuated in catfish, whereas FcΔnasA, FcΔnorB and FcΔnosZ had similar virulence to FcWT. CONCLUSIONS These results show, for the first time, that denitrification genes enable F. columnare to grow anaerobically using nitrate as an electron acceptor, and nitrite reductase contributes to F. columnare virulence. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate potential for F. columnare to grow in nitrate-rich anaerobic zones in catfish production ponds, and they suggest that a Fc∆nirS strain could be useful as a safe live vaccine if it protects catfish against columnaris disease.
Collapse
Affiliation(s)
- H Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - S W Nho
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - A Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - M L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
21
|
Lee C, Kim MI, Park J, Kim J, Oh H, Cho Y, Son J, Jeon BY, Ka H, Hong M. Crystal structure of the Pseudomonas aeruginosa PA0423 protein and its functional implication in antibiotic sequestration. Biochem Biophys Res Commun 2020; 528:85-91. [PMID: 32451086 DOI: 10.1016/j.bbrc.2020.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is a widely found opportunistic pathogen. The emergence of multidrug-resistant strains and persistent chronic infections have increased. The protein encoded by the pa0423 gene in P. aeruginosa is proposed to be critical for pathogenesis and could be a virulence-promoting protease or a bacterial lipocalin that binds a lipid-like antibiotic for drug resistance. Although two functions of proteolysis and antibiotic resistance are mutually related to bacterial survival in the host, it is very unusual for a single-domain protein to target unrelated ligand molecules such as protein substrates and lipid-like antibiotics. To clearly address the biological role of the PA0423 protein, we performed structural and biochemical studies. We found that PA0423 adopts a single-domain β-barrel structure and belongs to the lipocalin family. The PA0423 structure houses an internal tubular cavity, which accommodates a ubiquinone-8 molecule. Furthermore, we reveal that PA0423 can directly interact with the polymyxin B antibiotic using the internal cavity, suggesting that PA0423 has a physiological function in the antibiotic resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Choongdeok Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Meong Il Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Jaewan Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junghun Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Hansol Oh
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| |
Collapse
|
22
|
Vo CDT, Michaud J, Elsen S, Faivre B, Bouveret E, Barras F, Fontecave M, Pierrel F, Lombard M, Pelosi L. The O 2-independent pathway of ubiquinone biosynthesis is essential for denitrification in Pseudomonas aeruginosa. J Biol Chem 2020; 295:9021-9032. [PMID: 32409583 PMCID: PMC7335794 DOI: 10.1074/jbc.ra120.013748] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/10/2020] [Indexed: 01/05/2023] Open
Abstract
Many proteobacteria, such as Escherichia coli, contain two main types of quinones: benzoquinones, represented by ubiquinone (UQ) and naphthoquinones, such as menaquinone (MK), and dimethyl-menaquinone (DMK). MK and DMK function predominantly in anaerobic respiratory chains, whereas UQ is the major electron carrier in the reduction of dioxygen. However, this division of labor is probably not very strict. Indeed, a pathway that produces UQ under anaerobic conditions in an UbiU-, UbiV-, and UbiT-dependent manner has been discovered recently in E. coli Its physiological relevance is not yet understood, because MK and DMK are also present in E. coli Here, we established that UQ9 is the major quinone of Pseudomonas aeruginosa and is required for growth under anaerobic respiration (i.e. denitrification). We demonstrate that the ORFs PA3911, PA3912, and PA3913, which are homologs of the E. coli ubiT, ubiV, and ubiU genes, respectively, are essential for UQ9 biosynthesis and, thus, for denitrification in P. aeruginosa These three genes here are called ubiTPa , ubiVPa , and ubiUPa We show that UbiVPa accommodates an iron-sulfur [4Fe-4S] cluster. Moreover, we report that UbiUPa and UbiTPa can bind UQ and that the isoprenoid tail of UQ is the structural determinant required for recognition by these two Ubi proteins. Since the denitrification metabolism of P. aeruginosa is believed to be important for the pathogenicity of this bacterium in individuals with cystic fibrosis, our results highlight that the O2-independent UQ biosynthetic pathway may represent a target for antibiotics development to manage P. aeruginosa infections.
Collapse
Affiliation(s)
- Chau-Duy-Tam Vo
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, PSL Research University, Sorbonne Université, Paris, France
| | - Julie Michaud
- CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Sylvie Elsen
- Biology of Cancer and Infection, U1036 INSERM, CEA, Université Grenoble Alpes, ERL5261 CNRS, Grenoble, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, PSL Research University, Sorbonne Université, Paris, France
| | - Emmanuelle Bouveret
- SAMe Unit, Department of Microbiology, Institut Pasteur, Paris, France; IMM-UMR 2001 CNRS-Institut Pasteur, Paris, France
| | - Frédéric Barras
- SAMe Unit, Department of Microbiology, Institut Pasteur, Paris, France; IMM-UMR 2001 CNRS-Institut Pasteur, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, PSL Research University, Sorbonne Université, Paris, France
| | - Fabien Pierrel
- CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, PSL Research University, Sorbonne Université, Paris, France.
| | - Ludovic Pelosi
- CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
23
|
Mohamed FA, Shaker GH, Askoura MM. Oxidative Stress Influences Pseudomonas aeruginosa Susceptibility to Antibiotics and Reduces Its Pathogenesis in Host. Curr Microbiol 2020; 77:479-490. [DOI: 10.1007/s00284-019-01858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
24
|
Association of OprF mutant and disturbance of biofilm and pyocyanin virulence in pseudomonas aeruginosa. Saudi Pharm J 2019; 28:196-200. [PMID: 32042258 PMCID: PMC7000307 DOI: 10.1016/j.jsps.2019.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022] Open
Abstract
Outer membrane porin F (OprF) is a major structural membrane protein of Pseudomonas aeruginosa, a recognised human opportunistic pathogen which is correlated with severe hospital-acquired infections. This study investigating a multiphenotypic approach, based on the comparative study of a wild type strain of P. aeruginosa, its isogenic OprF mutant. Both P. aeruginosa PAO1 and OprF mutant strains were grown in same condition and cultures were subjected to further analysis by SDS PAGE, pyocyanin production and biofilm formation that was analyse using scanning electron microscopy. Based on biofilm formation essay and pyocyanin production, the study showed that OprF plays a dynamic role in P. aeruginosa virulence. The absence of OprF results in slow growth rate corresponded to elongated lag phase and reduced biofilm production also a significance reduction in the production of the quorum-sensing-dependent virulence factors pyocyanin. Accordingly, in the OprF mutant scanning electron microscope "SEM" images showed impaired cellular niche and detached cells when compared to regular attached P. aeruginosa wild type cells in the niche. Taken together, this study shows the contribution of OprF in P. aeruginosa virulence, at least partly through impairment of biofilm, cell to cell attachment in niche and pyocyanin production. This study show a vital link between OprF and virulence factor production, providing novel insights for its role in pathogenicity and future could provide the basis for the development of novel drug targets for antibiotics and vaccines.
Collapse
|
25
|
Kampers LFC, van Heck RGA, Donati S, Saccenti E, Volkers RJM, Schaap PJ, Suarez-Diez M, Nikel PI, Martins Dos Santos VAP. In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions. Microb Cell Fact 2019; 18:179. [PMID: 31640713 PMCID: PMC6805499 DOI: 10.1186/s12934-019-1227-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/09/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pseudomonas putida is a metabolically versatile, genetically accessible, and stress-robust species with outstanding potential to be used as a workhorse for industrial applications. While industry recognises the importance of robustness under micro-oxic conditions for a stable production process, the obligate aerobic nature of P. putida, attributed to its inability to produce sufficient ATP and maintain its redox balance without molecular oxygen, severely limits its use for biotechnology applications. RESULTS Here, a combination of genome-scale metabolic modelling and comparative genomics is used to pinpoint essential [Formula: see text]-dependent processes. These explain the inability of the strain to grow under anoxic conditions: a deficient ATP generation and an inability to synthesize essential metabolites. Based on this, several P. putida recombinant strains were constructed harbouring acetate kinase from Escherichia coli for ATP production, and a class I dihydroorotate dehydrogenase and a class III anaerobic ribonucleotide triphosphate reductase from Lactobacillus lactis for the synthesis of essential metabolites. Initial computational designs were fine-tuned by means of adaptive laboratory evolution. CONCLUSIONS We demonstrated the value of combining in silico approaches, experimental validation and adaptive laboratory evolution for microbial design by making the strictly aerobic Pseudomonas putida able to grow under micro-oxic conditions.
Collapse
Affiliation(s)
- Linde F C Kampers
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruben G A van Heck
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Stefano Donati
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 16, 35043, Marburg, Germany
| | - Edoardo Saccenti
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Rita J M Volkers
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter J Schaap
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Kgs Lyngby, Denmark
| | - Vitor A P Martins Dos Santos
- Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708 WE, Wageningen, The Netherlands. .,LifeGlimmer GmbH, Berlin, Germany.
| |
Collapse
|
26
|
Ubiquinone Biosynthesis over the Entire O 2 Range: Characterization of a Conserved O 2-Independent Pathway. mBio 2019; 10:mBio.01319-19. [PMID: 31289180 PMCID: PMC6747719 DOI: 10.1128/mbio.01319-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In order to colonize environments with large O2 gradients or fluctuating O2 levels, bacteria have developed metabolic responses that remain incompletely understood. Such adaptations have been recently linked to antibiotic resistance, virulence, and the capacity to develop in complex ecosystems like the microbiota. Here, we identify a novel pathway for the biosynthesis of ubiquinone, a molecule with a key role in cellular bioenergetics. We link three uncharacterized genes of Escherichia coli to this pathway and show that the pathway functions independently from O2. In contrast, the long-described pathway for ubiquinone biosynthesis requires O2 as a substrate. In fact, we find that many proteobacteria are equipped with the O2-dependent and O2-independent pathways, supporting that they are able to synthesize ubiquinone over the entire O2 range. Overall, we propose that the novel O2-independent pathway is part of the metabolic plasticity developed by proteobacteria to face various environmental O2 levels. Most bacteria can generate ATP by respiratory metabolism, in which electrons are shuttled from reduced substrates to terminal electron acceptors, via quinone molecules like ubiquinone. Dioxygen (O2) is the terminal electron acceptor of aerobic respiration and serves as a co-substrate in the biosynthesis of ubiquinone. Here, we characterize a novel, O2-independent pathway for the biosynthesis of ubiquinone. This pathway relies on three proteins, UbiT (YhbT), UbiU (YhbU), and UbiV (YhbV). UbiT contains an SCP2 lipid-binding domain and is likely an accessory factor of the biosynthetic pathway, while UbiU and UbiV (UbiU-UbiV) are involved in hydroxylation reactions and represent a novel class of O2-independent hydroxylases. We demonstrate that UbiU-UbiV form a heterodimer, wherein each protein binds a 4Fe-4S cluster via conserved cysteines that are essential for activity. The UbiT, -U, and -V proteins are found in alpha-, beta-, and gammaproteobacterial clades, including several human pathogens, supporting the widespread distribution of a previously unrecognized capacity to synthesize ubiquinone in the absence of O2. Together, the O2-dependent and O2-independent ubiquinone biosynthesis pathways contribute to optimizing bacterial metabolism over the entire O2 range.
Collapse
|
27
|
Panmanee W, Su S, Schurr MJ, Lau GW, Zhu X, Ren Z, McDaniel CT, Lu LJ, Ohman DE, Muruve DA, Panos RJ, Yu HD, Thompson TB, Tseng BS, Hassett DJ. The anti-sigma factor MucA of Pseudomonas aeruginosa: Dramatic differences of a mucA22 vs. a ΔmucA mutant in anaerobic acidified nitrite sensitivity of planktonic and biofilm bacteria in vitro and during chronic murine lung infection. PLoS One 2019; 14:e0216401. [PMID: 31158231 PMCID: PMC6546240 DOI: 10.1371/journal.pone.0216401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/20/2019] [Indexed: 11/29/2022] Open
Abstract
Mucoid mucA22 Pseudomonas aeruginosa (PA) is an opportunistic lung pathogen of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients that is highly sensitive to acidified nitrite (A-NO2-). In this study, we first screened PA mutant strains for sensitivity or resistance to 20 mM A-NO2- under anaerobic conditions that represent the chronic stages of the aforementioned diseases. Mutants found to be sensitive to A-NO2- included PA0964 (pmpR, PQS biosynthesis), PA4455 (probable ABC transporter permease), katA (major catalase, KatA) and rhlR (quorum sensing regulator). In contrast, mutants lacking PA0450 (a putative phosphate transporter) and PA1505 (moaA2) were A-NO2- resistant. However, we were puzzled when we discovered that mucA22 mutant bacteria, a frequently isolated mucA allele in CF and to a lesser extent COPD, were more sensitive to A-NO2- than a truncated ΔmucA deletion (Δ157–194) mutant in planktonic and biofilm culture, as well as during a chronic murine lung infection. Subsequent transcriptional profiling of anaerobic, A-NO2--treated bacteria revealed restoration of near wild-type transcript levels of protective NO2- and nitric oxide (NO) reductase (nirS and norCB, respectively) in the ΔmucA mutant in contrast to extremely low levels in the A-NO2--sensitive mucA22 mutant. Proteins that were S-nitrosylated by NO derived from A-NO2- reduction in the sensitive mucA22 strain were those involved in anaerobic respiration (NirQ, NirS), pyruvate fermentation (UspK), global gene regulation (Vfr), the TCA cycle (succinate dehydrogenase, SdhB) and several double mutants were even more sensitive to A-NO2-. Bioinformatic-based data point to future studies designed to elucidate potential cellular binding partners for MucA and MucA22. Given that A-NO2- is a potentially viable treatment strategy to combat PA and other infections, this study offers novel developments as to how clinicians might better treat problematic PA infections in COPD and CF airway diseases.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
| | - Gee W. Lau
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL United States of America
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Zhaowei Ren
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Cameron T. McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Long J. Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA United States of America
- McGuire Veterans Affairs Medical Center, Richmond, VA United States of America
| | - Daniel A. Muruve
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ralph J. Panos
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH United States of America
- Pulmonary, Critical Care, and Sleep Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Hongwei D. Yu
- Department of Biochemistry and Microbiology, Marshall University, Huntington, WV United States of America
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Boo Shan Tseng
- Department of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
- * E-mail:
| |
Collapse
|
28
|
Dingemans J, Al-Feghali RE, Lau GW, Sauer K. Controlling chronic Pseudomonas aeruginosa infections by strategically interfering with the sensory function of SagS. Mol Microbiol 2019; 111:1211-1228. [PMID: 30710463 PMCID: PMC6488366 DOI: 10.1111/mmi.14215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 01/16/2023]
Abstract
The hybrid sensor SagS plays a central role in the formation of Pseudomonas aeruginosa biofilms, by enabling the switch from the planktonic to the biofilm mode of growth and by facilitating the transition of biofilm cells to a highly tolerant state. In this study, we examined the importance of the SagS key amino acid residues associated with biofilm formation (L154) and antibiotic tolerance (D105) in P. aeruginosa virulence. Recombinant P. aeruginosa ΔsagS and ΔsagS chromosomally expressing wild-type sagS, or its two variants D105A and L154A, were tested for their potential to form biofilms and cause virulence in plants and mouse models of acute and chronic pneumonia. Although mutation of sagS did not alter P. aeruginosa virulence during acute infections, a significant difference in pathogenicity of sagS mutants was observed during chronic infections, with the L154A variant showing reduced bacterial loads in the chronic pneumonia model, while interference with the D105 residue enhanced the susceptibility of P. aeruginosa biofilms during tobramycin treatment. Our findings suggest that interference with the biofilm or tolerance regulatory circuits of SagS affects P. aeruginosa pathogenicity in chronic but not acute infections, and reveal SagS to be a promising new target to treat P. aeruginosa biofilm infections.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Rebecca E. Al-Feghali
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, United States
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, United States.,Corresponding author: Karin Sauer, Binghamton University, Department of Biological Sciences, Binghamton Biofilm Research Center (BBRC), 2401 ITC Building, 85 Murray Hill Road, Binghamton, NY 13902, Phone (607) 777-3157, Fax: (607) 777-6521,
| |
Collapse
|
29
|
Jung HJ, Littmann ER, Seok R, Leiner IM, Taur Y, Peled J, van den Brink M, Ling L, Chen L, Kreiswirth BN, Goodman AL, Pamer EG. Genome-Wide Screening for Enteric Colonization Factors in Carbapenem-Resistant ST258 Klebsiella pneumoniae. mBio 2019; 10:e02663-18. [PMID: 30862751 PMCID: PMC6414703 DOI: 10.1128/mbio.02663-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
A diverse, antibiotic-naive microbiota prevents highly antibiotic-resistant microbes, including carbapenem-resistant Klebsiella pneumoniae (CR-Kp), from achieving dense colonization of the intestinal lumen. Antibiotic-mediated destruction of the microbiota leads to expansion of CR-Kp in the gut, markedly increasing the risk of bacteremia in vulnerable patients. While preventing dense colonization represents a rational approach to reduce intra- and interpatient dissemination of CR-Kp, little is known about pathogen-associated factors that enable dense growth and persistence in the intestinal lumen. To identify genetic factors essential for dense colonization of the gut by CR-Kp, we constructed a highly saturated transposon mutant library with >150,000 unique mutations in an ST258 strain of CR-Kp and screened for in vitro growth and in vivo intestinal colonization in antibiotic-treated mice. Stochastic and partially reversible fluctuations in the representation of different mutations during dense colonization revealed the dynamic nature of intestinal microbial populations. We identified genes that are crucial for early and late stages of dense gut colonization and confirmed their role by testing isogenic mutants in in vivo competition assays with wild-type CR-Kp Screening of the transposon library also identified mutations that enhanced in vivo CR-Kp growth. These newly identified colonization factors may provide novel therapeutic opportunities to reduce intestinal colonization by CR-KpIMPORTANCEKlebsiella pneumoniae is a common cause of bloodstream infections in immunocompromised and hospitalized patients, and over the last 2 decades, some strains have acquired resistance to nearly all available antibiotics, including broad-spectrum carbapenems. The U.S. Centers for Disease Control and Prevention has listed carbapenem-resistant K. pneumoniae (CR-Kp) as an urgent public health threat. Dense colonization of the intestine by CR-Kp and other antibiotic-resistant bacteria is associated with an increased risk of bacteremia. Reducing the density of gut colonization by CR-Kp is likely to reduce their transmission from patient to patient in health care facilities as well as systemic infections. How CR-Kp expands and persists in the gut lumen, however, is poorly understood. Herein, we generated a highly saturated mutant library in a multidrug-resistant K. pneumoniae strain and identified genetic factors that are associated with dense gut colonization by K. pneumoniae This study sheds light on host colonization by K. pneumoniae and identifies potential colonization factors that contribute to high-density persistence of K. pneumoniae in the intestine.
Collapse
Affiliation(s)
- Hea-Jin Jung
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric R Littmann
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ruth Seok
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying Taur
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonathan Peled
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marcel van den Brink
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lilan Ling
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Liang Chen
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Barry N Kreiswirth
- Public Health Research Institute, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, New Jersey, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Microbes, Inflammation, and Cancer, Molecular Microbiology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
30
|
Torres A, Kasturiarachi N, DuPont M, Cooper VS, Bomberger J, Zemke A. NADH Dehydrogenases in Pseudomonas aeruginosa Growth and Virulence. Front Microbiol 2019; 10:75. [PMID: 30804898 PMCID: PMC6370648 DOI: 10.3389/fmicb.2019.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen with a complex respiratory chain. The bacterium is predicted to express three NADH:ubiquinone oxidoreductases (NDH-1, NDH-2 and Nqr). We created deletions strains of the predicted NADH:ubiquinone oxidoreductases alone, and in combination to determine the respective roles of the NADH dehydrogenases in growth and virulence. NDH-1 and NDH-2 were largely redundant under aerobic conditions. Aerobic NADH dehydrogenase enzymatic activity assay was lost with deletion of both NDH-1 and NDH-2. Under anaerobic conditions, NDH-1 was required for robust growth, and overexpression of NDH-2 rescued the NDH-1 anaerobic growth defect in rich media. There was not compensatory upregulation of NDH-2 under anaerobic conditions in NDH-1 deletion strains. To test which genes were required for in vivo virulence, we used both an insect and plant disease model. In the Galleria mellonella model, neither deletion of NDH-1 nor NDH-2 led to a change in median lethal dose, although death occurred more slowly in the NDH-1 deletion infections. In a lettuce model of virulence, loss of NDH-1 caused a decrease in recovered viable bacteria and a decrease in visual tissue damage. The compound deletion of NDH-1/NDH-2 causes a severe growth defect, both under aerobic and anaerobic conditions, and was avirulent in a lettuce model. Together, these results demonstrate the redundancy of the P. aeruginosa respiratory chain at the NADH dehydrogenase level in aerobic growth and virulence.
Collapse
Affiliation(s)
- Angela Torres
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naomi Kasturiarachi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew DuPont
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna Zemke
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Raba DA, Rosas-Lemus M, Menzer WM, Li C, Fang X, Liang P, Tuz K, Minh DDL, Juárez O. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. J Biol Chem 2018; 293:15664-15677. [PMID: 30135204 DOI: 10.1074/jbc.ra118.003194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium responsible for a large number of nosocomial infections. The P. aeruginosa respiratory chain contains the ion-pumping NADH:ubiquinone oxidoreductase (NQR). This enzyme couples the transfer of electrons from NADH to ubiquinone to the pumping of sodium ions across the cell membrane, generating a gradient that drives essential cellular processes in many bacteria. In this study, we characterized P. aeruginosa NQR (Pa-NQR) to elucidate its physiologic function. Our analyses reveal that Pa-NQR, in contrast with NQR homologues from other bacterial species, is not a sodium pump, but rather a completely new form of proton pump. Homology modeling and molecular dynamics simulations suggest that cation selectivity could be determined by the exit ion channels. We also show that Pa-NQR is resistant to the inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO). HQNO is a quinolone secreted by P. aeruginosa during infection that acts as a quorum sensing agent and also has bactericidal properties against other bacteria. Using comparative analysis and computational modeling of the ubiquinone-binding site, we identified the specific residues that confer resistance toward this inhibitor. In summary, our findings indicate that Pa-NQR is a proton pump rather than a sodium pump and is highly resistant against the P. aeruginosa-produced compound HQNO, suggesting an important role in the adaptation against autotoxicity. These results provide a deep understanding of the metabolic role of NQR in P. aeruginosa and provide insight into the structural factors that determine the functional specialization in this family of respiratory complexes.
Collapse
Affiliation(s)
| | | | - William M Menzer
- From the Departments of Biological Sciences and.,Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Chen Li
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Departments of Biological Sciences and
| | | | - Karina Tuz
- From the Departments of Biological Sciences and
| | - David D L Minh
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | | |
Collapse
|
32
|
A phosphatidic acid-binding protein is important for lipid homeostasis and adaptation to anaerobic biofilm conditions in Pseudomonas aeruginosa. Biochem J 2018; 475:1885-1907. [DOI: 10.1042/bcj20180257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/22/2023]
Abstract
A quantitative Pseudomonas aeruginosa proteomics approach revealed increased abundance of the so-far uncharacterized protein PA3911 in anaerobic biofilms grown under conditions of the cystic fibrosis lung. Physiological relevance of ORF PA3911 was demonstrated, inter alia, using phenotype microarray experiments. The mutant strain showed increased susceptibility in the presence of antimicrobials (minocycline, nafcillin, oxacillin, chloramphenicol and thiamphenicol), enhanced twitching motility and significantly impaired biofilm formation. PA3911 is a soluble, cytoplasmic protein in P. aeruginosa. In protein–lipid overlay experiments, purified PA3911 bound specifically to phosphatidic acid (PA), the central hub of phospholipid metabolism. Structure-guided site-directed mutagenesis was used to explore the proposed ligand-binding cavity of PA3911. Protein variants of Leu56, Leu58, Val69 and Leu114 were shown to impair PA interaction. A comparative shotgun lipidomics approach demonstrated a multifaceted response of P. aeruginosa to anaerobic conditions at the lipid head group and fatty acid level. Lipid homeostasis in the PA3911 mutant strain was imbalanced with respect to lysophosphatidylcholine, phosphatidylcholine and diacylglycerol under anaerobic and/or aerobic conditions. The impact of the newly identified PA-binding protein on lipid homeostasis and the related macroscopic phenotypes of P. aeruginosa are discussed.
Collapse
|
33
|
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is characterized by its versatility that enables persistent survival under adverse conditions. It can grow on diverse energy sources and readily acquire resistance to antimicrobial agents. As an opportunistic human pathogen, it also causes chronic infections inside the anaerobic mucus airways of cystic fibrosis patients. As a strict respirer, P. aeruginosa can grow by anaerobic nitrate ( [Formula: see text] ) respiration. Nitric oxide (NO) produced as an intermediate during anaerobic respiration exerts many important effects on the biological characteristics of P. aeruginosa. This review provides information regarding (i) how P. aeruginosa grows by anaerobic respiration, (ii) mechanisms by which NO is produced under such growth, and (iii) bacterial adaptation to NO. We also review the clinical relevance of NO in the fitness of P. aeruginosa and the use of NO as a potential therapeutic for treating P. aeruginosa infection.
Collapse
|
34
|
Regulation of ribonucleotide synthesis by the Pseudomonas aeruginosa two-component system AlgR in response to oxidative stress. Sci Rep 2017; 7:17892. [PMID: 29263410 PMCID: PMC5738425 DOI: 10.1038/s41598-017-17917-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 11/11/2022] Open
Abstract
Ribonucleotide reductases (RNR) catalyze the last step of deoxyribonucleotide synthesis, and are therefore essential to DNA-based life. Three forms of RNR exist: classes I, II, and III. While eukaryotic cells use only class Ia RNR, bacteria can harbor any combination of classes, granting them adaptability. The opportunistic pathogen Pseudomonas aeruginosa surprisingly encodes all three classes, allowing it to thrive in different environments. Here we study an aspect of the complex RNR regulation whose molecular mechanism has never been elucidated, the well-described induction through oxidative stress, and link it to the AlgZR two-component system, the primary regulator of the mucoid phenotype. Through bioinformatics, we identify AlgR binding locations in RNR promoters, which we characterize functionally through EMSA and physically through AFM imaging. Gene reporter assays in different growth models are used to study the AlgZR-mediated control on the RNR network under various environmental conditions and physiological states. Thereby, we show that the two-component system AlgZR, which is crucial for bacterial conversion to the mucoid phenotype associated with chronic disease, controls the RNR network and directs how the DNA synthesis pathway is modulated in mucoid and non-mucoid biofilms, allowing it to respond to oxidative stress.
Collapse
|
35
|
Sønderholm M, Bjarnsholt T, Alhede M, Kolpen M, Jensen PØ, Kühl M, Kragh KN. The Consequences of Being in an Infectious Biofilm: Microenvironmental Conditions Governing Antibiotic Tolerance. Int J Mol Sci 2017; 18:E2688. [PMID: 29231866 PMCID: PMC5751290 DOI: 10.3390/ijms18122688] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022] Open
Abstract
The main driver behind biofilm research is the desire to understand the mechanisms governing the antibiotic tolerance of biofilm-growing bacteria found in chronic bacterial infections. Rather than genetic traits, several physical and chemical traits of the biofilm have been shown to be attributable to antibiotic tolerance. During infection, bacteria in biofilms exhibit slow growth and a low metabolic state due to O₂ limitation imposed by intense O₂ consumption of polymorphonuclear leukocytes or metabolically active bacteria in the biofilm periphery. Due to variable O₂ availability throughout the infection, pathogen growth can involve aerobic, microaerobic and anaerobic metabolism. This has serious implications for the antibiotic treatment of infections (e.g., in chronic wounds or in the chronic lung infection of cystic fibrosis patients), as antibiotics are usually optimized for aerobic, fast-growing bacteria. This review summarizes knowledge about the links between the microenvironment of biofilms in chronic infections and their tolerance against antibiotics.
Collapse
Affiliation(s)
- Majken Sønderholm
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Thomas Bjarnsholt
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Maria Alhede
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Mette Kolpen
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Peter Ø Jensen
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, DK-3000 Elsinore, Denmark.
- Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia.
| | - Kasper N Kragh
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Radó J, Kaszab E, Petrovics T, Pászti J, Kriszt B, Szoboszlay S. Characterization of environmental Pseudomonas aeruginosa using multilocus sequence typing scheme. J Med Microbiol 2017; 66:1457-1466. [PMID: 28923132 DOI: 10.1099/jmm.0.000589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The objectives of this study were to examine environmental (hydrocarbon degrading) Pseudomonas aeruginosa isolates with Multilocus Sequence Typing (MLST) and to determine their relevant features, such as serotype, virulence genes, biofilm forming ability and hydrocarbon degrading capacity. METHODOLOGY The diversity of environmental isolates was assessed with an MLST scheme. Investigation of virulence determinants included serotyping, hemolytic activity test and the detection of virulence genes exoS, exoY, exoT, exoU, exoA. Biofilm forming ability was examined in a modified microtiter assay, hydrocarbon degrading capacity was determined with gravimetric methods. RESULTS The majority of environmental isolates shared the same MLST profiles with isolates of cystic fibrosis (CF). Virulence patterns and serotypes were slightly connected to the phylogenetic localization, but further clinically important features such as antibiotic resistance were not. At least one of the examined environmental isolates was multidrug-resistant, virulent and had biofilm forming ability such as nosocomial P. aeruginosa and retained its hydrocarbon degradation ability. CONCLUSION The current theses that distinguish isolates originating from different sources are questionable; environmental P. aeruginosa can be a potential risk to public health and cannot be excluded as an external (non-nosocomial) source of infections, especially in patients with CF. Further studies such as pulsed-field gel electrophoresis (PFGE) and the determination of other clinically important virulence factors are needed to confirm these findings.
Collapse
Affiliation(s)
- Júlia Radó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Edit Kaszab
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Tünde Petrovics
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Judit Pászti
- National Center for Epidemiology, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| |
Collapse
|
37
|
The Atypical Response Regulator AtvR Is a New Player in Pseudomonas aeruginosa Response to Hypoxia and Virulence. Infect Immun 2017; 85:IAI.00207-17. [PMID: 28533471 DOI: 10.1128/iai.00207-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Two-component systems are widespread in bacteria, allowing adaptation to environmental changes. The classical pathway is composed of a histidine kinase that phosphorylates an aspartate residue in the cognate response regulator (RR). RRs lacking the phosphorylatable aspartate also occur, but their function and contribution during host-pathogen interactions are poorly characterized. AtvR (PA14_26570) is the only atypical response regulator with a DNA-binding domain in the opportunistic pathogen Pseudomonas aeruginosa Macrophage infection with the atvR mutant strain resulted in higher levels of tumor necrosis factor alpha secretion as well as increased bacterial clearance compared to those for macrophages infected with the wild-type strain. In an acute pneumonia model, mice infected with the atvR mutant presented increased amounts of proinflammatory cytokines, increased neutrophil recruitment to the lungs, reductions in bacterial burdens, and higher survival rates in comparison with the findings for mice infected with the wild-type strain. Further, several genes involved in hypoxia/anoxia adaptation were upregulated upon atvR overexpression, as seen by high-throughput transcriptome sequencing (RNA-Seq) analysis. In addition, atvR was more expressed in hypoxia in the presence of nitrate and required for full expression of nitrate reductase genes, promoting bacterial growth under this condition. Thus, AtvR would be crucial for successful infection, aiding P. aeruginosa survival under conditions of low oxygen tension in the host. Taken together, our data demonstrate that the atypical response regulator AtvR is part of the repertoire of transcriptional regulators involved in the lifestyle switch from aerobic to anaerobic conditions. This finding increases the complexity of regulation of one of the central metabolic pathways that contributes to Pseudomonas ubiquity and versatility.
Collapse
|
38
|
Wang GY, Li M, Ma F, Wang HH, Xu XL, Zhou GH. Physicochemical properties of Pseudomonas fragi isolates response to modified atmosphere packaging. FEMS Microbiol Lett 2017; 364:3845284. [DOI: 10.1093/femsle/fnx106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/18/2017] [Indexed: 02/02/2023] Open
|
39
|
Jensen PØ, Kolpen M, Kragh KN, Kühl M. Microenvironmental characteristics and physiology of biofilms in chronic infections of CF patients are strongly affected by the host immune response. APMIS 2017; 125:276-288. [PMID: 28407427 DOI: 10.1111/apm.12668] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/14/2023]
Abstract
In vitro studies of Pseudomonas aeruginosa and other pathogenic bacteria in biofilm aggregates have yielded detailed insight into their potential growth modes and metabolic flexibility under exposure to gradients of substrate and electron acceptor. However, the growth pattern of P. aeruginosa in chronic lung infections of cystic fibrosis (CF) patients is very different from what is observed in vitro, for example, in biofilms grown in flow chambers. Dense in vitro biofilms of P. aeruginosa exhibit rapid O2 depletion within <50-100 μm due to their own aerobic metabolism. In contrast, in vivo investigations show that P. aeruginosa persists in the chronically infected CF lung as relatively small cell aggregates that are surrounded by numerous PMNs, where the activity of PMNs is the major cause of O2 depletion rendering the P. aeruginosa aggregates anoxic. High levels of nitrate and nitrite enable P. aeruginosa to persist fueled by denitrification in the PMN-surrounded biofilm aggregates. This configuration creates a potentially long-term stable ecological niche for P. aeruginosa in the CF lung, which is largely governed by slow growth and anaerobic metabolism and enables persistence and resilience of this pathogen even under the recurring aggressive antimicrobial treatments of CF patients. As similar slow growth of other CF pathogens has recently been observed in endobronchial secretions, there is now a clear need for better in vitro models that simulate such in vivo growth patterns and anoxic microenvironments in order to help unravel the efficiency of existing or new antimicrobials targeting anaerobic metabolism in P. aeruginosa and other CF pathogens. We also advocate that host immune responses such as PMN-driven O2 depletion play a central role in the formation of anoxic microniches governing bacterial persistence in other chronic infections such as chronic wounds.
Collapse
Affiliation(s)
- Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of International Health, Immunology and Microbiology, UC-CARE, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Climate Change Cluster, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
40
|
Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits In Vivo-Like Characteristics. Appl Environ Microbiol 2017; 83:AEM.00113-17. [PMID: 28258141 PMCID: PMC5394317 DOI: 10.1128/aem.00113-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Alginate beads represent a simple and highly reproducible in vitro model system for diffusion-limited bacterial growth. In this study, alginate beads were inoculated with Pseudomonas aeruginosa and followed for up to 72 h. Confocal microscopy revealed that P. aeruginosa formed dense clusters similar in size to in vivo aggregates observed ex vivo in cystic fibrosis lungs and chronic wounds. Bacterial aggregates primarily grew in the bead periphery and decreased in size and abundance toward the center of the bead. Microsensor measurements showed that the O2 concentration decreased rapidly and reached anoxia ∼100 μm below the alginate bead surface. This gradient was relieved in beads supplemented with NO3− as an alternative electron acceptor allowing for deeper growth into the beads. A comparison of gene expression profiles between planktonic and alginate-encapsulated P. aeruginosa confirmed that the bacteria experienced hypoxic and anoxic growth conditions. Furthermore, alginate-encapsulated P. aeruginosa exhibited a lower respiration rate than the planktonic counterpart and showed a high tolerance toward antibiotics. The inoculation and growth of P. aeruginosa in alginate beads represent a simple and flexible in vivo-like biofilm model system, wherein bacterial growth exhibits central features of in vivo biofilms. This was observed by the formation of small cell aggregates in a secondary matrix with O2-limited growth, which was alleviated by the addition of NO3− as an alternative electron acceptor, and by reduced respiration rates, as well as an enhanced tolerance to antibiotic treatment. IMPORTANCEPseudomonas aeruginosa has been studied intensively for decades due to its involvement in chronic infections, such as cystic fibrosis and chronic wounds, where it forms biofilms. Much research has been dedicated to biofilm formation on surfaces; however, in chronic infections, most biofilms form small aggregates of cells not attached to a surface, but embedded in host material. In this study, bacteria were encapsulated in small alginate beads and formed aggregates similar to what is observed in chronic bacterial infections. Our findings show that aggregates are exposed to steep oxygen gradients, with zones of oxygen depletion, and that nitrate may serve as an alternative to oxygen, enabling growth in oxygen-depleted zones. This is important, as slow growth under low-oxygen conditions may render the bacteria tolerant toward antibiotics. This model provides an alternative to surface biofilm models and adds to the comprehension that biofilms do not depend on a surface for formation.
Collapse
|
41
|
Davis R, Brown PD. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol 2016; 65:261-271. [PMID: 26860081 DOI: 10.1099/jmm.0.000229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Rochell Davis
- Department of Basic Medical Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Paul D. Brown
- Department of Basic Medical Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
42
|
Craven M, Kasper S, Canfield M, Diaz-Morales R, Hrabie J, Cady N, Strickland A. Nitric oxide-releasing polyacrylonitrile disperses biofilms formed by wound-relevant pathogenic bacteria. J Appl Microbiol 2016; 120:1085-99. [DOI: 10.1111/jam.13059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | - S.H. Kasper
- College of Nanoscale Science & Engineering; SUNY Polytechnic Institute; Albany NY USA
| | | | | | - J.A. Hrabie
- Frederick National Laboratory for Cancer Research; National Cancer Institute; Frederick MD USA
| | - N.C. Cady
- College of Nanoscale Science & Engineering; SUNY Polytechnic Institute; Albany NY USA
| | | |
Collapse
|
43
|
Schacherl M, Montada AAM, Brunstein E, Baumann U. The first crystal structure of the peptidase domain of the U32 peptidase family. ACTA ACUST UNITED AC 2015; 71:2505-12. [PMID: 26627657 DOI: 10.1107/s1399004715019549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Abstract
The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins from Helicobacter and Salmonella. The first crystal structure analysis of a U32 catalytic domain from Methanopyrus kandleri (gene mk0906) reveals a modified (βα)8 TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to a Strep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.
Collapse
Affiliation(s)
- Magdalena Schacherl
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Strasse 12-14, D-50674 Cologne, Germany
| | - Angelika A M Montada
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Strasse 12-14, D-50674 Cologne, Germany
| | - Elena Brunstein
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Strasse 12-14, D-50674 Cologne, Germany
| | - Ulrich Baumann
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Otto-Fischer-Strasse 12-14, D-50674 Cologne, Germany
| |
Collapse
|
44
|
Pseudomonas aeruginosa RRALC3 Enhances the Biomass, Nutrient and Carbon Contents of Pongamia pinnata Seedlings in Degraded Forest Soil. PLoS One 2015; 10:e0139881. [PMID: 26460867 PMCID: PMC4604145 DOI: 10.1371/journal.pone.0139881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 09/18/2015] [Indexed: 01/30/2023] Open
Abstract
The study was aimed at assessing the effects of indigenous Plant Growth Promoting Bacterium (PGPB) on the legume Pongamia pinnata in the degraded soil of the Nanmangalam Reserve Forest (NRF) under nursery conditions. In total, 160 diazotrophs were isolated from three different nitrogen-free semi-solid media (LGI, Nfb, and JMV). Amongst these isolates, Pseudomonas aeruginosa RRALC3 exhibited the maximum ammonia production and hence was selected for further studies. RRALC3 was found to possess multiple plant growth promoting traits such as nitrogen accumulation (120.6ppm); it yielded a positive amplicon with nifH specific primers, tested positive for Indole Acetic Acid (IAA; 18.3μg/ml) and siderophore production, tested negative for HCN production and was observed to promote solubilization of phosphate, silicate and zinc in the plate assay. The 16S rDNA sequence of RRALC3 exhibited 99% sequence similarity to Pseudomonas aeruginosa JCM5962. Absence of virulence genes and non-hemolytic activity indicated that RRALC3 is unlikely to be a human pathogen. When the effects of RRALC3 on promotion of plant growth was tested in Pongamia pinnata, it was observed that in Pongamia seedlings treated with a combination of RRALC3 and chemical fertilizer, the dry matter increased by 30.75%. Nitrogen, phosphorus and potassium uptake increased by 34.1%, 27.08%, and 31.84%, respectively, when compared to control. Significant enhancement of total sugar, amino acids and organic acids content, by 23.4%, 29.39%, and 26.53% respectively, was seen in the root exudates of P. pinnata. The carbon content appreciated by 4-fold, when fertilized seedlings were treated with RRALC3. From the logistic equation, the rapid C accumulation time of Pongamia was computed as 43 days longer than the control when a combination of native PGPB and inorganic fertilizer was applied. The rapid accumulation time of N, P and K in Pongamia when treated with the same combination as above was 15, 40 and 33 days longer, respectively, as compared to the control.
Collapse
|
45
|
Dawoud TM, Jiang T, Mandal RK, Ricke SC, Kwon YM. Improving the efficiency of transposon mutagenesis in Salmonella enteritidis by overcoming host-restriction barriers. Mol Biotechnol 2015; 56:1004-10. [PMID: 24973023 DOI: 10.1007/s12033-014-9779-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transposon mutagenesis using transposome complex is a powerful method for functional genomics analysis in diverse bacteria by creating a large number of random mutants to prepare a genome-saturating mutant library. However, strong host restriction barriers can lead to limitations with species- or strain-specific restriction-modification systems. The purpose of this study was to enhance the transposon mutagenesis efficiency of Salmonella Enteritidis to generate a larger number of random insertion mutants. Host-adapted Tn5 DNA was used to form a transposome complex, and this simple approach significantly and consistently improved the efficiency of transposon mutagenesis, resulting in a 46-fold increase in the efficiency as compared to non-adapted transposon DNA fragments. Random nature of Tn5 insertions was confirmed by high-throughput sequencing of the Tn5-junction sequences. The result based on S. Enteritidis in this study should find broad applications in preparing a comprehensive mutant library of other species using transposome complex.
Collapse
Affiliation(s)
- Turki M Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA,
| | | | | | | | | |
Collapse
|
46
|
Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E, Kerry JP. Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packag Shelf Life 2015. [DOI: 10.1016/j.fpsl.2015.03.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. mBio 2015; 6:e02471. [PMID: 25784703 PMCID: PMC4453514 DOI: 10.1128/mbio.02471-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3−), nitrite (NO2−), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3−, corresponding to R. solanacearum’s optimal NO3− concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3− compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3− respiration directly enhanced growth, AniA-dependent NO2− reduction did not. NO2− and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3− acts as a TEA, but the resulting NO2− and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2− reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3− to respire, grow, and cause disease. Degradation of NO2− and NO is also important for successful infection and depends on denitrification and NO detoxification systems. The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world’s most destructive crop diseases. This pathogen’s explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show that R. solanacearum rapidly depletes oxygen in host xylem but can then respire using host nitrate as a terminal electron acceptor. The microbe uses its denitrification pathway to detoxify the reactive nitrogen species nitrite (a product of nitrate respiration) and nitric oxide (a plant defense signal). Detoxification may play synergistic roles in bacterial wilt virulence by converting the host’s chemical weapon into an energy source. Mutant bacterial strains lacking elements of the denitrification pathway could not grow as well as the wild type in tomato plants, and some mutants were also reduced in virulence. Our results show how a pathogen’s metabolic activity can alter the host environment in ways that increase pathogen success.
Collapse
|
48
|
Yang N, Ding S, Chen F, Zhang X, Xia Y, Di H, Cao Q, Deng X, Wu M, Wong CCL, Tian XX, Yang CG, Zhao J, Lan L. The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 2015; 96:526-47. [PMID: 25641250 DOI: 10.1111/mmi.12954] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
Abstract
Rhamnolipid acts as a virulence factor during Pseudomonas aeruginosa infection. Here, we show that deletion of the catabolite repression control (crc) gene in P. aeruginosa leads to a rhamnolipid-negative phenotype. This effect is mediated by the down-regulation of rhl quorum sensing (QS). We discover that a disruption of the gene encoding the Lon protease entirely offsets the effect of crc deletion on the production of both rhamnolipid and rhl QS signal C4-HSL. Crc is unable to bind lon mRNA in vitro in the absence of the RNA chaperon Hfq, while Crc contributes to Hfq-mediated repression of the lon gene expression at a posttranscriptional level. Deletion of crc, which results in up-regulation of lon, significantly reduces the in vivo stability and abundance of the RhlI protein that synthesizes C4-HSL, causing the attenuation of rhl QS. Lon is also capable of degrading the RhlI protein in vitro. In addition, constitutive expression of rhlI suppresses the defects of the crc deletion mutant in rhamnolipid, C4-HSL and virulence on lettuce leaves. This study therefore uncovers a novel posttranscriptional regulatory cascade, Crc-Hfq/Lon/RhlI, for the regulation of rhamnolipid production and rhl QS in P. aeruginosa.
Collapse
Affiliation(s)
- Nana Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Deng J. A statistical framework for improving genomic annotations of transposon mutagenesis (TM) assigned essential genes. Methods Mol Biol 2015; 1279:153-65. [PMID: 25636618 DOI: 10.1007/978-1-4939-2398-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Whole-genome transposon mutagenesis (TM) experiment followed by sequence-based identification of insertion sites is the most popular genome-wise experiment to identify essential genes in Prokaryota. However, due to the limitation of high-throughput technique, this approach yields substantial systematic biases resulting in the incorrect assignments of many essential genes. To obtain unbiased and accurate annotations of essential genes from TM experiments, we developed a novel Poisson model based statistical framework to refine these TM assignments. In the model, first we identified and incorporated several potential factors such as gene length and TM insertion information which may cause the TM assignment biases into the basic Poisson model. Then we calculated the conditional probability of an essential gene given the observed TM insertion number. By factorizing this probability through introducing a latent variable the real insertion number, we formalized the statistical framework. Through iteratively updating and optimizing model parameters to maximize the goodness-of-fit of the model to the observed TM insertion data, we finalized the model. Using this model, we are able to assign the probability score of essentiality to each individual gene given its TM assignment, which subsequently correct the experimental biases. To enable our model widely useable, we established a user-friendly Web-server that is accessible to the public: http://research.cchmc.org/essentialgene/.
Collapse
Affiliation(s)
- Jingyuan Deng
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati Medical Center, 3223 Eden Av. ML 56, Cincinnati, OH, 45267-0056, USA,
| |
Collapse
|
50
|
Gao SH, Fan L, Yuan Z, Bond PL. The concentration-determined and population-specific antimicrobial effects of free nitrous acid on Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2014; 99:2305-12. [PMID: 25412579 DOI: 10.1007/s00253-014-6211-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
Abstract
There is great potential to use free nitrous acid (FNA/HNO2), the protonated form of nitrite, as an antimicrobial agent due to its bacteriostatic and bactericidal effects on a range of microorganisms. Here, we determine the effects of FNA on the opportunistic pathogen Pseudomonas aeruginosa PAO1, a well-studied denitrifier capable of nitrate/nitrite reduction in its anaerobic respiration. It was seen that lower FNA concentrations in the range of 0.1 to 0.2 mg N/L exerted a temporary inhibitory effect on the growth of P. aeruginosa, while respiratory inhibition was not detected until an FNA concentration of 1.0 mg N/L was applied. The FNA concentration of 5.0 mg N/L caused complete cell killing and likely cell lysis. The results suggest concentration-related and multiple antimicrobial effects of FNA. Differential killing of FNA in the P. aeruginosa subpopulations was detected, suggesting intrastrain heterogeneity, and does not support the idea of specific concentrations of FNA bringing about bacteriostatic and bactericidal effects on this species. A delayed recovery from FNA treatment suggested that FNA caused cell damage which required repair prior to the organism showing cell growth. The results of the study provide insight of the inhibitory and biocidal mechanisms of FNA on this important microorganism.
Collapse
Affiliation(s)
- Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland, Level 4 Gehrmann Building, St. Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|