1
|
Wu X, Alibayov B, Xiang X, Lattar SM, Sakai F, Medders AA, Antezana BS, Keller LE, Vidal AGJ, Tzeng YL, Robinson DA, Stephens DS, Yu Y, Vidal JE. Ultrastructural, metabolic and genetic characteristics of determinants facilitating the acquisition of macrolide resistance by Streptococcus pneumoniae. Drug Resist Updat 2024; 77:101138. [PMID: 39167981 PMCID: PMC11560628 DOI: 10.1016/j.drup.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
AIMS To investigate the molecular events associated with acquiring macrolide resistance genes [mefE/mel (Mega) or ermB] in Streptococcus pneumoniae (Spn) during nasopharyngeal colonization. METHODS AND RESULTS Genomic analysis of 128 macrolide-resistant Spn isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn916-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn916-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23 kb) or not (∼5.4 kb). The rF for Mega Class IV(c) insertion region (∼53 kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose. CONCLUSIONS Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Babek Alibayov
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Santiago M Lattar
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Fuminori Sakai
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Austin A Medders
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Brenda S Antezana
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Lance E Keller
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Ana G J Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Yih-Ling Tzeng
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - David S Stephens
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Yunsong Yu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China.
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
2
|
Alothaim AS, Alhoqail WA, Menakha M, Vijayakumar R. Combining molecular modelling and experimental approaches to gain mechanistic insights into the LuxP drug target in Streptococcus pyogens. J Biomol Struct Dyn 2024; 42:9494-9504. [PMID: 37642991 DOI: 10.1080/07391102.2023.2252079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Autoinducer-2 can mediate inter- and intra-species communication signal between bacteria and these signals from AI-2 is noted from limited species of bacteria. In humans, S. pyogenes is a pathogen that causes a wide range of illnesses and can survive in the host system and transmit infection. The process by which S. pyogenes acquires the competence to live and disseminate infection remains unknown. We hypothesized that AI-2 and their receptors would play a significant role during infection, and for that present investigation provides the experimental and molecular insights. In the absence of details about the receptor LuxP and LuxQ, the screening approach provides supporting insights. The evolutionary relationship and similarities of the PBP domain (Spy 1535) and the signal transmission PDZ domain (Spy 1536) were studied in relation to their counterparts in other bacteria. Molecular docking and modeling confirmed the domain-enhanced specificity for AI-2 binding. In vitro studies showed that AI-2, which is present in the cell-free supernatant of S. pyogenes, regulates luminescence in P. luminous and biofilm development in E. coli using the LuxS reporter genes. Examination of S. pyogenes gene expression revealed modulation of virulence genes when the pathogen was exposed to V. harveyi HSL and AI-2. Therefore, S. pyogenes pathogenicity is sequentially regulated by AI-2 it acquires from other commensal bacteria. Overall, this study lays the groundwork for understanding the signalling mechanism from AI-2, which are critical to the pathogenic mechanism of S. pyogenes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdulaziz S Alothaim
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Muniraj Menakha
- Department of Bio-informatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science, Majmaah University, Al-Majmaah, Saudi Arabia
| |
Collapse
|
3
|
Bin Mohammad Muzaki MZ, Subramoni S, Summers S, Kjelleberg S, Rice SA. Klebsiella pneumoniae AI-2 transporters mediate interspecies interactions and composition in a three-species biofilm community. NPJ Biofilms Microbiomes 2024; 10:91. [PMID: 39341797 PMCID: PMC11439081 DOI: 10.1038/s41522-024-00546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Biofilms in nature often exist as communities. In this study, an experimental mixed-species community consisting of Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was used to investigate how AI-2 transporters affect interspecies interactions and composition. The K. pneumoniae lsrB/lsrD deletion mutants had a 10-25-fold higher concentration of extracellular AI-2 compared to the wild-type. Although these deletion mutants produced monospecies biofilms of similar biomass, the substitution of these mutants for the parental strain significantly altered composition. Dual-species biofilm assays demonstrated that the changes in composition were due to the cumulative effect of pairwise interactions. It was further revealed that K. pneumoniae being present physically in the consortium was important in AI-2 mediating composition in the consortium, and that AI-2 transporters were crucial in achieving maximum biomass in the community. In conclusion, these findings demonstrate that AI-2 transporters mediate interspecies interactions and is important in maintaining the compositional equilibrium of the community.
Collapse
Affiliation(s)
- Muhammad Zulfadhly Bin Mohammad Muzaki
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stephen Summers
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
- The Australian Institute for Microbiology and Infection, The University of Technology Sydney, Sydney, NSW, Australia.
- Microbiomes for One Systems Health and Agriculture and Food, CSIRO, Westmead, NSW, Australia.
| |
Collapse
|
4
|
Scasny A, Alibayov B, Khan F, Rao SJ, Murin L, Jop Vidal AG, Smith P, Li W, Edwards K, Warncke K, Vidal JE. Oxidation of hemoproteins by Streptococcus pneumoniae collapses the cell cytoskeleton and disrupts mitochondrial respiration leading to the cytotoxicity of human lung cells. Microbiol Spectr 2024; 12:e0291223. [PMID: 38084982 PMCID: PMC10783075 DOI: 10.1128/spectrum.02912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (Spn) colonizes the lungs, killing millions every year. During its metabolism, Spn produces abundant amounts of hydrogen peroxide. When produced in the lung parenchyma, Spn-hydrogen peroxide (H2O2) causes the death of lung cells, and details of the mechanism are studied here. We found that Spn-H2O2 targets intracellular proteins, resulting in the contraction of the cell cytoskeleton and disruption of mitochondrial function, ultimately contributing to cell death. Intracellular proteins targeted by Spn-H2O2 included cytochrome c and, surprisingly, a protein of the cell cytoskeleton, beta-tubulin. To study the details of oxidative reactions, we used, as a surrogate model, the oxidation of another hemoprotein, hemoglobin. Using the surrogate model, we specifically identified a highly reactive radical whose creation was catalyzed by Spn-H2O2. In sum, we demonstrated that the oxidation of intracellular targets by Spn-H2O2 plays an important role in the cytotoxicity caused by Spn, thus providing new targets for interventions.
Collapse
Affiliation(s)
- Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Shambavi J. Rao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State School of Medicine, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Landon Murin
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Mississippi INBRE Research Scholar, University of Southern Mississippi, Jackson, Mississippi, USA
| | - Wei Li
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Kristin Edwards
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Wu X, Alibayov B, Xiang X, Lattar SM, Sakai F, Medders AA, Antezana B, Keller L, Vidal AGJ, Tzeng YL, Robinson DA, Stephens D, Yu Y, Vidal JE. Ultrastructural, metabolic and genetic determinants of the acquisition of macrolide resistance by Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573471. [PMID: 38234816 PMCID: PMC10793443 DOI: 10.1101/2023.12.27.573471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Aim Streptococcus pneumoniae (Spn) acquires genes for macrolide resistance, MEGA or ermB, in the human host. These genes are carried either in the chromosome, or on integrative conjugative elements (ICEs). Here, we investigated molecular determinants of the acquisition of macrolide resistance. Methods and Results Whole genome analysis was conducted for 128 macrolide-resistant pneumococcal isolates to identify the presence of MEGA (44.5%, 57/128) or ermB (100%), and recombination events in Tn916-related elements or in the locus comCDE encoding competence genes. Confocal and electron microscopy studies demonstrated that, during the acquisition of macrolide resistance, pneumococcal strains formed clusters of varying size, with the largest aggregates having a median size of ~1600 μm2. Remarkably, these pneumococcal aggregates comprise both encapsulated and nonencapsulated pneumococci, exhibited physical interaction, and spanned extracellular and intracellular compartments. We assessed the recombination frequency (rF) for the acquisition of macrolide resistance by a recipient D39 strain, from pneumococcal strains carrying MEGA (~5.4 kb) in the chromone, or in large ICEs (>23 kb). Notably, the rF for the acquisition of MEGA, whether in the chromosome or carried on an ICE was similar. However, the rF adjusted to the acquisition of the full-length ICE (~52 kb), compared to that of the capsule locus (~23 kb) that is acquired by transformation, was three orders of magnitude higher. Finally, metabolomics studies revealed a link between the acquisition of ICE and the metabolic pathways involving nicotinic acid and sucrose. Conclusions Extracellular and intracellular pneumococcal clusters facilitate the acquisition of full-length ICE at a rF higher than that of typical transformation events, involving distinct metabolic changes that present potential targets for interventions.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Santiago M. Lattar
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta GA 30322, United States
| | - Fuminori Sakai
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta GA 30322, United States
| | - Austin A. Medders
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Brenda Antezana
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - Lance Keller
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Ana G. J. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Yih-Ling Tzeng
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - D. Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - David Stephens
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - Yunsong Yu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| |
Collapse
|
6
|
Alibayov B, Scasny A, Vidal AGJ, Murin L, Wong S, Edwards KS, Eichembaun Z, Punshon T, Jackson BP, Hopp MT, McDaniel LS, Akerley BJ, Imhof D, Vidal JE. Oxidation of hemoglobin in the lung parenchyma facilitates the differentiation of pneumococci into encapsulated bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567109. [PMID: 38014009 PMCID: PMC10680745 DOI: 10.1101/2023.11.14.567109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pneumococcal pneumonia causes cytotoxicity in the lung parenchyma but the underlying mechanism involves multiple factors contributing to cell death. Here, we discovered that hydrogen peroxide produced by Streptococcus pneumoniae (Spn-H 2 O 2 ) plays a pivotal role by oxidizing hemoglobin, leading to its polymerization and subsequent release of labile heme. At physiologically relevant levels, heme selected a population of encapsulated pneumococci. In the absence of capsule and Spn-H 2 O 2 , host intracellular heme exhibited toxicity towards pneumococci, thus acting as an antibacterial mechanism. Further investigation revealed that heme-mediated toxicity required the ABC transporter GlnPQ. In vivo experiments demonstrated that pneumococci release H 2 O 2 to cause cytotoxicity in bronchi and alveoli through the non-proteolytic degradation of intracellular proteins such as actin, tubulin and GAPDH. Overall, our findings uncover a mechanism of lung toxicity mediated by oxidative stress that favor the growth of encapsulated pneumococci suggesting a therapeutic potential by targeting oxidative reactions. Graphical abstract Highlights Oxidation of hemoglobin by Streptococcus pneumoniae facilitates differentiation to encapsulated pneumococci in vivo Differentiated S. pneumoniae produces capsule and hydrogen peroxide (Spn-H 2 O 2 ) as defense mechanism against host heme-mediated toxicity. Spn-H 2 O 2 -induced lung toxicity causes the oxidation and non-proteolytic degradation of intracellular proteins tubulin, actin, and GAPDH. The ABC transporter GlnPQ is a heme-binding complex that makes Spn susceptible to heme toxicity.
Collapse
|
7
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Scasny A, Alibayov B, Khan F, Rao SJ, Murin L, Jop Vidal AG, Smith P, Wei L, Edwards K, Warncke K, Vidal JE. Oxidation of hemoproteins by Streptococcus pneumoniae collapses the cell cytoskeleton and disrupts mitochondrial respiration leading to cytotoxicity of human lung cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544089. [PMID: 37333138 PMCID: PMC10274756 DOI: 10.1101/2023.06.07.544089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Streptococcus pneumoniae (Spn) causes pneumonia that kills millions through acute toxicity and invasion of the lung parenchyma. During aerobic respiration, Spn releases hydrogen peroxide (Spn-H 2 O 2 ), as a by-product of enzymes SpxB and LctO, and causes cell death with signs of both apoptosis and pyroptosis by oxidizing unknown cell targets. Hemoproteins are molecules essential for life and prone to oxidation by H 2 O 2 . We recently demonstrated that during infection-mimicking conditions, Spn-H 2 O 2 oxidizes the hemoprotein hemoglobin (Hb), releasing toxic heme. In this study, we investigated details of the molecular mechanism(s) by which the oxidation of hemoproteins by Spn-H 2 O 2 causes human lung cell death. Spn strains, but not H 2 O 2 -deficient SpnΔ spxB Δ lctO strains caused time-dependent cell cytotoxicity characterized by the rearrangement of the actin, the loss of the microtubule cytoskeleton and nuclear contraction. Disruption of the cell cytoskeleton correlated with the presence of invasive pneumococci and an increase of intracellular reactive oxygen species. In cell culture, the oxidation of Hb or cytochrome c (Cyt c ) caused DNA degradation and mitochondrial dysfunction from inhibition of complex I-driven respiration, which was cytotoxic to human alveolar cells. Oxidation of hemoproteins resulted in the creation of a radical, which was identified as a protein derived side chain tyrosyl radical by using electron paramagnetic resonance (EPR). Thus, we demonstrate that Spn invades lung cells, releasing H 2 O 2 that oxidizes hemoproteins, including Cyt c , catalyzing the formation of a tyrosyl side chain radical on Hb and causing mitochondrial disruption, that ultimately leads to the collapse of the cell cytoskeleton.
Collapse
|
9
|
Zuo J, Shen Y, Wang H, Gao S, Yuan S, Song D, Wang Y, Wang Y. Effects of metformin on Streptococcus suis LuxS/AI-2 quorum sensing system and biofilm formation. Microb Pathog 2023:106183. [PMID: 37263449 DOI: 10.1016/j.micpath.2023.106183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Streptococcus suis (S. suis) regulates biofilm formation through LuxS/AI-2 quorum sensing system, increasing drug resistance and exacerbating infection. The anti-hyperglycaemic agent metformin has anti-bacterial and anti-biofilm activities. This study aimed to investigate the anti-biofilm and anti-quorum sensing activity of metformin in S. suis. We first determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of metformin on S. suis. The results indicated that metformin showed no obvious inhibitory or bactericidal effect. Crystal violet staining showed that metformin significantly inhibited the formation of S. suis biofilm at sub-MIC concentration, which was also confirmed by scanning electron microscopy. Then, we quantified the AI-2 signal molecules in S. suis, and the results showed that metformin had a significant inhibitory effect on the production of AI-2 signal in S. suis. Inhibition of enzyme activity and molecular docking experiments showed that metformin has a significant binding activity to LuxS protein. In addition, qRT-PCR results showed that metformin significantly down-regulated the expression of AI-2 synthesis-related genes luxS and pfs, and adhesion-related genes luxS, pfs, gapdh, sly, fbps, and ef. Western blotting also showed that metformin significantly reduced the expression of LuxS protein. Our study suggests that metformin seems to be a suitable candidate for the inhibition of S. suis LuxS/AI-2 QS system and prevention of biofilm formation, which provided a new idea for the prevention and control of S. suis.
Collapse
Affiliation(s)
- Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Dong Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China.
| |
Collapse
|
10
|
Agnew HN, Atack JM, Fernando AR, Waters SN, van der Linden M, Smith E, Abell AD, Brazel EB, Paton JC, Trappetti C. Uncovering the link between the SpnIII restriction modification system and LuxS in Streptococcus pneumoniae meningitis isolates. Front Cell Infect Microbiol 2023; 13:1177857. [PMID: 37197203 PMCID: PMC10184825 DOI: 10.3389/fcimb.2023.1177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Streptococcus pneumoniae is capable of randomly switching their genomic DNA methylation pattern between six distinct bacterial subpopulations (A-F) via recombination of a type 1 restriction-modification locus, spnIII. These pneumococcal subpopulations exhibit phenotypic changes which favor carriage or invasive disease. In particular, the spnIIIB allele has been associated with increased nasopharyngeal carriage and the downregulation of the luxS gene. The LuxS/AI-2 QS system represent a universal language for bacteria and has been linked to virulence and biofilm formation in S. pneumoniae. In this work, we have explored the link between spnIII alleles, the luxS gene and virulence in two clinical pneumococcal isolates from the blood and cerebrospinal fluid (CSF) of one pediatric meningitis patient. The blood and CSF strains showed different virulence profiles in mice. Analysis of the spnIII system of these strains recovered from the murine nasopharynx showed that the system switched to different alleles commensurate with the initial source of the isolate. Of note, the blood strain showed high expression of spnIIIB allele, previously linked with less LuxS protein production. Importantly, strains with deleted luxS displayed different phenotypic profiles compared to the wildtype, but similar to the strains recovered from the nasopharynx of infected mice. This study used clinically relevant S. pneumoniae strains to demonstrate that the regulatory network between luxS and the type 1 restriction-modification system play a key role in infections and may support different adaptation to specific host niches.
Collapse
Affiliation(s)
- Hannah N. Agnew
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| | - Ann R.D. Fernando
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Sophie N. Waters
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Mark van der Linden
- German National Reference Center for Streptococci, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Erin Smith
- School of Physical Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia
| | - Andrew D. Abell
- School of Physical Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia
| | - Erin B. Brazel
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| | - Claudia Trappetti
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Claudia Trappetti, ; James C. Paton,
| |
Collapse
|
11
|
Alibayov B, Scasny A, Khan F, Creel A, Smith P, Vidal AGJ, Fitisemanu FM, Padilla-Benavides T, Weiser JN, Vidal JE. Oxidative Reactions Catalyzed by Hydrogen Peroxide Produced by Streptococcus pneumoniae and Other Streptococci Cause the Release and Degradation of Heme from Hemoglobin. Infect Immun 2022; 90:e0047122. [PMID: 36409115 PMCID: PMC9753736 DOI: 10.1128/iai.00471-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 μM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aidan Creel
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Mississippi INBRE program, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | - Jeffrey N. Weiser
- Department of Microbiology, NYU Langone Health, New York, New York, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
12
|
Comparative meta-analysis of host transcriptional response during Streptococcus pneumoniae carriage or infection. Microb Pathog 2022; 173:105816. [DOI: 10.1016/j.micpath.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
13
|
Induction of the macrolide-resistance efflux pump Mega inhibits intoxication of Staphylococcus aureus strains by Streptococcus pneumoniae. Microbiol Res 2022; 263:127134. [PMID: 35905580 DOI: 10.1016/j.micres.2022.127134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Streptococcus pneumoniae (Spn) kills Staphylococcus aureus (Sau) through a contact-dependent mechanism that is catalyzed by cations, including iron, to convert hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH). There are two well-characterized ABC transporters that contribute to the pool of iron in Spn, named Pia and Piu. Some Spn strains have acquired genes mef(E)/mel encoding another ABC trasporter (Mega) that produces an inducible efflux pump for resistance to macrolides. In macrolide-resistant Spn clinical isolates the insertion of Mega class 1. IV and 2. IVc deleted the locus piaABCD and these strains were attenuated for intoxicating Sau. The goal of this study was to investigate if the disruption of iron acquisition, or the antimicrobial-resistance activity of Mega, contributed to inhibiting the killing mechanism. Neither depletion of iron with 2,2'-dipyridyl-d8 (DP) nor incubating with a double knockout mutant SpnΔpiaAΔpiuA, inhibited killing of Sau. Clinical Spn strains carrying Mega1. IV or Mega2. IVc showed a significant delay for killing Sau. An ex vivo recombination system was used to transfer Mega1. IV or Mega2. IVc to reference Spn strains, which was confirmed by whole genome sequencing, and recombinants TIGR4Mega2. IVc, D39Mega2. IVc, and D39Mega1. IV were delayed for killing Sau. We then compared Sau killing of selected Mega-carrying Spn strains when incubated with sub-inhibitory erythromycin (Mega-induced) or sub-inhibitory cefuroxime. Remarkably, killing of Sau was completely inhibited under the Mega-induced condition whereas incubation with cefuroxime did not interfere with killing. Both mef(E) and mel were upregulated > 400-fold, and spxB (encoding an enzyme responsible for production of most H2O2) was upregulated 14.2-fold, whereas transcription of the autolysin (lytA) gene was downregulated when incubated with erythromycin. We demonstrated that erythromycin induction of Mega inhibits the •OH-mediated intoxication of Sau and that the inhibition occurred at the post-translational level suggesting that an imbalance of ions in the membrane inhibits these reactions.
Collapse
|
14
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
15
|
Gonzales BE, Mercado EH, Pinedo-Bardales M, Hinostroza N, Campos F, Chaparro E, Del Águila O, Castillo ME, Saenz A, Reyes I, Ochoa TJ. Increase of Macrolide-Resistance in Streptococcus pneumoniae Strains After the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine in Lima, Peru. Front Cell Infect Microbiol 2022; 12:866186. [PMID: 35615398 PMCID: PMC9125093 DOI: 10.3389/fcimb.2022.866186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae upper respiratory infections and pneumonia are often treated with macrolides, but recently macrolide resistance is becoming an increasingly important problem. The 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in the National Immunization Program of Peru in 2015. This study aimed to evaluate the temporal evolution of macrolide resistance in S. pneumoniae isolates collected in five cross-sectional studies conducted before and after this vaccine introduction, from 2006 to 2019 in Lima, Peru. A total of 521 and 242 S. pneumoniae isolates recovered from nasopharyngeal swabs from healthy carrier children < 2 years old (2 carriage studies) and samples from normally sterile body areas from pediatric patients with invasive pneumococcal disease (IPD) (3 IPD studies), respectively, were included in this study. Phenotypic macrolide resistance was detected using the Kirby-Bauer method and/or MIC test. We found a significant increase in macrolide resistance over time, from 33.5% to 50.0% in carriage studies, and from 24.8% to 37.5% and 70.8% in IPD studies. Macrolide resistance genes [erm(B) and mef(A/E)] were screened using PCR. In carriage studies, we detected a significant decrease in the frequency of mef(A/E) genes among macrolide-resistant S. pneumoniae strains (from 66.7% to 50.0%) after introduction of PCV13. The most common mechanism of macrolide-resistant among IPD strains was the presence of erm(B) (96.0%, 95.2% and 85.1% in the 3 IPD studies respectively). Macrolide resistance was more common in serotype 19A strains (80% and 90% among carriage and IPD strains, respectively) vs. non-serotype 19A (35.5% and 34.4% among carriage and IPD strains, respectively). In conclusion, S. pneumoniae macrolide resistance rates are very high among Peruvian children. Future studies are needed in order to evaluate macrolide resistance trends among pneumococcal strains, especially now after the COVID-19 pandemic, since azithromycin was vastly used as empiric treatment of COVID-19 in Peru.
Collapse
Affiliation(s)
- Brayan E. Gonzales
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erik H. Mercado
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Pinedo-Bardales
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Noemi Hinostroza
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Campos
- Departamento de Pediatría, Hospital Nacional Docente Madre-Niño San Bartolomé, Lima, Peru
| | - Eduardo Chaparro
- Departamento de Pediatría, Hospital Nacional Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Olguita Del Águila
- Servicio de Pediatría de Especialidades Clínicas, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - María E. Castillo
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Oficina de Epidemiología, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Andrés Saenz
- Departamento de Pediatría, Hospital Nacional Daniel Alcides Carrión, Lima, Peru
| | - Isabel Reyes
- Servicio de Hospitalización, Hospital de Emergencias Pediátricas, Lima, Peru
| | - Theresa J. Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Correspondence: Theresa J. Ochoa,
| |
Collapse
|
16
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Stevens EJ, Morse DJ, Bonini D, Duggan S, Brignoli T, Recker M, Lees JA, Croucher NJ, Bentley S, Wilson DJ, Earle SG, Dixon R, Nobbs A, Jenkinson H, van Opijnen T, Thibault D, Wilkinson OJ, Dillingham MS, Carlile S, McLoughlin RM, Massey RC. Targeted control of pneumolysin production by a mobile genetic element in Streptococcus pneumoniae. Microb Genom 2022; 8:000784. [PMID: 35416147 PMCID: PMC9453066 DOI: 10.1099/mgen.0.000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen that can cause severe invasive diseases such as pneumonia, septicaemia and meningitis. Young children are at a particularly high risk, with an estimated 3-4 million cases of severe disease and between 300 000 and 500 000 deaths attributable to pneumococcal disease each year. The haemolytic toxin pneumolysin (Ply) is a primary virulence factor for this bacterium, yet despite its key role in pathogenesis, immune evasion and transmission, the regulation of Ply production is not well defined. Using a genome-wide association approach, we identified a large number of potential affectors of Ply activity, including a gene acquired horizontally on the antibiotic resistance-conferring Integrative and Conjugative Element (ICE) ICESp23FST81. This gene encodes a novel modular protein, ZomB, which has an N-terminal UvrD-like helicase domain followed by two Cas4-like domains with potent ATP-dependent nuclease activity. We found the regulatory effect of ZomB to be specific for the ply operon, potentially mediated by its high affinity for the BOX repeats encoded therein. Using a murine model of pneumococcal colonization, we further demonstrate that a ZomB mutant strain colonizes both the upper respiratory tract and lungs at higher levels when compared to the wild-type strain. While the antibiotic resistance-conferring aspects of ICESp23FST81 are often credited with contributing to the success of the S. pneumoniae lineages that acquire it, its ability to control the expression of a major virulence factor implicated in bacterial transmission is also likely to have played an important role.
Collapse
Affiliation(s)
- Emily J Stevens
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Daniel J Morse
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Dora Bonini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Seána Duggan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Exeter, TR10 9FE, UK.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Stephen Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Sarah G Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Robert Dixon
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Angela Nobbs
- Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK
| | - Howard Jenkinson
- Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK
| | | | - Derek Thibault
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Oliver J Wilkinson
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Simon Carlile
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.,Schools of Microbiology and Medicine and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol 2021; 103:108471. [PMID: 34952466 DOI: 10.1016/j.intimp.2021.108471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Biofilm is a community of bacteria embedded in the extracellular matrix that accounts for 80% of bacterial infections. Biofilm enables bacterial cells to provide particular conditions and produce virulence determinants in response to the unavailability of micronutrients and local oxygen, resulting in their resistance to various antibacterial agents. Besides, the human immune reactions are not completely competent in the elimination of biofilm. Most importantly, the growing body of evidence shows that some bacterial spp. use a variety of mechanisms by which hijack the host components to form biofilm. In this regard, host components, such as DNA, hyaluronan, collagen, fibronectin, mucin, oligosaccharide moieties, filamentous polymers (F-actin), plasma, platelets, keratin, sialic acid, laminin, vitronectin, C3- and C4- binding proteins, antibody, proteases, factor I, factor H, and acidic proline-rich proteins have been reviewed. Hence, the characterization of interactions between bacterial biofilm and the host would be critical to effectively address biofilm-associated infections. In this paper, we review the latest information on the hijacking of host factors by bacteria to form biofilm.
Collapse
|
19
|
Vidal JE, Wier MN, A. Angulo-Zamudio U, McDevitt E, Jop Vidal AG, Alibayov B, Scasny A, Wong SM, Akerley BJ, McDaniel LS. Prophylactic Inhibition of Colonization by Streptococcus pneumoniae with the Secondary Bile Acid Metabolite Deoxycholic Acid. Infect Immun 2021; 89:e0046321. [PMID: 34543118 PMCID: PMC8594607 DOI: 10.1128/iai.00463-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.
Collapse
Affiliation(s)
- Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Meagan N. Wier
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Erin McDevitt
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sandy M. Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Brian J. Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
20
|
Gregory TV, Ellis K, Valeriani R, Khan F, Wu X, Murin L, Alibayov B, Vidal AGJ, Zhao T, Vidal JE. MoWa: A Disinfectant for Hospital Surfaces Contaminated With Methicillin-Resistant Staphylococcus aureus (MRSA) and Other Nosocomial Pathogens. Front Cell Infect Microbiol 2021; 11:676638. [PMID: 34295834 PMCID: PMC8291128 DOI: 10.3389/fcimb.2021.676638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Staphylococcus aureus strains, including methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA), are a main cause of nosocomial infection in the world. The majority of nosocomial S. aureus-infection are traced back to a source of contaminated surfaces including surgery tables. We assessed the efficacy of a mixture of levulinic acid (LA) and sodium dodecyl sulfate (SDS), hereafter called MoWa, to eradicate nosocomial pathogens from contaminated surfaces. Methods and Results A dose response study demonstrated that MoWa killed 24 h planktonic cultures of S. aureus strains starting at a concentration of (LA) 8.2/(SDS) 0.3 mM while 24 h preformed biofilms were eradicated with 32/1.3 mM. A time course study further showed that attached MRSA bacteria were eradicated within 4 h of incubation with 65/2 mM MoWa. Staphylococci were killed as confirmed by bacterial counts, and fluorescence micrographs that were stained with the live/dead bacterial assay. We then simulated contamination of hospital surfaces by inoculating bacteria on a surface prone to contamination. Once dried, contaminated surfaces were sprayed with MoWa or mock-treated, and treated contaminated surfaces were swabbed and bacteria counted. While bacteria in the mock-treated samples grew at a density of ~104 cfu/cm2, those treated for ~1 min with MoWa (1.0/0.04 M) had been eradicated below limit of detection. A similar eradication efficacy was obtained when surfaces were contaminated with other nosocomial pathogens, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, or Staphylococcus epidermidis. Conclusions MoWa kills planktonic and biofilms made by MRSA and MSSA strains and showed great efficacy to disinfect MRSA-, and MSSA-contaminated, surfaces and surfaces contaminated with other important nosocomial pathogens.
Collapse
Affiliation(s)
- Tyler V. Gregory
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
- Biomedical Sciences Master of Science Program, University of Mississippi Medical Center, Jackson, MS, United States
| | - Karen Ellis
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Renzo Valeriani
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Faidad Khan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xueqing Wu
- Department of Infectious Disease, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Landon Murin
- Base Pair Program Murrah- University of Mississippi Medical Center, Jackson, MS, United States
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana G. Jop Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Tong Zhao
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
21
|
Research on the role of LuxS/AI-2 quorum sensing in biofilm of Leuconostoc citreum 37 based on complete genome sequencing. 3 Biotech 2021; 11:189. [PMID: 33927980 DOI: 10.1007/s13205-021-02747-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Leuconostoc citreum, a type of food-grade probiotic bacteria, plays an important role in food fermentation and intestinal probiotics. Biofilms help bacteria survive under adverse conditions, and LuxS/AI-2-dependent quorum sensing (QS) plays an important role in the regulation of their biofilm-forming activities. L. citreum 37 was a biofilm-forming strain isolated from dairy products. The aim of this study was to analyze genes involved in the LuxS/AI-2 system based on genome sequencing and biofilm formation of L. citreum 37. Genome assembly yielded two contigs (one chromosome and one plasmid), and the complete genome contained 1,946,279 base pairs (bps) with a G + C content of 38.91%. The genome sequence analysis showed that there were several pathways such as the two-component system, QS, and seven other signal pathways, and 26 genes (including luxS, pfs, and 24 other genes) may participate in QS related to biofilm formation. All these results showed that the LuxS/AI-2 system is complete in the genome of L. citreum 37. The quantitative polymerase chain reaction (qPCR) of pfs, luxS genes, and AI-2 production of L. citreum 37 in planktonic state and biofilm state showed that the expression of pfs and luxS genes was consistent with the production of AI-2 and was positively correlated with biofilm formation. After luxS of L. citreum 37 expressed in Escherichia coli BL21, AI-2 production was detected, suggesting that the luxS gene played an important role in AI-2 synthesis, Therefore, luxS may regulate the biofilm formation of L. citreum 37 by participating in AI-2 synthesis. It is projected that results of this study could help facilitate further understanding and application of L. citreum 37. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02747-2.
Collapse
|
22
|
Fuji N, Pichichero ME, Kaur R. Comparison of specific in-vitro virulence gene expression and innate host response in locally invasive vs colonizer strains of Streptococcus pneumoniae. Med Microbiol Immunol 2021; 210:111-120. [PMID: 33751214 DOI: 10.1007/s00430-021-00701-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Among Rochester NY children, a dramatic increase in nasopharyngeal (NP) colonization by non-vaccine pneumococcal serotypes 35B and 15A occurred during years 2010-2015, after introduction of 13-valent pneumococcal conjugate vaccine (PCV13). In our population, serotype 35B strains colonized in the nasopharynx (NP) but infrequently caused acute otitis media (AOM) whereas serotype 15A strains displayed virulence, evidenced by causing AOM. To explain the virulence difference, virulence genes expression between 35B and 15A, as well as the host's immune response during asymptomatic colonization were analyzed. We investigated differences in regulation of 19 virulence genes for differences in virulence using RT-PCR in 20 35B and 14 15A strains and measured gene expression of 9 host innate cytokines in the NP to assess the mucosal inflammatory response during asymptomatic colonization. Comparing 35B versus 15A strains, genes for competence ComA and RrgC were upregulated; capsular (Cps2D) and virulence genes (PfbA, PcpA and PhtE) were downregulated among 35B strains. PavB, LytA, LytB, NanA, CiaR, PhtD, LuxS, PspA and pneumolysin (Ply) showed no difference. IL17 and IL23 gene expression were > tenfold higher during 35B compared to 15A strain asymptomatic colonization. Only IL23 showed significant difference. In the first 5 years after introduction of PCV13, serotype 35B strains emerged as asymptomatic colonizers and 15A strains emerged to cause AOM in young children. Various genes (PfbA, PcpA, Cps2D and PhtE) among tested in this analysis were downregulated in 35B whereas ComA and RrgC were significantly upregulated. For the host's cytokine response, IL23 proinflammatory response which is essential for the differentiation of Th17 lymphocytes in the NP of children with 35B strains was significantly higher than the response to 15A during asymptomatic colonization.
Collapse
Affiliation(s)
- Naoko Fuji
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| |
Collapse
|
23
|
Hemoglobin Induces Early and Robust Biofilm Development in Streptococcus pneumoniae by a Pathway That Involves comC but Not the Cognate comDE Two-Component System. Infect Immun 2021; 89:IAI.00779-20. [PMID: 33397818 DOI: 10.1128/iai.00779-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.
Collapse
|
24
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
25
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
26
|
Valeriani RG, Beard LL, Moller A, Ohtani K, Vidal JE. Gas gangrene-associated gliding motility is regulated by the Clostridium perfringens CpAL/VirSR system. Anaerobe 2020; 66:102287. [PMID: 33130105 DOI: 10.1016/j.anaerobe.2020.102287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens strains cause a wide variety of human and animal disease, including gas gangrene or myonecrosis. Production of toxins required for myonecrosis, PFO and CPA, is regulated by the C. perfringens Agr-like (CpAL) system via the VirSR two-component system. Myonecrosis begins at the site of infection from where bacteria migrate deep into the host tissue likely using a previously described gliding motility phenotype. We therefore assessed whether gliding motility was under the control of the CpAL/VirSR regulon. The migration rate of myonecrosis-causing C. perfringens strain 13 (S13) was investigated during a 96 h period, including an adaptation phase with bacterial migration (∼1.4 mm/day) followed by a gliding phase allowing bacteria faster migration (∼8.6 mm/day). Gliding required both an intact CpAL system, and signaling through VirSR. Mutants lacking ΔagrB, or ΔvirR, were impaired for onward gliding while a complemented strain S13ΔagrB/pTS1303 had the gliding phenotype restored. Gene expression studies revealed upregulated transcription of pili genes (pilA1, pilA2 and pilT) whose encoded proteins were previously found to be required for gliding motility and CpAL/VirSR-regulated pfoA and cpa toxin genes. Compared to S13, transcription of cpa and pfoA significantly decreased in S13ΔagrB, or S13ΔvirR, strains but not that of pili genes. Further experiments demonstrated that mutants S13ΔpfoA and S13Δcpa migrated at the same rate as S13 wt. We demonstrated that CpAL/VirSR regulates C. perfringens gliding motility and that gliding bacteria have an increased transcription of toxin genes involved in myonecrosis.
Collapse
Affiliation(s)
| | - LaMonta L Beard
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Abraham Moller
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kaori Ohtani
- Tokai University School of Medicine, Ishihara-shi, Kanagawa, Japan
| | - Jorge E Vidal
- Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
27
|
Akhter F, Womack E, Vidal JE, Le Breton Y, McIver KS, Pawar S, Eichenbaum Z. Hemoglobin stimulates vigorous growth of Streptococcus pneumoniae and shapes the pathogen's global transcriptome. Sci Rep 2020; 10:15202. [PMID: 32938947 PMCID: PMC7494912 DOI: 10.1038/s41598-020-71910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae (Spn) must acquire iron from the host to establish infection. We examined the impact of hemoglobin, the largest iron reservoir in the body, on pneumococcal physiology. Supplementation with hemoglobin allowed Spn to resume growth in an iron-deplete medium. Pneumococcal growth with hemoglobin was unusually robust, exhibiting a prolonged logarithmic growth, higher biomass, and extended viability in both iron-deplete and standard medium. We observed the hemoglobin-dependent response in multiple serotypes, but not with other host proteins, free iron, or heme. Remarkably, hemoglobin induced a sizable transcriptome remodeling, effecting virulence and metabolism in particular genes facilitating host glycoconjugates use. Accordingly, Spn was more adapted to grow on the human α − 1 acid glycoprotein as a sugar source with hemoglobin. A mutant in the hemoglobin/heme-binding protein Spbhp-37 was impaired for growth on heme and hemoglobin iron. The mutant exhibited reduced growth and iron content when grown in THYB and hemoglobin. In summary, the data show that hemoglobin is highly beneficial for Spn cultivation in vitro and suggest that hemoglobin might drive the pathogen adaptation in vivo. The hemoglobin receptor, Spbhp-37, plays a role in mediating the positive influence of hemoglobin. These novel findings provide intriguing insights into pneumococcal interactions with its obligate human host.
Collapse
Affiliation(s)
- Fahmina Akhter
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, MD, USA.,Wound Infections Department, Bacterial Diseases Branch, The Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park (UMCP), College Park, MD, USA
| | - Shrikant Pawar
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | |
Collapse
|
28
|
Alcalde-Rico M, Olivares-Pacheco J, Halliday N, Cámara M, Martínez JL. The impaired quorum sensing response of Pseudomonas aeruginosa MexAB-OprM efflux pump overexpressing mutants is not due to non-physiological efflux of 3-oxo-C12-HSL. Environ Microbiol 2020; 22:5167-5188. [PMID: 32715566 DOI: 10.1111/1462-2920.15177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
Abstract
Multidrug (MDR) efflux pumps are ancient and conserved molecular machineries with relevant roles in different aspects of the bacterial physiology, besides antibiotic resistance. In the case of the environmental opportunistic pathogen Pseudomonas aeruginosa, it has been shown that overexpression of different efflux pumps is linked to the impairment of the quorum sensing (QS) response. Nevertheless, the causes of such impairment are different for each analysed efflux pump. Herein, we performed an in-depth analysis of the QS-mediated response of a P. aeruginosa antibiotic resistant mutant that overexpresses MexAB-OprM. Although previous work claimed that this efflux pump extrudes the QS signal 3-oxo-C12-HSL, we show otherwise. Our results evidence that the observed attenuation in the QS response when overexpressing this pump is related to an impaired production of alkyl quinolone QS signals, likely prompted by the reduced availability of one of their precursors, the octanoate. Together with previous studies, this indicates that, although the consequences of overexpressing efflux pumps are similar (impaired QS response), the underlying mechanisms are different. This 'apparent redundancy' of MDR efflux systems can be understood as a P. aeruginosa strategy to keep the robustness of the QS regulatory network and modulate its output in response to different signals.
Collapse
Affiliation(s)
- Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Madrid, 28049, Spain.,Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales GRABPA, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso, 2340025, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales GRABPA, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso, 2340025, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Nigel Halliday
- National Biofilms Innovation Centre, Nottingham University Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Miguel Cámara
- National Biofilms Innovation Centre, Nottingham University Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
29
|
Effects of Natural Products on Bacterial Communication and Network-Quorum Sensing. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8638103. [PMID: 32596389 PMCID: PMC7273434 DOI: 10.1155/2020/8638103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Quorum sensing (QS) has emerged as a research hotspot in microbiology and medicine. QS is a regulatory cell communication system used by bacterial flora to signal to the external environment. QS influences bacterial growth, proliferation, biofilm formation, virulence factor production, antibiotic synthesis, and environmental adaptation. Through the QS system, natural products can regulate the growth of harmful bacteria and enhance the growth of beneficial bacteria, thereby improving human health. Herein, we review advances in the discovery of natural products that regulate bacterial QS systems.
Collapse
|
30
|
Domenech M, García E. The N-Acetylglucosaminidase LytB of Streptococcus pneumoniae Is Involved in the Structure and Formation of Biofilms. Appl Environ Microbiol 2020; 86:e00280-20. [PMID: 32198170 PMCID: PMC7205503 DOI: 10.1128/aem.00280-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
The N-acetylglucosaminidase LytB of Streptococcus pneumoniae is involved in nasopharyngeal colonization and is responsible for cell separation at the end of cell division; thus, ΔlytB mutants form long chains of cells. This paper reports the construction and properties of a defective pneumococcal mutant producing an inactive LytB protein (LytBE585A). It is shown that an enzymatically active LytB is required for in vitro biofilm formation, as lytB mutants (either ΔlytB or producing the inactive LytBE585A) are incapable of forming substantial biofilms, despite that extracellular DNA is present in the biofilm matrix. Adding small amounts (0.5 to 2.0 μg/ml) of exogenous LytB or some LytB constructs restored the biofilm-forming capacity of lytB mutants to wild-type levels. The LytBE585A mutant formed biofilm more rapidly than ΔlytB mutants in the presence of LytB. This suggests that the mutant protein acted in a structural role, likely through the formation of complexes with extracellular DNA. The chain-dispersing capacity of LytB allowed the separation of daughter cells, presumably facilitating the formation of microcolonies and, finally, of biofilms. A role for the possible involvement of LytB in the synthesis of the extracellular polysaccharide component of the biofilm matrix is also discussed.IMPORTANCE It has been previously accepted that biofilm formation in S. pneumoniae must be a multigenic trait because the mutation of a single gene has led to only to partial inhibition of biofilm production. In the present study, however, evidence that the N-acetylglucosaminidase LytB is crucial in biofilm formation is provided. Despite the presence of extracellular DNA, strains either deficient in LytB or producing a defective LytB enzyme formed only shallow biofilms.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
31
|
Gu Y, Wu J, Tian J, Li L, Zhang B, Zhang Y, He Y. Effects of Exogenous Synthetic Autoinducer-2 on Physiological Behaviors and Proteome of Lactic Acid Bacteria. ACS OMEGA 2020; 5:1326-1335. [PMID: 32010802 PMCID: PMC6990425 DOI: 10.1021/acsomega.9b01021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Bacterial populations use a cell-to-cell communication system to coordinate community-wide regulation processes, which is termed quorum sensing (QS). Autoinducer-2 (AI-2) is a universal signal molecule that mediates inter- and intraspecies QS systems among different bacteria. In this study, the effects of exogenous addition of AI-2 synthesized in vitro on physiological behaviors and proteome were investigated in lactic acid bacteria strains. Exogenous AI-2 had a concentration-dependent effect on the Enterococcus faecium 8-3 cell density. There was no significant influence on biofilm formation and individual morphology of cells upon 60 μM AI-2 addition in E. faecium 8-3 and Lactobacillus fermentum 2-1. However, it improved the acid and alkali resistance of E. faecium 8-3. With the addition of AI-2, 15 differentially expressed proteins were identified in E. faecium 8-3, which participate in RNA transport signaling, RNA polymerase, ribosome, oxidative phosphorylation, cysteine and methionine metabolism, pyrimidine metabolism, ATP-binding cassette (ABC) transporters, purine metabolism, biosynthesis of the amino acid pathway, etc. Among them, the expression of 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase, which is known to be involved in AI-2 synthesis and cysteine and amino acid metabolism, was upregulated. These findings will lay the foundation to clarify the mechanism of cell-to-cell communication and bacterial physiological behaviors mediated by AI-2.
Collapse
|
32
|
Yi J, Zhang D, Cheng Y, Tan J, Luo Y. The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Appl Microbiol Biotechnol 2019; 103:9643-9657. [PMID: 31686149 PMCID: PMC6867978 DOI: 10.1007/s00253-019-10162-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/27/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022]
Abstract
The focus of this study was to investigate the effects of luxS, a key regulatory gene of the autoinducer-2 (AI-2) quorum sensing (QS) system, on the biofilm formation and biocontrol efficacy against Ralstonia solanacearum by Paenibacillus polymyxa HY96-2. luxS mutants were constructed and assayed for biofilm formation of the wild-type (WT) strain and luxS mutants of P. polymyxa HY96-2 in vitro and in vivo. The results showed that luxS positively regulated the biofilm formation of HY96-2. Greenhouse experiments of tomato bacterial wilt found that from the early stage to late stage postinoculation, the biocontrol efficacy of the luxS deletion strain was the lowest with 50.70 ± 1.39% in the late stage. However, the luxS overexpression strain had the highest biocontrol efficacy with 75.66 ± 1.94% in the late stage. The complementation of luxS could restore the biocontrol efficacy of the luxS deletion strain with 69.84 ± 1.09% in the late stage, which was higher than that of the WT strain with 65.94 ± 2.73%. Therefore, we deduced that luxS could promote the biofilm formation of P. polymyxa HY96-2 and further promoted its biocontrol efficacy against R. solanacearum.
Collapse
Affiliation(s)
- Jincui Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Daojing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuejuan Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingjing Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
33
|
Total alkaloids of Sophora alopecuroides and matrine inhibit auto-inducer 2 in the biofilms of Staphylococcus epidermidis. Microb Pathog 2019; 136:103698. [DOI: 10.1016/j.micpath.2019.103698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/26/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023]
|
34
|
Wu X, Gordon O, Jiang W, Antezana BS, Angulo-Zamudio UA, Del Rio C, Moller A, Brissac T, Tierney ARP, Warncke K, Orihuela CJ, Read TD, Vidal JE. Interaction between Streptococcus pneumoniae and Staphylococcus aureus Generates ·OH Radicals That Rapidly Kill Staphylococcus aureus Strains. J Bacteriol 2019; 201:e00474-19. [PMID: 31405914 PMCID: PMC6779455 DOI: 10.1128/jb.00474-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae rapidly kills Staphylococcus aureus by producing membrane-permeable hydrogen peroxide (H2O2). The mechanism by which S. pneumoniae-produced H2O2 mediates S. aureus killing was investigated. An in vitro model that mimicked S. pneumoniae-S. aureus contact during colonization of the nasopharynx demonstrated that S. aureus killing required outcompeting densities of S. pneumoniae Compared to the wild-type strain, isogenic S. pneumoniae ΔlctO and S. pneumoniae ΔspxB, both deficient in production of H2O2, required increased density to kill S. aureus While residual H2O2 activity produced by single mutants was sufficient to eradicate S. aureus, an S. pneumoniae ΔspxB ΔlctO double mutant was unable to kill S. aureus A collection of 20 diverse methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains showed linear sensitivity (R2 = 0.95) for S. pneumoniae killing, but the same strains had different susceptibilities when challenged with pure H2O2 (5 mM). There was no association between the S. aureus clonal complex and sensitivity to either S. pneumoniae or H2O2 To kill S. aureus, S. pneumoniae produced ∼180 μM H2O2 within 4 h of incubation, while the killing-defective S. pneumoniae ΔspxB and S. pneumoniae ΔspxB ΔlctO mutants produced undetectable levels. Remarkably, a sublethal dose (1 mM) of pure H2O2 incubated with S. pneumoniae ΔspxB eradicated diverse S. aureus strains, suggesting that S. pneumoniae bacteria may facilitate conversion of H2O2 to a hydroxyl radical (·OH). Accordingly, S. aureus killing was completely blocked by incubation with scavengers of ·OH radicals, dimethyl sulfoxide (Me2SO), thiourea, or sodium salicylate. The ·OH was detected in S. pneumoniae cells by spin trapping and electron paramagnetic resonance. Therefore, S. pneumoniae produces H2O2, which is rapidly converted to a more potent oxidant, hydroxyl radicals, to rapidly intoxicate S. aureus strains.IMPORTANCEStreptococcus pneumoniae strains produce hydrogen peroxide (H2O2) to kill bacteria in the upper airways, including pathogenic Staphylococcus aureus strains. The targets of S. pneumoniae-produced H2O2 have not been discovered, in part because of a lack of knowledge about the underlying molecular mechanism. We demonstrated that an increased density of S. pneumoniae kills S. aureus by means of H2O2 produced by two enzymes, SpxB and LctO. We discovered that SpxB/LctO-produced H2O2 is converted into a hydroxyl radical (·OH) that rapidly intoxicates and kills S. aureus We successfully inhibited the toxicity of ·OH with three different scavengers and detected ·OH in the supernatant. The target(s) of the hydroxyl radicals represents a new alternative for the development of antimicrobials against S. aureus infections.
Collapse
Affiliation(s)
- Xueqing Wu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Infectious Disease, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Oren Gordon
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Wenxin Jiang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Brenda S Antezana
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Uriel A Angulo-Zamudio
- Regional Program for the Doctorate in Biotechnology, Faculty of Chemical Sciences Biological, Autonomous University of Sinaloa, Sinaloa, Mexico
| | - Carlos Del Rio
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Abraham Moller
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Terry Brissac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aimee R P Tierney
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timothy D Read
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
- Antibiotic Research Center, Emory University, Atlanta, Georgia, USA
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
- Antibiotic Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Angulo-Zamudio UA, Vidal JE, Nazmi K, Bolscher JGM, Leon-Sicairos C, Antezana BS, Canizalez-Roman A, León-Sicairos N. Lactoferrin Disaggregates Pneumococcal Biofilms and Inhibits Acquisition of Resistance Through Its DNase Activity. Front Microbiol 2019; 10:2386. [PMID: 31681240 PMCID: PMC6813537 DOI: 10.3389/fmicb.2019.02386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae colonizes the upper airways of children and the elderly. Colonization progresses to persistent carriage when S. pneumoniae forms biofilms, a feature required for the development of pneumococcal disease. Nasopharyngeal biofilms are structured with a matrix that includes extracellular DNA (eDNA), which is sourced from the same pneumococci and other bacteria. This eDNA also allows pneumococci to acquire new traits, including antibiotic resistance genes. In this study, we investigated the efficacy of lactoferrin (LF), at physiological concentrations found in secretions with bactericidal activity [i.e., colostrum (100 μM), tears (25 μM)], in eradicating pneumococcal biofilms from human respiratory cells. The efficacy of synthetic LF-derived peptides was also assessed. We first demonstrated that LF inhibited colonization of S. pneumoniae on human respiratory cells without affecting the viability of planktonic bacteria. LF-derived peptides were, however, bactericidal for planktonic pneumococci but they did not affect viability of pre-formed biofilms. In contrast, LF (40 and 80 μM) eradicated pneumococcal biofilms that had been pre-formed on abiotic surfaces (i.e., polystyrene) and on human pharyngeal cells, as investigated by viable counts and confocal microscopy. LF also eradicated biofilms formed by S. pneumoniae strains with resistance to multiple antibiotics. We investigated whether treatment with LF would affect the biofilm structure by analyzing eDNA. Surprisingly, in pneumococcal biofilms treated with LF, the eDNA was absent in comparison to the untreated control (∼10 μg/ml) or those treated with LF-derived peptides. EMSA assays showed that LF binds S. pneumoniae DNA and a time-course study of DNA decay demonstrated that the DNA is degraded when bound by LF. This LF-associated DNase activity inhibited acquisition of antibiotic resistance genes in both in vitro transformation assays and in a life-like bioreactor system. In conclusion, we demonstrated that LF eradicates pneumococcal-colonizing biofilms at a concentration safe for humans and identified a LF-associated DNAse activity that inhibited the acquisition of resistance.
Collapse
Affiliation(s)
- Uriel A. Angulo-Zamudio
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Jorge E. Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - Jan G. M. Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - Claudia Leon-Sicairos
- Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Brenda S. Antezana
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Adrián Canizalez-Roman
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Unidad de Investigación, Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán, Mexico
| | - Nidia León-Sicairos
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Departamento de Investigación del Hospital Pediátrico de Sinaloa, Servicios de Salud de Sinaloa, Culiacán, Mexico
| |
Collapse
|
36
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
37
|
Silva MD, Sillankorva S. Otitis media pathogens – A life entrapped in biofilm communities. Crit Rev Microbiol 2019; 45:595-612. [DOI: 10.1080/1040841x.2019.1660616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Daniela Silva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Sanna Sillankorva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
38
|
Wang Y, Wang F, Wang C, Li X, Fu L. Positive Regulation of Spoilage Potential and Biofilm Formation in Shewanella baltica OS155 via Quorum Sensing System Composed of DKP and Orphan LuxRs. Front Microbiol 2019; 10:135. [PMID: 30804914 PMCID: PMC6370745 DOI: 10.3389/fmicb.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
The spoilage potential and biofilm formation of Shewanella baltica are reported to be regulated by Quorum sensing (QS) system from the phenotype point of view, but the specific mechanism is not fully understood. In the present study, the QS autoinducers were detected by UHPLC-MS/MS, cell density-dependent luxR-type genes were obtained through autoregulation experiments among a series of candidates in S. baltica OS155 (The SSO of large yellow croaker). The direct interaction between cyclo-(L-Pro-L-Phe) (PP) and LuxR01 as well as LuxR02 proteins was revealed via in vitro binding assay. Deletion of luxR-type genes (luxR01 and luxR02) impaired spoilage potential and biofilm formation of S. baltica OS155 in various degrees. Transcriptional analysis and qRT-PCR validation showed that spoilage and biofilm-related genes torS, speF, and pomA were down-regulated in luxR01 and luxR02 deletion strains. In addition, exogenous PP promoted spoilage potential and biofilm formation, which could be attenuated by luxR01 or luxR02 deletion. Our results revealed an explicit QS system employing PP as autoinducer and two orphan LuxRs as receptors which positively regulated spoilage capacity and biofilm formation via transcriptional regulation of corresponding genes in S. baltica OS155, which provides potential specific targets for seafood preservation involving QS system.
Collapse
Affiliation(s)
- Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
39
|
Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2018; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
|
40
|
Function of BriC peptide in the pneumococcal competence and virulence portfolio. PLoS Pathog 2018; 14:e1007328. [PMID: 30308062 PMCID: PMC6181422 DOI: 10.1371/journal.ppat.1007328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that causes otitis media, sinusitis, pneumonia, meningitis and sepsis. The progression to this pathogenic lifestyle is preceded by asymptomatic colonization of the nasopharynx. This colonization is associated with biofilm formation; the competence pathway influences the structure and stability of biofilms. However, the molecules that link the competence pathway to biofilm formation are unknown. Here, we describe a new competence-induced gene, called briC, and demonstrate that its product promotes biofilm development and stimulates colonization in a murine model. We show that expression of briC is induced by the master regulator of competence, ComE. Whereas briC does not substantially influence early biofilm development on abiotic surfaces, it significantly impacts later stages of biofilm development. Specifically, briC expression leads to increases in biofilm biomass and thickness at 72h. Consistent with the role of biofilms in colonization, briC promotes nasopharyngeal colonization in the murine model. The function of BriC appears to be conserved across pneumococci, as comparative genomics reveal that briC is widespread across isolates. Surprisingly, many isolates, including strains from clinically important PMEN1 and PMEN14 lineages, which are widely associated with colonization, encode a long briC promoter. This long form captures an instance of genomic plasticity and functions as a competence-independent expression enhancer that may serve as a precocious point of entry into this otherwise competence-regulated pathway. Moreover, overexpression of briC by the long promoter fully rescues the comE-deletion induced biofilm defect in vitro, and partially in vivo. These findings indicate that BriC may bypass the influence of competence in biofilm development and that such a pathway may be active in a subset of pneumococcal lineages. In conclusion, BriC is a part of the complex molecular network that connects signaling of the competence pathway to biofilm development and colonization. Pneumococcal biofilms occur in chronic otitis media, chronic rhinosinusitis, and nasopharyngeal colonization. These biofilms are an important component of pneumococcal epidemiology, particularly in influencing transmission, maintenance of asymptomatic colonization, and development of disease. The transcriptional program initiated via signaling of the competence pathway is critical for productive biofilm formation and is a strong contributor of pneumococcal infection and adaptation. In this study, we have identified BriC, a previously uncharacterized peptide that serves as a bridge between the competence pathway and biofilm development. We show that briC is induced by ComE, the master regulator of competence, and promotes biofilm development. Moreover, our studies in the murine model demonstrate that BriC is a novel colonization enhancer. Our studies of briC regulation capture an instance of genomic plasticity, where natural variation in the briC promoter sequence reveals the existence of an additional competence-independent regulatory unit. This natural variation may be able to modify the extent to which competence contributes to biofilm development and to nasopharyngeal colonization across different pneumococcal lineages. In summary, this study introduces a colonization factor and reveals a molecular link between competence and biofilm development.
Collapse
|
41
|
Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl Microbiol Biotechnol 2018; 102:9121-9129. [PMID: 30209548 DOI: 10.1007/s00253-018-9356-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Streptococcus suis (S. suis) is a major swine pathogen and an important zoonotic agent. Like most pathogens, the ability of S. suis to form biofilms plays a significant role in its virulence and drug resistance. A better understanding of the mechanisms involved in biofilm formation by S. suis as well as of the methods to efficiently remove and kill biofilm-embedded bacteria can be of high interest for the prevention and treatment of S. suis infections. The aim of this literature review is to update our current knowledge of S. suis biofilm formation, regulatory mechanisms, drug-resistance mechanisms, and disinfection strategies.
Collapse
|
42
|
Phenotypic Variation during Biofilm Formation: Implications for Anti-Biofilm Therapeutic Design. MATERIALS 2018; 11:ma11071086. [PMID: 29949876 PMCID: PMC6073711 DOI: 10.3390/ma11071086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Various bacterial species cycle between growth phases and biofilm formation, of which the latter facilitates persistence in inhospitable environments. These phases can be generally characterized by one or more cellular phenotype(s), each with distinct virulence factor functionality. In addition, a variety of phenotypes can often be observed within the phases themselves, which can be dependent on host conditions or the presence of nutrient and oxygen gradients within the biofilm itself (i.e., microenvironments). Currently, most anti-biofilm strategies have targeted a single phenotype; this approach has driven effective, yet incomplete, protection due to the lack of consideration of gene expression dynamics throughout the bacteria’s pathogenesis. As such, this article provides an overview of the distinct phenotypes found within each biofilm development phase and demonstrates the unique anti-biofilm solutions each phase offers. However, we conclude that a combinatorial approach must be taken to provide complete protection against biofilm forming bacterial and their resulting diseases.
Collapse
|
43
|
Identification of Streptococcus gallolyticus subsp. gallolyticus (Biotype I) Competence-Stimulating Peptide Pheromone. J Bacteriol 2018; 200:JB.00709-17. [PMID: 29440256 DOI: 10.1128/jb.00709-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 02/02/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus, a member of the group D streptococci, is normally found in the bovine rumen and human gut. It is an opportunistic pathogen that was recently determined to be a bacterial driver of colorectal cancer, in addition to causing other diseases, such as infective endocarditis, bacteremia, neonatal meningitis, and septicemia. As an emerging pathogen, not much is known about this bacterium, its virulence mechanisms, or its virulence regulatory pathways. Previous studies suggest that S. gallolyticus subsp. gallolyticus uses a ComRS pathway, one of many Streptococcus quorum-sensing circuitries, for competence. However, thus far, the ubiquitous ComABCDE pathway has not been studied, nor has its regulatory role in S. gallolyticus subsp. gallolyticus We therefore sought to study the S. gallolyticus subsp. gallolyticus ComABCDE quorum-sensing pathway and have identified its peptide pheromone, which is termed the competence-stimulating peptide (CSP). We further determined that this peptide regulates the production of bacteriocin-like inhibitory substances (BLISs), a phenotype that has been linked with the ComABCDE pathway in both Streptococcus pneumoniae and Streptococcus mutans Our data show that S. gallolyticus subsp. gallolyticus TX20005 produces a 21-mer CSP signal, which differs from CSP signals of other Streptococcus species in that its active form begins three residues after the double-glycine leader signal of the ComC precursor peptide. Additionally, our data suggest that this peptide might not be related to competence induction, as opposed to CSP signaling peptides in other Streptococcus species. This study provides the first evidence that S. gallolyticus subsp. gallolyticus utilizes quorum sensing to eliminate competitors, presenting a potential pathway to target this emerging human pathogen.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus is an emerging human pathogen known as a causative agent of infective endocarditis, and recently, of colorectal cancer. In this work, we revealed a functional quorum-sensing circuitry in S. gallolyticus subsp. gallolyticus, including the identification of the central signaling peptide pheromone, competence-stimulating peptide (CSP), and the regulatory role of this circuitry in the production of bacteriocin-like inhibitory substances (BLISs). This work uncovered a mechanism by which this bacterium outcompetes other bacterial species and thus provides a potential tool to study this opportunistic pathogen.
Collapse
|
44
|
A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia. mBio 2018; 9:mBio.00561-18. [PMID: 29764945 PMCID: PMC5954218 DOI: 10.1128/mbio.00561-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2Tet and S4Str in a bioreactor simulating the human nasopharynx led to the generation of SpnTet/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5 × 10−4 while peaking after 8 h at a rF of 1.1 × 10−3. Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2Tet/Str) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4Str and S19FTmp) were incubated together, leading to S19FStr/Tmp but at a rF 3 orders of magnitude lower (4.9 × 10−6). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient. Pneumococcal transformation in the human nasopharynx may lead to the acquisition of antibiotic resistance genes or genes encoding new capsular variants. Antibiotics and vaccines are currently putting pressure on a number of strains, leading to an increase in antibiotic resistance and serotype replacement. These pneumococcal strains are also acquiring virulence traits from vaccine types via transformation. In this study, we recapitulated multiple-strain colonization with strains carrying a resistance marker and selected for those acquiring resistance to two or three antibiotics, such as would occur in the human nasopharynx. Strains acquiring dual and triple resistance originated from one progenitor, demonstrating that transformation was unidirectional. Unidirectional transformation was the result of inhibition of transformation of donor strains. Unidirectional transformation has implications for the understanding of acquisition patterns of resistance determinants or capsule-switching events.
Collapse
|
45
|
Yadav MK, Vidal JE, Go YY, Kim SH, Chae SW, Song JJ. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection. Front Cell Infect Microbiol 2018; 8:138. [PMID: 29780750 PMCID: PMC5945837 DOI: 10.3389/fcimb.2018.00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Objective:Streptococcus pneumoniae colonizes the nasopharynx of children, and from nasopharynx it could migrate to the middle ear and causes acute otitis media (AOM). During colonization and AOM, the pneumococcus forms biofilms. In vitro biofilm formation requires a functional LuxS/AI-2 quorum-sensing system. We investigated the role of LuxS/AI-2 signaling in pneumococcal middle ear infection, and identified the genes that are regulated by LuxS/AI-2 during pneumococcal biofilm formation. Methods:Streptococcus pneumoniae D39 wild-type and an isogenic D39ΔluxS strain were utilized to evaluate in vitro biofilm formation, and in vivo colonization and epithelial damage using a microtiter plate assay and a rat model of pneumococcal middle ear infection, respectively. Biofilm structures and colonization and epithelial damage were evaluated at the ultrastructural level by scanning electron microscopy and confocal microscopy. Microarrays were used to investigate the global genes that were regulated by LuxS/AI-2 during biofilm formation. Results: The biofilm biomass and density of D39ΔluxS were significantly (p < 0.05) lower than those of D39 wild-type. SEM and confocal microscopy revealed that D39ΔluxS formed thin biofilms in vitro compared with D39 wild-type. The in vivo model of middle ear infection showed that D39ΔluxS resulted in ~60% less (p < 0.05) bacterial colonization than the wild-type. SEM analysis of the rat middle ears revealed dense biofilm-like cell debris deposited on the cilia in wild-type D39-infected rats. However, little cell debris was deposited in the middle ears of the D39ΔluxS-inoculated rats, and the cilia were visible. cDNA-microarray analysis revealed 117 differentially expressed genes in D39ΔluxS compared with D39 wild-type. Among the 66 genes encoding putative proteins and previously characterized proteins, 60 were significantly downregulated, whereas 6 were upregulated. Functional annotation revealed that genes involved in DNA replication and repair, ATP synthesis, capsule biosynthesis, cell division, the cell cycle, signal transduction, transcription regulation, competence, virulence, and carbohydrate metabolism were downregulated in the absence of LuxS/AI-2. Conclusion: The S. pneumoniae LuxS/AI-2 quorum-sensing system is necessary for biofilm formation and the colonization of the ear epithelium, and caused middle ear infection in the rat model. LuxS/AI-2 regulates the expression of the genes involved in virulence and bacterial fitness during pneumococcal biofilm formation.
Collapse
Affiliation(s)
- Mukesh K Yadav
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Institute for Medical Device Clinical Trials, Korea University College of Medicine, Seoul, South Korea
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yoon Y Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Shin H Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
46
|
Zhi X, Abdullah IT, Gazioglu O, Manzoor I, Shafeeq S, Kuipers OP, Hiller NL, Andrew PW, Yesilkaya H. Rgg-Shp regulators are important for pneumococcal colonization and invasion through their effect on mannose utilization and capsule synthesis. Sci Rep 2018; 8:6369. [PMID: 29686372 PMCID: PMC5913232 DOI: 10.1038/s41598-018-24910-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/05/2018] [Indexed: 01/18/2023] Open
Abstract
Microbes communicate with each other by using quorum sensing (QS) systems and modulate their collective 'behavior' for in-host colonization and virulence, biofilm formation, and environmental adaptation. The recent increase in genome data availability reveals the presence of several putative QS sensing circuits in microbial pathogens, but many of these have not been functionally characterized yet, despite their possible utility as drug targets. To increase the repertoire of functionally characterized QS systems in bacteria, we studied Rgg144/Shp144 and Rgg939/Shp939, two putative QS systems in the important human pathogen Streptococcus pneumoniae. We find that both of these QS circuits are induced by short hydrophobic peptides (Shp) upon sensing sugars found in the respiratory tract, such as galactose and mannose. Microarray analyses using cultures grown on mannose and galactose revealed that the expression of a large number of genes is controlled by these QS systems, especially those encoding for essential physiological functions and virulence-related genes such as the capsular locus. Moreover, the array data revealed evidence for cross-talk between these systems. Finally, these Rgg systems play a key role in colonization and virulence, as deletion mutants of these QS systems are attenuated in the mouse models of colonization and pneumonia.
Collapse
Affiliation(s)
- Xiangyun Zhi
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Iman Tajer Abdullah
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
- Department of Biology, College of Science, University of Kirkuk, Kirkuk, Iraq
| | - Ozcan Gazioglu
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Peter W Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
47
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
48
|
Charlebois A, Jacques M, Archambault M. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathol 2018; 45:593-601. [PMID: 27207477 DOI: 10.1080/03079457.2016.1189512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxaemias in animal species. Recently, C. perfringens was shown to form biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. However, very little is known on the subject and no information is available on gene expression in C. perfringens biofilms. To gain insights into the differences between free-living C. perfringens cells and those in biofilms, we used RNA sequencing. In total, 25.7% of genes showed differential expression in the two growth modes; about 12.8% of genes were up-regulated and about 12.9% were down-regulated in biofilms. We show that 772 genes were significantly differentially expressed between biofilms and planktonic cells from the supernatant of biofilms. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in virulence, energy production, amino acid, nucleotide and carbohydrate metabolism, and in translation and ribosomal structure. Genes up-regulated in biofilm cells were mainly involved in amino acid and carbohydrate metabolism, transcription, inorganic ion metabolism and in defence mechanisms. This study provides new insights into the transcriptomic response of C. perfringens during biofilm formation.
Collapse
Affiliation(s)
- Audrey Charlebois
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| | - Mario Jacques
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| | - Marie Archambault
- a Faculté de médecine vétérinaire, Département de pathologie et microbiologie, Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA) , Université de Montréal , Saint-Hyacinthe , Canada
| |
Collapse
|
49
|
Wang Q, Mi G, Hickey D, Li Y, Tu J, Webster TJ, Shen Y. Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials 2018; 160:107-123. [PMID: 29407340 DOI: 10.1016/j.biomaterials.2018.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/19/2022]
Abstract
Pneumonia is a major contributor to infection-based hospitalizations and deaths in the United States. Antibiotics such as azithromycin (AZM), although effective at managing pneumonia, often suffer from off-target diffusion and poor bioavailability when administered orally or via intravenous injection. The formation of biofilms at the disease sites makes the treatment more complicated by protecting bacteria from antimicrobial agents and thus necessitating a much higher dosage of antibiotics to eradicate the biofilms. As such, targeted pulmonary delivery of antibiotics has emerged as a promising alternative by providing direct access to the lung while also allowing higher local therapeutic concentrations but minimal systemic exposure. In this study, AZM was encapsulated in N-fumaroylated diketopiperazine (FDKP) microparticles for efficient pulmonary delivery. Both in vitro and in vivo results demonstrated that AZM@FDKP-MPs administered via intratracheal insufflation achieved at least a 3.4 times higher local concentration and prolonged retention times compared to intravenous injection and oral administration, suggesting their potential to better manage bacterial pneumonia.
Collapse
Affiliation(s)
- Qiyue Wang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Gujie Mi
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Daniel Hickey
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Yanan Li
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
50
|
Yadav MK, Go YY, Kim SH, Chae SW, Song JJ. Antimicrobial and Antibiofilm Effects of Human Amniotic/Chorionic Membrane Extract on Streptococcus pneumoniae. Front Microbiol 2017; 8:1948. [PMID: 29089928 PMCID: PMC5641382 DOI: 10.3389/fmicb.2017.01948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/22/2017] [Indexed: 01/11/2023] Open
Abstract
Background:Streptococcus pneumoniae colonize the human nasopharynx in the form of biofilms. The biofilms act as bacterial reservoirs and planktonic bacteria from these biofilms can migrate to other sterile anatomical sites to cause pneumonia, otitis media (OM), bacteremia and meningitis. Human amniotic membrane contains numerous growth factors and antimicrobial activity; however, these have not been studied in detail. In this study, we prepared amniotic membrane extract and chorionic membrane extract (AME/CME) and evaluated their antibacterial and antibiofilm activities against S. pneumoniae using an in vitro biofilm model and in vivo OM rat model. Materials and Methods: The AME/CME were prepared and protein was quantified using DCTM (detergent compatible) method. The minimum inhibitory concentrations were determined using broth dilution method, and the synergistic effect of AME/CME with Penicillin-streptomycin was detected checkerboard. The in vitro biofilm and in vivo colonization of S. pneumoniae were studied using microtiter plate assay and OM rat model, respectively. The AME/CME-treated biofilms were examined using scanning electron microscope and confocal microscopy. To examine the constituents of AME/CME, we determined the proteins and peptides of AME/CME using tandem mass tag-based quantitative mass spectrometry. Results: AME/CME treatment significantly (p < 0.05) inhibited S. pneumoniae growth in planktonic form and in biofilms. Combined application of AME/CME and Penicillin-streptomycin solution had a synergistic effect against S. pneumoniae. Biofilms grown with AME/CME were thin, scattered, and unorganized. AME/CME effectively eradicated pre-established pneumococci biofilms and has a bactericidal effect. AME treatment significantly (p < 0.05) reduced bacterial colonization in the rat middle ear. The proteomics analysis revealed that the AME/CME contains hydrolase, ribonuclease, protease, and other antimicrobial proteins and peptides. Conclusion: AME/CME inhibits S. pneumoniae growth in the planktonic and biofilm states via its antimicrobial proteins and peptides. AME/CME are non-cytotoxic, natural human product; therefore, they may be used alone or with antibiotics to treat S. pneumoniae infections.
Collapse
Affiliation(s)
- Mukesh K Yadav
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Institute for Medical Device Clinical Trials, Korea University College of Medicine, Seoul, South Korea
| | - Yoon Y Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Shin Hye Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|