1
|
Kowsar R, Sadeghi K, Hashemzadeh F, Miyamoto A. Ovarian sex steroid and epithelial control of immune responses in the uterus and oviduct: human and animal models†. Biol Reprod 2024; 110:230-245. [PMID: 38038990 PMCID: PMC10873282 DOI: 10.1093/biolre/ioad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Farzad Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
2
|
He R, Torres CA, Wang Y, He C, Zhong G. Type-I Interferon Signaling Protects against Chlamydia trachomatis Infection in the Female Lower Genital Tract. Infect Immun 2023; 91:e0015323. [PMID: 37191510 PMCID: PMC10269118 DOI: 10.1128/iai.00153-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
We have previously shown that Chlamydia trachomatis is significantly inhibited during the early stage of infection in the female mouse lower genital tract and the anti-C. trachomatis innate immunity is compromised in the absence of cGAS-STING signaling. Since type-I interferon is a major downstream response of the cGAS-STING signaling, we evaluated the effect of type-I interferon signaling on C. trachomatis infection in the female genital tract in the current study. The infectious yields of chlamydial organisms recovered from vaginal swabs along the infection course were carefully compared between mice with or without deficiency in type-I interferon receptor (IFNαR1) following intravaginal inoculation with 3 different doses of C. trachomatis. It was found that IFNαR1-deficient mice significantly increased the yields of live chlamydial organisms on days 3 and 5, providing the 1st experimental evidence for a protective role of type-I interferon signaling in preventing C. trachomatis infection in mouse female genital tract. Further comparison of live C. trachomatis recovered from different genital tract tissues between wild type and IFNαR1-deficient mice revealed that the type-I interferon-dependent anti-C. trachomatis immunity was restricted to mouse lower genital tract. This conclusion was validated when C. trachomatis was inoculated transcervically. Thus, we have demonstrated an essential role of type-I interferon signaling in innate immunity against C. trachomatis infection in the mouse lower genital tract, providing a platform for further revealing the molecular and cellular basis of type-I interferon-mediated immunity against sexually transmitted infection with C. trachomatis.
Collapse
Affiliation(s)
- Rongze He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Caroline Andrea Torres
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yihui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Cheng He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Liu S, Liu Y, Liu Z, Hu Y, Jiang M. A review of the signaling pathways of aerobic and anaerobic exercise on atherosclerosis. J Cell Physiol 2023; 238:866-879. [PMID: 36890781 DOI: 10.1002/jcp.30989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
Atherosclerosis (AS), a chronic inflammatory vascular disease with lipid metabolism abnormalities, is one of the major pathological bases of coronary heart disease. As people's lifestyles and diets change, the incidence of AS increases yearly. Physical activity and exercise training have recently been identified as effective strategies for lowering cardiovascular disease (CVD) risk. However, the best exercise mode to ameliorate the risk factors related to AS is not clear. The effect of exercise on AS is affected by the type of exercise, intensity, and duration. In particular, aerobic and anaerobic exercise are the two most widely discussed types of exercise. During exercise, the cardiovascular system undergoes physiological changes via various signaling pathways. The review aims to summarize signaling pathways related to AS in two different exercise types and provide new ideas for the prevention and treatment of AS in clinical practice.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yuhe Liu
- Medical Collage of Hebei University of Engineering, Handan, China
| | - Zhihan Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yansong Hu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Sobotta K, Bonkowski K, Heydel C, Henning K, Menge C. Phenotype of Coxiella burnetii Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells. Pathogens 2022; 11:pathogens11121422. [PMID: 36558755 PMCID: PMC9786247 DOI: 10.3390/pathogens11121422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the high prevalence of C. burnetii in dairy herds and continuous shedding via milk by chronically infected cows, bovine milk is not recognized as a relevant source of human Q fever. We hypothesized that the bovine mammary gland epithelial cell line PS represents a suitable in vitro model for the identification of C. burnetii-strain-specific virulence properties that may account for this discrepancy. Fifteen C. burnetii strains were selected to represent different host species and multiple loci variable number of tandem repeat analysis (MLVA) genotypes (I, II, III and IV). The replication efficiencies of all strains were similar, even though strains of the MLVA-genotype II replicated significantly better than genotype I strains, and bovine and ovine isolates replicated better than caprine ones. Bovine milk isolates replicated with similar efficiencies to isolates from other bovine organs. One sheep isolate (Cb30/14, MLVA type I, isolated from fetal membranes) induced a remarkable up-regulation of IL-1β and TNF-α, whereas prototypic strains and bovine milk isolates tended to suppress pro-inflammatory responses. While infection with strain Nine Mile I rendered the cells partially refractory to re-stimulation with E. coli lipopolysaccharide, Cb30/14 exerted a selective suppressive effect which was restricted to IL-6 and TNF-α and spared IL-1β. PS cells support the replication of different strains of C. burnetii and respond in a strain-specific manner, but isolates from bovine milk did not display a common pattern, which distinguishes them from strains identified as a public health concern.
Collapse
Affiliation(s)
- Katharina Sobotta
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Katharina Bonkowski
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Carsten Heydel
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University (JLU), Frankfurter Strasse 85-89, 35392 Giessen, Germany
| | - Klaus Henning
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Naumburger Strasse 96a, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
5
|
Evidence for cGAS-STING signaling in the female genital tract resistance to Chlamydia trachomatis infection. Infect Immun 2022; 90:e0067021. [PMID: 34978925 DOI: 10.1128/iai.00670-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sexually transmitted Chlamydia trachomatis can ascend to the upper genital tract due to its resistance to innate immunity in the lower genital tract. C. trachomatis can activate cGAS-STING signaling pathway in cultured cells via either cGAS or STING. The current study was designed to evaluate the role of the cGAS-STING pathway in innate immunity against C. trachomatis in the mouse genital tract. Following intravaginal inoculation, C. trachomatis significantly declined by day 5 following a peak infection on day 3 while the mouse-adapted C. muridarum continued to rise for >1 week, indicating that C. trachomatis is susceptible to the innate immunity in the female mouse genital tract. This conclusion was supported by the observation of a similar shedding course in mice deficient in adaptive immunity. Thus, C. trachomatis can be used to evaluate innate immunity in the female genital tract. It was found that mice deficient in either cGAS or STING significantly increased the yields of live C. trachomatis on day 5, indicating an essential role of the cGAS-STING signaling pathway in innate immunity of the mouse genital tract. Comparison of live C. trachomatis recovered from different genital tissues revealed that the cGAS-STING-dependent immunity against C. trachomatis was restricted to the mouse lower genital tract regardless of whether C. trachomatis was inoculated intravaginally or transcervically. Thus, we have demonstrated an essential role of the cGAS-STING signaling pathway in innate immunity against chlamydial infection, laying a foundation for further illuminating the mechanisms of the innate immunity in the female lower genital tract.
Collapse
|
6
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
7
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
8
|
D Helble J, N Starnbach M. T cell responses to Chlamydia. Pathog Dis 2021; 79:6164867. [PMID: 33693620 DOI: 10.1093/femspd/ftab014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is the most commonly reported sexually transmitted infection in the United States. The high prevalence of infection and lack of a vaccine indicate a critical knowledge gap surrounding the host's response to infection and how to effectively generate protective immunity. The immune response to C. trachomatis is complex, with cells of the adaptive immune system playing a crucial role in bacterial clearance. Here, we discuss the CD4+ and CD8+ T cell response to Chlamydia, the importance of antigen specificity and the role of memory T cells during the recall response. Ultimately, a deeper understanding of protective immune responses is necessary to develop a vaccine that prevents the inflammatory diseases associated with Chlamydia infection.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Yadav S, Verma V, Singh Dhanda R, Yadav M. Insights into the toll-like receptors in sexually transmitted infections. Scand J Immunol 2020; 93:e12954. [PMID: 32762084 DOI: 10.1111/sji.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are like soldiers of an innate immune system, which protects vital biological processes against invading pathogens. TLR signalling pathways help in the removal of pathogens and mediate well-established inflammatory processes. However, these processes may also aid in the development or augmentation of an infection or an autoimmune disease. Recent studies have delineated TLR polymorphism's role in the loss of function, making hosts more resistant or vulnerable to the development of an infection. In this review, we have discussed the association of TLRs with sexually transmitted infections (STIs), especially to the pathogen-specific ligands. We have also assessed the impact on TLR downstream signalling and the maintenance of cellular homeostasis during immune responses. Besides, we have discussed the role of TLRs single nucleotide polymorphisms in various STIs. Since TLRs are known to play a part in defence mechanisms and in aiding infections therefore, a thorough understanding of TLRs structure and molecular mechanisms is required to explain how they can influence the outcome of an STI. Such a strategy may lead to the development of novel and useful immunotherapeutic approaches to control pathogen progression and prevent transmission.
Collapse
Affiliation(s)
- Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
Pedrosa AT, Murphy KN, Nogueira AT, Brinkworth AJ, Thwaites TR, Aaron J, Chew TL, Carabeo RA. A post-invasion role for Chlamydia type III effector TarP in modulating the dynamics and organization of host cell focal adhesions. J Biol Chem 2020; 295:14763-14779. [PMID: 32843479 PMCID: PMC7586217 DOI: 10.1074/jbc.ra120.015219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Indexed: 01/09/2023] Open
Abstract
The human pathogen Chlamydia trachomatis targets epithelial cells lining the genital mucosa. We observed that infection of various cell types, including fibroblasts and epithelial cells resulted in the formation of unusually stable and mature focal adhesions that resisted disassembly induced by the myosin II inhibitor, blebbistatin. Superresolution microscopy revealed in infected cells the vertical displacement of paxillin and focal adhesion kinase from the signaling layer of focal adhesions, whereas vinculin remained in its normal position within the force transduction layer. The candidate type III effector TarP, which localized to focal adhesions during infection and when expressed ectopically, was sufficient to mimic both the reorganization and blebbistatin-resistant phenotypes. These effects of TarP, including its localization to focal adhesions, required a post-invasion interaction with the host protein vinculin through a specific domain at the C terminus of TarP. This interaction is repurposed from an actin-recruiting and -remodeling complex to one that mediates nanoarchitectural and dynamic changes of focal adhesions. The consequence of Chlamydia-stabilized focal adhesions was restricted cell motility and enhanced attachment to the extracellular matrix. Thus, via a novel mechanism, Chlamydia inserts TarP within focal adhesions to alter their organization and stability.
Collapse
Affiliation(s)
- António T Pedrosa
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Korinn N Murphy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ana T Nogueira
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Amanda J Brinkworth
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Tristan R Thwaites
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Rey A Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
11
|
Di Pietro M, Filardo S, Frasca F, Scagnolari C, Manera M, Sessa V, Antonelli G, Sessa R. Interferon-γ Possesses Anti-Microbial and Immunomodulatory Activity on a Chlamydia Trachomatis Infection Model of Primary Human Synovial Fibroblasts. Microorganisms 2020; 8:E235. [PMID: 32050567 PMCID: PMC7074713 DOI: 10.3390/microorganisms8020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular pathogen, is the most common cause of bacterial sexually transmitted diseases, and it is potentially responsible for severe chronic sequelae, such as reactive arthritis. To date, details of the mechanisms by which Chlamydiae induce innate antimicrobial pathways in synovial fibroblasts, are not well characterized; therefore, herein, we investigated the effects of interferon (IFN)α, IFNβ, and IFNγ on the infection, and replication phases of the C. trachomatis developmental cycle, as well as on the induction of pattern recognition receptors (PRRs) and IFN-related pathways. To do so, we set up an in vitro chlamydial-infection model of primary human synovial cells treated with IFNs before or after the infection. We then determined the number of chlamydial inclusion forming units and inclusion size, as well as the expression of toll like receptor (TLR)2, TLR3, TLR4, cyclic GMP-AMP synthase (cGAS), stimulator of IFN gene (STING), IRF9, ISG56, and GBP1. The main result of our study is the significant inhibition of C. trachomatis infection and replication in human synovial cells following the treatment with IFNγ, whereas IFN-I proved to be ineffective. Furthermore, IFNγ greatly upregulated all the PRRs and ISGs examined. In conclusion, IFNγ exhibited a potent anti-Chlamydia activity in human synovial cells as well as the ability to induce a strong increase of innate immune pathways.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| | - Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy; (F.F.); (C.S.); (G.A.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy; (F.F.); (C.S.); (G.A.)
| | - Martina Manera
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| | - Vincenzo Sessa
- Department of Orthopedics, San Giovanni Calibita-Fatebenefratelli Hospital, 00186 Rome, Italy;
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy; (F.F.); (C.S.); (G.A.)
- Microbiology and Virology Unit, Hospital “Policlinico Umberto I”, Sapienza University, 00185 Rome, Italy
| | - Rosa Sessa
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| |
Collapse
|
12
|
Kumar R, Derbigny WA. TLR3 Deficiency Leads to a Dysregulation in the Global Gene-Expression Profile in Murine Oviduct Epithelial Cells Infected with Chlamydia muridarum. ACTA ACUST UNITED AC 2020; 1:1-13. [PMID: 31891165 PMCID: PMC6937138 DOI: 10.18689/ijmr-1000101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlamydia trachomatis replicates primarily in the epithelial cells lining the genital tract and induces the innate immune response by triggering cellular pathogen recognition receptors (PRRs). Our previous studies showed that Toll-like receptor 3 (TLR3) is expressed in murine oviduct epithelial (OE) cells, is the primary PRR triggered by C. muridarum (Cm) early during infection to induce IFN-β synthesis, and that TLR3 signaling regulates the chlamydial induced synthesis of a plethora of other innate inflammatory modulators including IL-6, CXCL10, CXCL16 and CCL5. We also showed that the expression of these cytokines induced by Chlamydia was severely diminished during TLR3 deficiency; however, the replication of Chlamydiain TLR3 deficient OE cells was more robust than in WT cells. These data suggested that TLR3 had a biological impact on the inflammatory response to Chlamydia infection; however, the global effects of TLR3 signaling in the cellular response to Chlamydia infection in murine OE cells has not yet been investigated. To determine the impact of TLR3 signaling on Chlamydia infection in OE cell at the transcriptome level, we infected wild-type (OE-WT) and TLR3-deficient (OE-TLR3KO) cells with Cm, and performed transcriptome analyses using microarray. Genome-wide expression and ingenuity pathway analysis (IPA) identified enhanced expression of host genes encoding for components found in multiple cellular processes encompassing: (1) pro-inflammatory, (2) cell adhesion, (3) chemoattraction, (4) cellular matrix and small molecule transport, (5) apoptosis, and (6) antigen-processing and presentation. These results support a role for TLR3 in modulating the host cellular responses to Cm infection that extend beyond inflammation and fibrosis, and shows that TLR3 could serve a potential therapeutic target for drug and/or vaccine development.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana-46202, USA
| | - Wilbert A Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana-46202, USA
| |
Collapse
|
13
|
Xu JZ, Kumar R, Gong H, Liu L, Ramos-Solis N, Li Y, Derbigny WA. Toll-Like Receptor 3 Deficiency Leads to Altered Immune Responses to Chlamydia trachomatis Infection in Human Oviduct Epithelial Cells. Infect Immun 2019; 87:e00483-19. [PMID: 31383744 PMCID: PMC6759307 DOI: 10.1128/iai.00483-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Reproductive tract pathology caused by Chlamydia trachomatis infection is an important global cause of human infertility. To better understand the mechanisms associated with Chlamydia-induced genital tract pathogenesis in humans, we used CRISPR genome editing to disrupt Toll-like receptor 3 (TLR3) function in the human oviduct epithelial (hOE) cell line OE-E6/E7 in order to investigate the possible role(s) of TLR3 signaling in the immune response to Chlamydia Disruption of TLR3 function in these cells significantly diminished the Chlamydia-induced synthesis of several inflammation biomarkers, including interferon beta (IFN-β), interleukin-6 (IL-6), interleukin-6 receptor alpha (IL-6Rα), soluble interleukin-6 receptor beta (sIL-6Rβ, or gp130), IL-8, IL-20, IL-26, IL-34, soluble tumor necrosis factor receptor 1 (sTNF-R1), tumor necrosis factor ligand superfamily member 13B (TNFSF13B), matrix metalloproteinase 1 (MMP-1), MMP-2, and MMP-3. In contrast, the Chlamydia-induced synthesis of CCL5, IL-29 (IFN-λ1), and IL-28A (IFN-λ2) was significantly increased in TLR3-deficient hOE cells compared to their wild-type counterparts. Our results indicate a role for TLR3 signaling in limiting the genital tract fibrosis, scarring, and chronic inflammation often associated with human chlamydial disease. Interestingly, we saw that Chlamydia infection induced the production of biomarkers associated with persistence, tumor metastasis, and autoimmunity, such as soluble CD163 (sCD163), chitinase-3-like protein 1, osteopontin, and pentraxin-3, in hOE cells; however, their expression levels were significantly dysregulated in TLR3-deficient hOE cells. Finally, we demonstrate using hOE cells that TLR3 deficiency resulted in an increased amount of chlamydial lipopolysaccharide (LPS) within Chlamydia inclusions, which is suggestive that TLR3 deficiency leads to enhanced chlamydial replication and possibly increased genital tract pathogenesis during human infection.
Collapse
Affiliation(s)
- Jerry Z Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Haoli Gong
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Luyao Liu
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wilbert A Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Lin CY, Crowley ST, Uchida S, Komaki Y, Kataoka K, Itaka K. Treatment of Intervertebral Disk Disease by the Administration of mRNA Encoding a Cartilage-Anabolic Transcription Factor. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:162-171. [PMID: 30889482 PMCID: PMC6424144 DOI: 10.1016/j.omtn.2019.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/10/2019] [Accepted: 02/16/2019] [Indexed: 12/27/2022]
Abstract
Intervertebral disk (IVD) degeneration is often associated with severity of lower back pain. IVD core is an avascular, highly hydrated tissue composed of type II collagen, glycosaminoglycans, and proteoglycans. The disk degeneration is not only a destruction of IVD structure but also is related to a disorder of the turnover of the disk matrix, leading the jelly-like IVD core to be replaced by fibrous components. Here we present a disease-modifying strategy for IVD degenerative diseases by direct regulation of the cells in the IVD using mRNA medicine, to alter the misbalanced homeostasis during disk degeneration. When mRNA encoding a cartilage-anabolic transcription factor, runt-related transcription factor-1, was administered to a rat model of coccygeal disk degeneration using a polyplex nanomicelle composed of polyethylene glycol-polyamino acid block copolymers and mRNA, the disk height was maintained to a significantly higher extent (≈81%) compared to saline control (69%), with prevention of fibrosis in the disk tissue. In addition, the use of nanomicelles effectively prevented inflammation, which was observed by injection of naked mRNA into the disk. This proof-of-concept study revealed that mRNA medicine has a potential for treating IVD degenerative diseases by introducing a cartilage-anabolic factor into the host cells, proposing a new therapeutic strategy using mRNA medicine.
Collapse
Affiliation(s)
- Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Samuel Thomas Crowley
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Yuji Komaki
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
15
|
Kumar R, Gong H, Liu L, Ramos-Solis N, Seye CI, Derbigny WA. TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection. PLoS One 2019; 14:e0207422. [PMID: 30625140 PMCID: PMC6326510 DOI: 10.1371/journal.pone.0207422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/22/2018] [Indexed: 12/18/2022] Open
Abstract
Problem Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. Method of study We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. Results qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. Conclusion Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haoli Gong
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Luyao Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheikh I. Seye
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zandieh Z, Amjadi F, Vakilian H, Aflatoonian K, Amirchaghmaghi E, Fazeli A, Aflatoonian R. Sex hormones alter the response of Toll-like receptor 3 to its specific ligand in fallopian tube epithelial cells. Clin Exp Reprod Med 2018; 45:154-162. [PMID: 30538945 PMCID: PMC6277672 DOI: 10.5653/cerm.2018.45.4.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Objective The fallopian tubes play a critical role in the early events of fertilization. The rapid innate immune defense is an important part of the fallopian tubes. Toll-like receptor 3 (TLR3), as a part of the innate immune system, plays an important role in detecting viral infections. In this basic and experimental study, the effect of sex hormones on the function of TLR3 in the OE-E6/E7 cell line was investigated. Methods The functionality of TLR3 in this cell line was evaluated by cytokine measurements (interleukin [IL]-6 and IL-1b) and the effects of sex hormones on TLR3 were tested by an enzyme-linked immunosorbent assay kit. Additionally, TLR3 small interfering RNA (siRNA) and a TLR3 function-blocking antibody were used to confirm our findings. Results The production of IL-6 significantly increased in the presence of polyinosinic-polycytidylic acid (poly(I:C)) as the TLR3 ligand. Using a TLR3-siRNA-ransfected OE-E6/E7 cell line and function-blocking antibody confirmed that cytokine production was due to TLR3. In addition, 17-β estradiol and progesterone suppressed the production of IL-6 in the presence and absence of poly(I:C). Conclusion These results imply that sex hormones exerted a suppressive effect on the function of TLR3 in the fallopian tube cell line when different concentrations of sex hormones were present. The current results also suggest that estrogen receptor beta and nuclear progesterone receptor B are likely to mediate the hormonal regulation of TLR3, as these two receptors are the main estrogen and progesterone receptors in OE-E6/E7 cell line.
Collapse
Affiliation(s)
- Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haghighat Vakilian
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Elham Amirchaghmaghi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, UK
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Slade JA, Hall JV, Kintner J, Schoborg RV. The type I interferon receptor is not required for protection in the Chlamydia muridarum and HSV-2 murine super-infection model. Pathog Dis 2018; 76:5132873. [PMID: 30321322 PMCID: PMC6208986 DOI: 10.1093/femspd/fty075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/12/2018] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis/HSV-2 vaginal co-infections are seen clinically, suggesting that these sexually transmitted pathogens may interact. We previously established an intravaginal Chlamydia muridarum/HSV-2 super-infection model and observed that chlamydial pre-infection protects mice from a subsequent lethal HSV-2 challenge. However, the mechanism of protection remains unknown. The type I interferon, IFN-β, binds to the type I interferon receptor (IFNR), elicits a host cellular antiviral response and inhibits HSV replication in vitro and in vivo. Previous studies have demonstrated that C. muridarum infection stimulates genital tract (GT) IFN-β production; therefore, we hypothesized that chlamydial pre-infection protects mice from HSV-2 challenge via the IFN-β/IFNR-induced antiviral response. To test this prediction, we quantified IFN-β levels in vaginal swab samples. Detection of IFN-β in C. muridarum singly infected, but not in mock-infected animals, prompted the use of the super-infection model in IFNR knockout (IFNR−/−) mice. We observed that C. muridarum pre-infection reduces HSV-2-induced mortality by 40% in wild-type mice and by 60% IFNR−/− mice. Severity of HSV-2 disease symptoms and viral shedding was also similarly reduced by C. muridarum pre-infection. These data indicate that, while chlamydial infection induces GT production of IFN-β, type I IFN-induced antiviral responses are likely not required for the observed protective effect.
Collapse
Affiliation(s)
- Jessica A Slade
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 2055 Mowry Road, Gainesville, FL 32608, USA
| | - Jennifer V Hall
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Box 70577, Johnson City, TN 37614, USA
| | - Jennifer Kintner
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Box 70577, Johnson City, TN 37614, USA
| | - Robert V Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Box 70577, Johnson City, TN 37614, USA
| |
Collapse
|
18
|
Momen-Heravi F, Bala S. miRNA regulation of innate immunity. J Leukoc Biol 2018; 103:1205-1217. [PMID: 29656417 DOI: 10.1002/jlb.3mir1117-459r] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA and are pivotal posttranscriptional regulators of both innate and adaptive immunity. They act by regulating the expression of multiple immune genes, thus, are the important elements to the complex immune regulatory network. Deregulated expression of specific miRNAs can lead to potential autoimmunity, immune tolerance, hyper-inflammatory phenotype, and cancer initiation and progression. In this review, we discuss the contributory pathways and mechanisms by which several miRNAs influence the development of innate immunity and fine-tune immune response. Moreover, we discuss the consequence of deregulated miRNAs and their pathogenic implications.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, New York, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Carrasco SE, Hu S, Imai DM, Kumar R, Sandusky GE, Yang XF, Derbigny WA. Toll-like receptor 3 (TLR3) promotes the resolution of Chlamydia muridarum genital tract infection in congenic C57BL/6N mice. PLoS One 2018; 13:e0195165. [PMID: 29624589 PMCID: PMC5889059 DOI: 10.1371/journal.pone.0195165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chlamydia trachomatis urogenital serovars primarily replicate in epithelial cells lining the reproductive tract. Epithelial cells recognize Chlamydia through cell surface and cytosolic receptors, and/or endosomal innate receptors such as Toll-like receptors (TLRs). Activation of these receptors triggers both innate and adaptive immune mechanisms that are required for chlamydial clearance, but are also responsible for the immunopathology in the reproductive tract. We previously demonstrated that Chlamydia muridarum (Cm) induces IFN-β in oviduct epithelial cells (OE) in a TLR3-dependent manner, and that the synthesis of several cytokines and chemokines are diminished in Cm-challenged OE derived from TLR3-/- 129S1 mice. Furthermore, our in vitro studies showed that Cm replication in TLR3-/- OE is more efficient than in wild-type OE. Because TLR3 modulates the release inflammatory mediators involved in host defense during Cm infection, we hypothesized that TLR3 plays a protective role against Cm-induced genital tract pathology in congenic C57BL/6N mice. Using the Cm mouse model for human Chlamydia genital tract infections, we demonstrated that TLR3-/- mice had increased Cm shedding during early and mid-stage genital infection. In early stage infection, TLR3-/- mice showed a diminished synthesis of IFN-β, IL-1β, and IL-6, but enhanced production of IL-10, TNF-α, and IFN-γ. In mid-stage infection, TLR3-/- mice exhibited significantly enhanced lymphocytic endometritis and salpingitis than wild-type mice. These lymphocytes were predominantly scattered along the endometrial stroma and the associated smooth muscle, and the lamina propria supporting the oviducts. Surprisingly, our data show that CD4+ T-cells are significantly enhanced in the genital tract TLR3-/- mice during mid-stage Chlamydial infection. In late-stage infections, both mouse strains developed hydrosalpinx; however, the extent of hydrosalpinx was more severe in TLR3-/- mice. Together, these data suggest that TLR3 promotes the clearance of Cm during early and mid-stages of genital tract infection, and that loss of TLR3 is detrimental in the development hydrosalpinx.
Collapse
Affiliation(s)
- Sebastian E. Carrasco
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Denise M. Imai
- School of Veterinary Medicine and Comparative Pathology Laboratory, University of California-Davis, Davis, California, United States of America
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
20
|
Xie X, Yang M, Ding Y, Chen J. Microbial infection, inflammation and epithelial ovarian cancer. Oncol Lett 2017; 14:1911-1919. [PMID: 28789426 PMCID: PMC5529868 DOI: 10.3892/ol.2017.6388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most common, and life-threatening, type of female gynecological cancer. The etiology of ovarian cancer remains unclear, and there are currently no effective screening or treatment methods for the disease. Microbial infection serves a marked function in inducing carcinogenesis. A number of studies have identified pelvic inflammatory disease as a risk factor for epithelial ovarian cancer. Thus, it is hypothesized that microbial infection may contribute to ovarian cancer. In the present review, the microorganisms that have been identified to be associated with ovarian cancer and the underlying molecular mechanisms involved are discussed. Infection-induced chronic inflammation is considered an important process for carcinogenesis, cancer progression and metastasis. Therefore, the pathological process and associated inflammatory factors are reviewed in the present paper.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| | - Jianlin Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410001, P.R. China
| |
Collapse
|
21
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Slade J, Hall JV, Kintner J, Schoborg RV. Chlamydial Pre-Infection Protects from Subsequent Herpes Simplex Virus-2 Challenge in a Murine Vaginal Super-Infection Model. PLoS One 2016; 11:e0146186. [PMID: 26726882 PMCID: PMC4699815 DOI: 10.1371/journal.pone.0146186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singly-infected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans.
Collapse
Affiliation(s)
- Jessica Slade
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer V. Hall
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer Kintner
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Robert V. Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lactobacillus crispatus mediates anti-inflammatory cytokine interleukin-10 induction in response to Chlamydia trachomatis infection in vitro. Int J Med Microbiol 2015; 305:815-27. [DOI: 10.1016/j.ijmm.2015.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/14/2015] [Accepted: 07/27/2015] [Indexed: 01/18/2023] Open
|
24
|
Abstract
The capacity for sperm storage within the female reproductive tract occurs widely across all groups of vertebrate species and is exceptionally well developed in some reptiles (maximum duration seven years) and fishes (maximum duration >1 year). Although there are many reports on both the occurrence of female sperm storage in diverse species and its adaptive benefits, few studies have been directed toward explaining the mechanisms involved. In this article we review recent findings in birds and mammals in an effort to develop hypotheses that could be translated into research applications in animal breeding technologies. There are pockets of evidence to suggest that the local epithelial cells, sometimes arranged as sperm storage tubules, can respond to spermatozoa by producing heat shock proteins as well as providing an environment rich in antioxidants. Moreover, the local immune system seems to tolerate the arrival of spermatozoa, while retaining the ability to combat the arrival of infectious microorganisms.
Collapse
Affiliation(s)
- William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield S10 2SF, United Kingdom; ;
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield S10 2SF, United Kingdom; ;
| |
Collapse
|
25
|
Hosey KL, Hu S, Derbigny WA. Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells. J Interferon Cytokine Res 2015; 35:901-16. [PMID: 26262558 DOI: 10.1089/jir.2015.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription.
Collapse
Affiliation(s)
- Kristen Lynette Hosey
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sishun Hu
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana.,2 College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Wilbert Alfred Derbigny
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
26
|
Hu S, Hosey KL, Derbigny WA. Analyses of the pathways involved in early- and late-phase induction of IFN-beta during C. muridarum infection of oviduct epithelial cells. PLoS One 2015; 10:e0119235. [PMID: 25798928 PMCID: PMC4370658 DOI: 10.1371/journal.pone.0119235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
We previously reported that the IFN-β secreted by Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) was mostly dependent on the TLR3 signaling pathway. To further characterize the mechanisms of IFN-β synthesis during Chlamydia infection of OE cells in vitro, we utilized specific inhibitory drugs to clarify the roles of IRF3 and NF-κB on both early- and late-phase C. muridarum infections. Our results showed that the pathways involved in the early-phase of IFN-β production were distinct from that in the late-phase of IFN-β production. Disruption of IRF3 activation using an inhibitor of TBK-1 at early-phase Chlamydia infection had a significant impact on the overall synthesis of IFN-β; however, disruption of IRF3 activation at late times during infection had no effect. Interestingly, inhibition of NF-κB early during Chlamydia infection also had a negative effect on IFN-β production; however, its impact was not significant. Our data show that the transcription factor IRF7 was induced late during Chlamydia infection, which is indicative of a positive feedback mechanism of IFN-β synthesis late during infection. In contrast, IRF7 appears to play little or no role in the early synthesis of IFN-β during Chlamydia infection. Finally, we demonstrate that antibiotics that target chlamydial DNA replication are much more effective at reducing IFN-β synthesis during infection versus antibiotics that target chlamydial transcription. These results provide evidence that early- and late-phase IFN-β production have distinct signaling pathways in Chlamydia-infected OE cells, and suggest that Chlamydia DNA replication might provide a link to the currently unknown chlamydial PAMP for TLR3.
Collapse
Affiliation(s)
- Sishun Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kristen L. Hosey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wilbert A. Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Frazer LC, Sullivan JE, Zurenski MA, Mintus M, Tomasak TE, Prantner D, Nagarajan UM, Darville T. CD4+ T cell expression of MyD88 is essential for normal resolution of Chlamydia muridarum genital tract infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:4269-79. [PMID: 24038087 DOI: 10.4049/jimmunol.1301547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Resolution of Chlamydia genital tract infection is delayed in the absence of MyD88. In these studies, we first used bone marrow chimeras to demonstrate a requirement for MyD88 expression by hematopoietic cells in the presence of a wild-type epithelium. Using mixed bone marrow chimeras we then determined that MyD88 expression was specifically required in the adaptive immune compartment. Furthermore, adoptive transfer experiments revealed that CD4(+) T cell expression of MyD88 was necessary for normal resolution of genital tract infection. This requirement was associated with a reduced ability of MyD88(-/-)CD4(+) T cells to accumulate in the draining lymph nodes and genital tract when exposed to the same inflammatory milieu as wild-type CD4(+) T cells. We also demonstrated that the impaired infection control we observed in the absence of MyD88 could not be recapitulated by deficiencies in TLR or IL-1R signaling. In vitro, we detected an increased frequency of apoptotic MyD88(-/-)CD4(+) T cells upon activation in the absence of exogenous ligands for receptors upstream of MyD88. These data reveal an intrinsic requirement for MyD88 in CD4(+) T cells during Chlamydia infection and indicate that the importance of MyD88 extends beyond innate immune responses by directly influencing adaptive immunity.
Collapse
Affiliation(s)
- Lauren C Frazer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mackern-Oberti JP, Motrich RD, Breser ML, Sánchez LR, Cuffini C, Rivero VE. Chlamydia trachomatis infection of the male genital tract: an update. J Reprod Immunol 2013; 100:37-53. [PMID: 23870458 DOI: 10.1016/j.jri.2013.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 05/06/2013] [Indexed: 12/30/2022]
Abstract
Chlamydia trachomatis (CT) is the most prevalent cause of sexually transmitted diseases. Although the prevalence of chlamydial infection is similar in men and women, current research and screening are still focused on women, who develop the most severe complications, leaving the study of male genital tract (MGT) infection underrated. Herein, we reviewed the literature on genital CT infection with special focus on the MGT. Data indicate that CT certainly infects different parts of the MGT such as the urethra, seminal vesicles, prostate, epididymis and testis. However, whether or not CT infection has detrimental effects on male fertility is still controversial. The most important features of CT infection are its chronic nature and the presence of a mild inflammation that remains subclinical in most individuals. Chlamydia antigens and pathogen recognition receptors (PRR), expressed on epithelial cells and immune cells from the MGT, have been studied in the last years. Toll-like receptor (TLR) expression has been observed in the testis, epididymis, prostate and vas deferens. It has been demonstrated that recognition of chlamydial antigens is associated with TLR2, TLR4, and possibly, other PRRs. CT recognition by PRRs induces a local production of cytokines/chemokines, which, in turn, provoke chronic inflammation that might evolve in the onset of an autoimmune process in genetically susceptible individuals. Understanding local immune response along the MGT, as well as the crosstalk between resident leukocytes, epithelial, and stromal cells, would be crucial in inducing a protective immunity, thus adding to the design of new therapeutic approaches to a Chlamydia vaccine.
Collapse
|
30
|
STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 2013; 4:e00018-13. [PMID: 23631912 PMCID: PMC3663186 DOI: 10.1128/mbio.00018-13] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED STING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells. IMPORTANCE This study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections.
Collapse
|
31
|
Toll-like receptor 2-dependent activity of native major outer membrane protein proteosomes of Chlamydia trachomatis. Infect Immun 2012; 81:303-10. [PMID: 23132491 DOI: 10.1128/iai.01062-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the etiologic agent of blinding trachoma. Intracellular signaling pathways leading to host cell inflammation and innate immunity to Chlamydia include those mediated by Toll-like receptors (TLRs) and nucleotide binding oligomerization domain 1 (Nod1) protein. In epithelial cells, TLR-dependent signaling contributes to local immune responses via induction of inflammatory mediators. There is evidence that TLR3, TLR4, and, particularly, TLR2 are critical for Chlamydia-mediated host cell activation and pathology. Despite the importance of TLR2, major chlamydial TLR2 antigens have not been identified so far. Numerous bacterial porins are known TLR2 agonists, i.e., porins from Neisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, which share structural and functional similarities with the chlamydial major outer membrane protein (MOMP), a strong antigen candidate for a potential vaccine against C. trachomatis. We describe the ability of purified, detergent-free MOMP to signal via TLR2 in vitro in TLR-overexpressing cells and TLR2-competent human reproductive tract epithelial cell lines. Using MOMP formed in pure protein micelles (proteosomes), we show the induction of TLR2-dependent interleukin-8 (IL-8) and IL-6 secretion in vitro, the involvement of TLR1 as a TLR2 coreceptor, and the activation of both NF-κB and mitogen-activated protein (MAP) kinase intracellular pathways. Interestingly, MOMP proteosomes induce cytokine secretion in endocervical epithelial cells (End/E6E7) but not in urethral epithelial cells (THUECs). A detailed understanding of the TLR2-dependent molecular mechanisms that characterize the effect of MOMP proteosomes on host cells may provide new insights for its successful development as an immunotherapeutic target against Chlamydia.
Collapse
|
32
|
Shao R, Wang X, Wang W, Stener-Victorin E, Mallard C, Brännström M, Billig H. From mice to women and back again: causalities and clues for Chlamydia-induced tubal ectopic pregnancy. Fertil Steril 2012; 98:1175-85. [PMID: 22884019 DOI: 10.1016/j.fertnstert.2012.07.1113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To provide an overview of knockout mouse models that have pathological tubal phenotypes after Chlamydia muridarum infection, discuss factors and pathological processes that contribute to inflammation, summarize data on tubal transport and progression of tubal implantation from studies in humans and animal models, and highlight research questions in the field. DESIGN A search of the relevant literature using PubMed and other online tools. SETTING University-based preclinical and clinical research laboratories. PATIENT(S) Women with tubal ectopic pregnancy after Chlamydia trachomatis infection. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Critical review of the literature. RESULT(S) Chlamydia trachomatis infection poses a major threat to human reproduction. Biological and epidemiological evidence suggests that progression of Chlamydia infection causes intense and persistent inflammation, injury, and scarring in the fallopian tube, leading to a substantially increased risk of ectopic pregnancy and infertility. The main targets of Chlamydia infection are epithelial cells lining the mucosal surface, which play a central role in host immune responses and pathophysiology. Tubal phenotypes at the cellular level in mutant mice appear to reflect alterations in the balance between inflammatory mediator and factor deficiency. While studies in mice infected with Chlamydia muridarum have provided insight into potential inflammatory mediators linked to fallopian tube pathology, it is unclear how inflammation induced by Chlamydia infection prevents or retards normal tubal transport and causes embryo implantation in the fallopian tube. CONCLUSION(S) Given the similarities in the tubal physiology of humans and rodents, knockout mouse models can be used to study certain aspects of tubal functions, such as gamete transport and early embryo implantation. Elucidation of the exact molecular mechanisms of immune and inflammatory responses caused by Chlamydia infection in human fallopian tubal cells in vitro and understanding how Chlamydia infection affects tubal transport and implantation in animal studies in vivo may explain how Chlamydia trachomatis infection drives inflammation and develops the tubal pathology in women with tubal ectopic pregnancy.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kumar S, Ingle H, Prasad DVR, Kumar H. Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol 2012; 39:229-46. [DOI: 10.3109/1040841x.2012.706249] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|