1
|
Ishikawa Y, Urano-Tashiro Y, Yamanaka Y, Saiki K, Hayashida N, Takahashi Y. Hemagglutinating properties of a Streptococcus gordonii strain expressing sialic acid-binding adhesin homolog with low binding site similarity to that of strain DL1. J Oral Biosci 2022; 64:253-258. [DOI: 10.1016/j.job.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 02/08/2022] [Indexed: 10/18/2022]
|
2
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
3
|
Suriya J, Bharathiraja S, Manivasagan P, Kim SK. Enzymes From Rare Actinobacterial Strains. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:67-98. [PMID: 27770864 DOI: 10.1016/bs.afnr.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | - S-K Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Zhang X, Senpuku H. Dynamic Changes in the Initial Colonization of Actinomyces naeslundii and Streptococcus gordonii Using a New Animal Model. Jpn J Infect Dis 2013; 66:11-6. [DOI: 10.7883/yoken.66.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Filifactor alocis has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by porphyromonas gingivalis. Infect Immun 2011; 79:3872-86. [PMID: 21825062 DOI: 10.1128/iai.05631-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Filifactor alocis, a Gram-positive anaerobic rod, is one of the most abundant bacteria identified in the periodontal pockets of periodontitis patients. There is a gap in our understanding of its pathogenicity and ability to interact with other periodontal pathogens. To evaluate the virulence potential of F. alocis and its ability to interact with Porphyromonas gingivalis W83, several clinical isolates of F. alocis were characterized. F. alocis showed nongingipain protease and sialidase activities. In silico analysis revealed the molecular relatedness of several virulence factors from F. alocis and P. gingivalis. In contrast to P. gingivalis, F. alocis was relatively resistant to oxidative stress and its growth was stimulated under those conditions. Biofilm formation was significantly increased in coculture. There was an increase in adherence and invasion of epithelial cells in coculture compared with P. gingivalis or F. alocis monocultures. In those epithelial cells, endocytic vesicle-mediated internalization was observed only during coculture. The F. alocis clinical isolate had an increased invasive capacity in coculture with P. gingivalis compared to the ATCC 35896 strain. In addition, there was variation in the proteomes of the clinical isolates compared to the ATCC 35896 strain. Hypothetical proteins and those known to be important virulence factors in other bacteria were identified. These results indicate that F. alocis has virulence properties that may enhance its ability to survive and persist in the periodontal pocket and may play an important role in infection-induced periodontal disease.
Collapse
|
6
|
Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H. The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol 2010; 77:841-54. [PMID: 20545853 DOI: 10.1111/j.1365-2958.2010.07252.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interbacterial interactions between oral streptococci and actinomyces and their adherence to tooth surface and the associated host cells are key early events that promote development of the complex oral biofilm referred to as dental plaque. These interactions depend largely on a lectin-like activity associated with the Actinomyces oris type 2 fimbria, a surface structure assembled by sortase (SrtC2)-dependent polymerization of the shaft and tip fimbrillins, FimA and FimB respectively. To dissect the function of specific fimbrillins in various adherence processes, we have developed a convenient new technology for generating unmarked deletion mutants of A. oris. Here, we show that the fimB mutant, which produced type 2 fimbriae composed only of FimA, like the wild type co-aggregated strongly with receptor-bearing streptococci, agglutinated with sialidase-treated red blood cells, and formed monospecies biofilm. In contrast, the fimA and srtC2 mutants lacked type 2 fimbriae and were non-adherent in each of these assays. Plasmid-based expression of the deleted gene in respective mutants restored adherence to wild-type levels. These findings uncover the importance of the lectin-like activity of the polymeric FimA shaft rather than the tip. The multivalent adhesive function of FimA makes it an ideal molecule for exploring novel intervention strategies to control plaque biofilm formation.
Collapse
Affiliation(s)
- Arunima Mishra
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USAOral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USADepartment of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USAOral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USADepartment of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Jinghua Yang
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USAOral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USADepartment of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - John O Cisar
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USAOral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USADepartment of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Asis Das
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USAOral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USADepartment of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USAOral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USADepartment of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
7
|
Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 2008; 66:637-44. [PMID: 18785881 PMCID: PMC2820160 DOI: 10.1111/j.1574-6941.2008.00585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In dental plaque alpha-haemolytic streptococci, including Streptococcus gordonii, are considered beneficial for oral health. These organisms produce hydrogen peroxide (H(2)O(2)) at concentrations sufficient to kill many oral bacteria. Streptococci do not produce catalase yet tolerate H(2)O(2). We recently demonstrated that coaggregation with Actinomyces naeslundii stabilizes arginine biosynthesis in S. gordonii. Protein arginine residues are sensitive to oxidation by H(2)O(2). Here, the ability of A. naeslundii to protect S. gordonii against self-produced H(2)O(2) was investigated. Coaggregation with A. naeslundii enabled S. gordonii to grow in the absence of arginine, and promoted survival of S. gordonii following growth with or without added arginine. Arginine-replete S. gordonii monocultures contained 20-30 microM H(2)O(2) throughout exponential growth. Actinomyces naeslundii did not produce H(2)O(2) but synthesized catalase, removed H(2)O(2) from coaggregate cultures and decreased protein oxidation in S. gordonii. On solid medium, S. gordonii inhibited growth of A. naeslundii; exogenous catalase overcame this inhibition. In coaggregate cultures, A. naeslundii cell numbers were >90% lower than in monocultures after 24 h. These results indicate that coaggregation with A. naeslundii protects S. gordonii from oxidative damage. However, high cell densities of S. gordonii inhibit A. naeslundii. Therefore, H(2)O(2) may drive these organisms towards an ecologically balanced community in natural dental plaque.
Collapse
Affiliation(s)
| | - Steven R. Gill
- Department of Oral Biology, University at Buffalo School of Dentistry, Buffalo, NY, USA
| | - M. Margaret Vickerman
- Department of Oral Biology, University at Buffalo School of Dentistry, Buffalo, NY, USA
| | - Paul E. Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Do T, Henssge U, Gilbert SC, Clark D, Beighton D. Evidence for recombination between a sialidase (nanH) of Actinomyces naeslundii and Actinomyces oris, previously named 'Actinomyces naeslundii genospecies 1 and 2'. FEMS Microbiol Lett 2008; 288:156-62. [PMID: 18823396 PMCID: PMC2667307 DOI: 10.1111/j.1574-6968.2008.01336.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/31/2008] [Indexed: 11/30/2022] Open
Abstract
Actinomyces spp., predominant members of human oral biofilms, may use extracellular sialidase to promote adhesion, deglycosylate immunoglobulins and liberation of nutrients. Partial nanH gene sequences (1,077 bp) from Actinomyces oris (n=74), Actinomyces naeslundii (n=30), Actinomyces viscosus (n=1) and Actinomyces johnsonii (n=2) which included the active-site region and the bacterial neuraminidase repeats (BNRs) were compared. The sequences were aligned and each species formed a distinct cluster with five isolates having intermediate positions. These five isolates (two A. oris and three A. naeslundii) exhibited interspecies recombination. The nonsynonymous/synonymous ratio was <1 for both A. oris and A. naeslundii indicating that nanH in both species is under stabilizing selective pressure; nonsynonymous mutations are not selected. However, for A. oris significant negative values in tests for neutral selection suggested the rate of mutation in A. oris was greater than in A. naeslundii but with selection against nonsynonymous mutations. This was supported by the observation that the frequency of polymorphic sites in A. oris, which were monomorphic in A. naeslundii was significantly greater than the frequency of polymorphic sites in A. naeslundii which were monomorphic in A. oris (chi(2)=7.011; P=0.00081). The higher proportions of A. oris in the oral biofilm might be explained by the higher mutation rate facilitating an increased ability to respond successfully to environmental stress.
Collapse
Affiliation(s)
- Thuy Do
- King's College, School of Medicine and Dentistry, London, UK
| | | | | | | | | |
Collapse
|
9
|
Sharon N, Eshdat Y, Silverblatt FJ, Ofek I. Bacterial adherence to cell surface sugars. CIBA FOUNDATION SYMPOSIUM 2008; 80:119-41. [PMID: 6114817 DOI: 10.1002/9780470720639.ch9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacterial adherence to animal cell surfaces is of interest because of its relation to pathogenicity and the insight it provides into determinants of intercellular recognition. The attachment of various strains of Escherichia coli and Salmonella spp. to epithelial cells and phagocytes is inhibited by D-mannose, and the adherence of other bacteria is inhibited by sugars such as L-fucose and D-galactose, suggesting that sugar-mediated adherence is widespread. This intercellular recognition is thought to be mediated by sugar residues (e.g. D-mannose) on the surface of animal cells, to which bacteria attach by a sugar-binding substance on their surface. The nature of the receptors on the animal cells is unknown. There is evidence that E. coli produces lectin-like substances specific for D-mannose, by which it binds to the cells. The most common form of these lectin-like substances appears to be the bacterial pili, which can be reversibly dissociated into their protein subunits. The lectin can also be in the form of bacterial flagella or tightly attached to the outer membrane of the bacteria. Mannose-specific attachment may assist bacteria in colonizing and invading their hosts: methyl alpha-D-mannoside (but not methyl alpha-D-glucoside) significantly reduced infection of the urinary tract of mice by virulent strains of E. coli. Once bacteria penetrate the host their ability to binding sugars on phagocytes may impair their virulence by facilitating phagocytosis. Further studies of the sugar-mediated bacterial adherence by organisms growing in vivo and the structural identification of the host cell receptors may lead to the design of more effective adherence inhibitors that may help to prevent certain bacterial infections.
Collapse
|
10
|
Affiliation(s)
- Hung Ton-That
- Committee on Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
11
|
Wu H, Fives-Taylor PM. Molecular strategies for fimbrial expression and assembly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:101-15. [PMID: 11345521 DOI: 10.1177/10454411010120020101] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fimbriae or pili are long, filamentous, multimeric macromolecules found on the bacterial cell surface. Bacteria express a diverse array of fimbriae or pili that are involved in bacterial adherence and invasion. Fimbriae can be categorized based on their modes of expression and assembly. Type I fimbriae and P pili are distributed peritrichously and translocated to the cell surface by a chaperone/usher pathway. Type 4 pili are located at the pole of the cell and assembled via the type II secretion system. Curli fimbriae are coiled surface structures assembled by an extracellular nucleation/precipitation pathway. Fimbriae of oral gram-negative and gram-positive bacteria have not been well-studied as compared with the fimbriae of enteric pathogens. Oral pathogens, such as Eikenella corrodens, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis, possess fimbriae that have been implicated in bacterial adhesion and invasion. These fimbriae are potential virulence factors in oral infectious processes. A. actinomycetemcomitans and E. corrodens have Type 4-like fimbriae, whereas P. gingivalis displays a unique type of fimbriae. To date, fimbriae of the oral primary colonizers, Actinomyces naeslundii and Streptococcus parasanguis, represent the only fimbriae characterized for any gram-positive bacteria. The putative major fimbrial subunits, FimA and FimP of A. naeslundii and Fap1 of S. parasanguis, contain a signal sequence and cell-wall-sorting signal. The presence of extensive dipeptide repeats in Fap1 makes it unique among fimbrial molecules. Based on experimental data, a nucleation/precipitation pathway is proposed for fimbrial biogenesis of both S. parasanguis and A. naeslundii, although we cannot rule out an alternative covalent linkage model. The model systems described in this review served as a framework for hypotheses for how the known molecular factors of fimbriae on oral bacteria may be expressed and assembled.
Collapse
Affiliation(s)
- H Wu
- Department of Medicine, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
12
|
Ruhl S, Cisar JO, Sandberg AL. Identification of polymorphonuclear leukocyte and HL-60 cell receptors for adhesins of Streptococcus gordonii and Actinomyces naeslundii. Infect Immun 2000; 68:6346-54. [PMID: 11035744 PMCID: PMC97718 DOI: 10.1128/iai.68.11.6346-6354.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions of oral streptococci and actinomyces with polymorphonuclear leukocytes (PMNs), mediated by sialic acid- and Gal/GalNAc-reactive adhesins, respectively, result in activation of the PMNs and thereby may contribute to the initiation of oral inflammation. Sialidase treatment of PMNs or HL-60 cells abolished adhesion of Streptococcus gordonii but was required for adhesion of Actinomyces naeslundii. The same effects of sialidase were noted for adhesion of these bacteria to a major 150-kDa surface glycoprotein of either PMNs or undifferentiated HL-60 cells and to a 130-kDa surface glycoprotein of differentiated HL-60 cells. These glycoproteins were both identified as leukosialin (CD43) by immunoprecipitation with a specific monoclonal antibody (MAb). Adhesion of streptococci and actinomyces to a 200-kDa minor PMN surface glycoprotein was also detected by bacterial overlay of untreated and sialidase-treated nitrocellulose transfers, respectively. This glycoprotein was identified as leukocyte common antigen (CD45) by immunoprecipitation with a specific MAb. CD43 and CD45 both possess extracellular mucinlike domains in addition to intracellular domains that are implicated in signal transduction. Consequently, the interactions of streptococci and actinomyces with the mucinlike domains of these mammalian cell surface glycoproteins result not only in adhesion but, in addition, may represent the initial step in PMN activation by these bacteria.
Collapse
Affiliation(s)
- S Ruhl
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
13
|
Yeung MK. Molecular and genetic analyses of Actinomyces spp. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:120-38. [PMID: 10759417 DOI: 10.1177/10454411990100020101] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the genus Actinomyces are predominant primary colonizers of the oral cavity and play an important role in initiating plaque development. These bacteria have evolved unique mechanisms that favor colonization and persistence in this micro-environment. The expression of cell-surface fimbriae is correlated with the ability of these bacteria to adhere to specific receptors on the tooth and mucosal surfaces, and to interact with other plaque bacteria. The elaboration of sialidase is thought to enhance fimbriae-mediated adherence by unmasking the fimbrial receptors on mammalian cells. The presence of certain cell-associated or extracellular enzymes, including those involved in sucrose or urea metabolism, may provide the means for these bacteria to thrive under conditions when other growth nutrients are not available. Moreover, these enzyme activities may influence the distribution of other plaque bacteria and promote selection for Actinomyces spp. in certain ecological niches. The recent development of a genetic transfer system for Actinomyces spp. has allowed for studies the results of which demonstrate the existence of multiple genes involved in fimbriae synthesis and function, and facilitated the construction of allelic replacement mutants at each gene locus. Analyses of these mutants have revealed a direct correlation between the synthesis of assembled fimbriae and the observed adherence properties. Further genetic analysis of the various enzyme activities detected from strains of Actinomyces should allow for an assessment of the role of these components in microbial ecology, and their contribution to the overall success of Actinomyces spp. as a primary colonizer and a key player in oral health and disease.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, 78284, USA
| |
Collapse
|
14
|
Hallberg K, Hammarström KJ, Falsen E, Dahlén G, Gibbons RJ, Hay DI, Strömberg N. Actinomyces naeslundii genospecies 1 and 2 express different binding specificities to N-acetyl-beta-D-galactosamine, whereas Actinomyces odontolyticus expresses a different binding specificity in colonizing the human mouth. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:327-36. [PMID: 9872107 DOI: 10.1111/j.1399-302x.1998.tb00687.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A total of 102 strains of Actinomyces were isolated from teeth, buccal mucosa and tongue in eight individuals. The isolates were characterized by multivariate statistical analyses of phenotypic characteristics, serotyping and binding to beta-linked galactosamine (N-acetyl-beta-D-galactosamine) and acidic proline-rich protein structures. Based on these characteristics, isolates were classified into three major groups: (i) Isolates of Actinomyces naeslundii genospecies 2 were the dominant species on teeth and buccal mucosa and bound commonly to N-acetyl-beta-D-galactosamine (63 of 63 isolates) and acidic proline-rich proteins (63 of 63 isolates), regardless of tissue origin. They all exhibited a N-acetyl-beta-D-galactosamine binding specificity signified by N-acetyl-beta-D-galactosamine-inhibitable coaggregation with the streptococcal strains LVG1, GVE1, 24892 and MPB1; (ii) Isolates of A. naeslundii genospecies 1 were prevalent on teeth in certain individuals and bound commonly to N-acetyl-beta-D-galactosamine (20 of 20 isolates), but less commonly to acidic proline-rich proteins (5 of 20 isolates). They all possessed another N-acetyl-beta-D-galactosamine specificity, i.e. N-acetyl-beta-D-galactosamine-inhibitable coaggregation with the same streptococcal strains except for strain MPB1; (iii) Isolates of Actinomyces odontolyticus, the dominant species on the tongue (17 of 19 isolates), bound commonly to unknown structures on streptococci (17 of 19 isolates) but rarely to N-acetyl-beta-D-galactosamine (2 of 19 isolates) or acidic proline-rich proteins (3 of 19 isolates). In conclusion, A. naeslundii genospecies 1 and 2 exhibit different patterns of N-acetyl-beta-D-galactosamine and acidic proline-rich protein specificities to colonize dental and buccal mucosa surfaces, whereas A. odontolyticus utilizes another specificity to colonize the tongue.
Collapse
Affiliation(s)
- K Hallberg
- Department of Cariology, Umeå University, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Beem JE, Hurley CG, Nesbitt WE, Croft DF, Marks RG, Cisar JO, Clark WB. Fimbrial-mediated colonization of murine teeth by Actinomyces naeslundii. ORAL MICROBIOLOGY AND IMMUNOLOGY 1996; 11:259-65. [PMID: 9002879 DOI: 10.1111/j.1399-302x.1996.tb00179.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Groups of mice fed diets high in sucrose or glucose were orally inoculated with 10(10), 10(9) or 10(8) colony-forming units of one of the following Actinomyces naeslundii strains possessing the type 1 (T1+) and/or the type 2 (T2+) fimbriae: T14VJ1 (T1+, T2+), 5519 (T1+), 5951 (T2+), and 147 (non-fimbriated). Ninety-six hours after inoculation their upper jaws were cultured to look at the implantation of each of these strains on the teeth. In mice fed a sucrose diet, regardless of the presence or absence of fimbriae, each bacterial strain colonized 100% of the mice at the highest inoculation doses of the infecting organism. But at a dose of 10(8), T14V-J1 was the only strain which colonized 100% (12/12) of the mice, 5519 colonized 10/11, 5951 colonized 9/11 and 147 colonized 7/11. These differences were not statistically significant. When mice were fed a high-glucose diet, 100% infection was achieved with strains T14V-J1, 5519 and 5951 only at the highest dose of 10(10) colony-forming units. Strain 147 colonized in 8/9 of the mice at that dosage. At lower dosages, no bacterial strain implanted in 100% of the mice. In the glucose experiment at a dose of 10(8), strains expressing the T1 fimbriae implanted significantly better than strains without the T1 fimbriae. At a dose of 10(9) colony-forming units, the parent strain T14V-J1 implanted significantly better than strains without the T1 fimbriae. Similarly, strain 5519 (T1+) implanted significantly better than 5951 and implanted better than 147, although the difference was not significant. These results suggest that while the presence of the T1 and T2 fimbriae may confer some advantage in the establishment of these organisms in vivo, even the strains without fimbriae were able to colonize. Strains T14VJ1 and 5519 were found to bind well to hydroxyapatite treated with mouse saliva, while strains 5951 and 147 did not. Only T2 fimbriated strains T14V-J1 and 5951 exhibited a lactose-reversible coaggreation with indigenous strains of enterococci that may contribute to the elevated levels of colonization of strain 5951 in vivo.
Collapse
Affiliation(s)
- J E Beem
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Cassels FJ, Hughes CV, Nauss JL. Adhesin receptors of human oral bacteria and modeling of putative adhesin-binding domains. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 15:176-85. [PMID: 8519475 DOI: 10.1007/bf01569823] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adherence by bacteria to a surface is critical to their survival in the human oral cavity. Many types of molecules are present in the saliva and serous exudates that form the acquired pellicle, a coating on the tooth surface, and serve as receptor molecules for adherent bacteria. The primary colonizing bacteria utilize adhesins to adhere to specific pellicle receptor molecules, then may adhere to other primary colonizers via adhesins, or may present receptor molecules to be utilized by secondary colonizing species. The most common primary colonizing bacteria are streptococci, and six streptococcal cell wall polysaccharide receptor molecules have been structurally characterized. A comparison of the putative adhesin disaccharide-binding regions of the six polysaccharides suggests three groups. A representative of each group was modeled in molecular dynamics simulations. In each case it was found that a loop formed between the galactofuranose beta (Galf beta) and an oxygen of the nearest phosphate group on the reducing side of the Galf beta, that this loop was stabilized by hydrogen bonds, and that within each loop resides the putative disaccharide-binding domain.
Collapse
Affiliation(s)
- F J Cassels
- Department of Gastroenterology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
| | | | | |
Collapse
|
17
|
Sandberg AL, Ruhl S, Joralmon RA, Brennan MJ, Sutphin MJ, Cisar JO. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin. Infect Immun 1995; 63:2625-31. [PMID: 7790078 PMCID: PMC173352 DOI: 10.1128/iai.63.7.2625-2631.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recognition of receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc lectin associated with the type 2 fimbriae of certain strains of actinomyces results in activation of the PMNs, phagocytosis, and destruction of the bacteria. In the present study, plant lectins were utilized as probes to identify putative PMN receptors for the actinomyces lectin. The Gal-reactive lectin from Ricinus communis (RCAI), the Gal/GalNAc-reactive lectins from R. communis (RCAII) and Bauhinia purpurea (BPA), as well as the Gal beta 1-3GalNAc-specific lectins from Arachis hypogaea (PNA) and Agaricus bisporus (ABA) inhibited killing of Actinomyces naeslundii WVU45 by sialidase-treated PMNs. These five lectins detected a 130-kDa surface-labeled glycoprotein on nitrocellulose transfers of PMN extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This glycoprotein was revealed only after treatment of the transfers with sialidase, a condition analogous to the sialidase dependence of the lectin-mediated biological responses of the PMNs to the actinomyces. The mannose-reactive lectin concanavalin A did not inhibit killing of the actinomyces and failed to detect the 130-kDa glycoprotein but did block PMN-dependent killing of Escherichia coli B, a bacterium that possesses mannose-sensitive fimbriae. Therefore, the PMN glycoprotein receptor for A. naeslundii is clearly distinct from those recognized by E. coli. Two major putative glycolipid receptors were also identified by actinomyces and RCAI overlays on sialidase-treated thin-layer chromatograms of PMN gangliosides. Thus, both a 130-kDa glycoprotein and certain gangliosides are implicated in the attachment of the actinomyces to PMNs.
Collapse
Affiliation(s)
- A L Sandberg
- Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Members of the Streptococcus sanguis group (SSG) and Streptococcus milleri group (SMG) were screened for their ability to produce glycosidase, arylamidase (peptidase), protease, dextranase and glycosyltransferase activities. Species within each group produced unique patterns of activity. The most commonly produced glycosidases were beta-D-glucosidase, beta-D-galactosidase, N-acetyl-beta-D-glucosaminidase and N-acetyl-beta-D-galactosaminidase and the least commonly produced glycosidase activity was beta-fucosidase with Streptococcus intermedius (SMG) being the only species capable of producing the activity. For arylamidase activity, the most commonly produced type was lysine-arylamidase. Glycosidase and arylamidase activities were localized to particular sub-cellular fractions. alpha-galactosidase was found only in culture supernatant fluids whereas N-acetyl-beta-D-glucosaminidase was found in all fractions; the culture supernatant, cell wall, cell membrane and cytoplasm. No arylamidase activity was seen in culture supernatants. Phe-arg-arylamidase was found only in cytoplasmic fractions whereas val-pro-argarylamidase was found in cell walls, cell membranes and cytoplasmic fraction. Protease activity was measured as the degradation of bovine serum albumin (BSA) and casein. Casein was degraded by a number of strains whereas no species/strains were able to degrade BSA. Streptococcus intermedius, Streptococcus constellatus (SMG), Streptococcus mitior and Streptococcus defectivus (SSG) were the only species that produced hyaluronidase and no species produced chondroitin sulphatase. The groups were also examined for their abilities to produce glycosyltransferase and dextranase. Strep. sanguis, Streptococcus gordonii, Streptococcus mitis and Streptococcus oralis produced glucosyltransferase and, with the exception of the latter species, fructosyltransferase. No species within the SMG was capable of producing either glycosyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
19
|
Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1994; 5:203-48. [PMID: 7703323 DOI: 10.1177/10454411940050030201] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Saliva is thought to have a significant impact on the colonization of microorganisms in the oral cavity. Salivary components may participate in this process by one of four general mechanisms: binding to microorganisms to facilitate their clearance from the oral cavity, serving as receptors in oral pellicles for microbial adhesion to host surfaces, inhibiting microbial growth or mediating microbial killing, and serving as microbial nutritional substrates. This article reviews information pertinent to the molecular interaction of salivary components with bacteria (primarily the oral streptococci and Actinomyces) and explores the implications of these interactions for oral bacterial colonization and dental plaque formation. Knowledge of the molecular mechanisms controlling bacterial colonization of the oral cavity may suggest methods to prevent not only dental plaque formation but also serious medical infections that may follow microbial colonization of the oral cavity.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo 14214, USA
| |
Collapse
|
20
|
Loo CY, Willcox MD, Knox KW. Surface-associated properties of Actinomyces strains and their potential relation to pathogenesis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1994; 9:12-8. [PMID: 7478749 DOI: 10.1111/j.1399-302x.1994.tb00208.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Twenty-nine strains from the Actinomyces species were tested for a range of surface properties. Results show considerable heterogeneity both between different species and within some of the species, especially Actinomyces naeslundii. Two commonly used A. naeslundii strains, T14V and ATCC 12104, fell within the low (salivary aggregation and collagen binding by T14V), moderate (surface charge and haemagglutination) or high range of values (hydrophobicity, saliva-coated hydroxyapatite adhesion, polystyrene binding by T14V, fibrinogen binding by T14V and collagen binding by A. naeslundii ATCC 12104). Both strains adhered well to saliva-coated hydroxyapatite; T14V bound the highest amount of fibrinogen, ATCC 12104 had the highest number of cells bound to collagen and T14V was not bound at all. The heterogeneity of these characteristics highlights the need to include a range of strains of Actinomyces in studies on their pathogenicity. Statistical correlations were found between a number of properties, for example saliva-coated hydroxyapatite adhesion and hydrophobicity, and between haemagglutination and hydrophobicity.
Collapse
Affiliation(s)
- C Y Loo
- Institute of Dental Research, Surry Hills, Australia
| | | | | |
Collapse
|
21
|
Yeung MK. Complete nucleotide sequence of the Actinomyces viscosus T14V sialidase gene: presence of a conserved repeating sequence among strains of Actinomyces spp. Infect Immun 1993; 61:109-16. [PMID: 8418033 PMCID: PMC302694 DOI: 10.1128/iai.61.1.109-116.1993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The nucleotide sequence of the Actinomyces viscosus T14V sialidase gene (nanH) and flanking regions was determined. An open reading frame of 2,703 nucleotides that encodes a predominately hydrophobic protein of 901 amino acids (M(r), 92,871) was identified. The amino acid sequence at the amino terminus of the predicted protein exhibited properties characteristic of a typical leader peptide. Five 12-amino-acid units that shared between 33 and 67% sequence identity were noted within the central domain of the protein. Each unit contained the sequence Ser-X-Asp-X-Gly-X-Thr-Trp, which is conserved among other bacterial and trypanosoma sp. sialidases. Thus, the A. viscosus T14V nanH gene and the other prokaryotic and eukaryotic sialidase genes evolved from a common ancestor. Southern hybridization analyses under conditions of high stringency revealed the existence of DNA sequences homologous to A. viscosus T14V nanH in the genomes of 18 strains of five Actinomyces species that expressed various levels of sialidase activity. The data demonstrate that the sialidase genes from divergent groups of Actinomyces spp. are highly conserved.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio 78284
| |
Collapse
|
22
|
Ebisu S, Nakae H, Fukuhara H, Okada H. The mechanisms of Eikenella corrodens aggregation by salivary glycoprotein and the effect of the glycoprotein on oral bacterial aggregation. J Periodontal Res 1992; 27:615-22. [PMID: 1460548 DOI: 10.1111/j.1600-0765.1992.tb01745.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanism of aggregation of Eikenella corrodens 1073 with E. corrodens aggregating factor (EcAF) which was purified from submandibular-sublingual (SM-SL) saliva was investigated. Heating (100 degrees C, 10 minutes) or protease treatment of E. corrodens cells abolished the aggregating activity. The aggregation was inhibited by adding N-acetyl-D-galactosamine (GalNAc) and saccharides which contain a galactose residue at the non-reducing end. The aggregating activity was sensitive to EDTA and was restored by Ca2+ but not by Mn2+ or Mg2+. Neuraminidase treatment of EcAF increased their ability to aggregate. E. corrodens, suggesting that the sialic acids on EcAF interfere with aggregation. These data suggest that the aggregation of E. corrodens 1073 with EcAF is mediated by specific interactions between a bacterial cell surface lectin-like substance and a complementary GalNAc-like receptor. EcAF also aggregated 16 strains of oral bacteria including periodontopathic bacteria such as Porphyromonas (Bacteroides) gingivalis 381 and Actinobacillus actinomycetemcomitans ATCC29522; however, those aggregations were not inhibited by GalNAc. Therefore, EcAF appears to have more than two types of bacterial binding site and plays important roles in accumulation of dental plaque by forming a complex network of plaque bacteria including periodontopathic strains.
Collapse
Affiliation(s)
- S Ebisu
- Department of Conservative Dentistry, Tokushima University, School of Dentistry, Japan
| | | | | | | |
Collapse
|
23
|
Hiratsuka K, Abiko Y, Hayakawa M, Ito T, Sasahara H, Takiguchi H. Role of Porphyromonas gingivalis 40-kDa outer membrane protein in the aggregation of P. gingivalis vesicles and Actinomyces viscosus. Arch Oral Biol 1992; 37:717-24. [PMID: 1329700 DOI: 10.1016/0003-9969(92)90078-m] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Porphyromonas gingivalis, an important pathogen in periodontitis, produces extracellular vesicles that aggregate with Actinomyces viscosus cells. A 40-kDa outer membrane protein (OMP)-coding gene from P. gingivalis was cloned and the protein was found to be localized in these vesicles. The recombinant 40-kDa OMP did not show aggregation activity. However, affinity-purified antibody against the recombinant protein significantly inhibited aggregation of P. gingivalis vesicles with A. viscosus cells. The antibody also inhibited cellular coaggregation of several strains of P. gingivalis with A. viscosus cells, but not with other periodontal pathogens. Moreover, aggregation of A. viscosus cells with P. gingivalis vesicles was inhibited in a dose-dependent manner by pre-treatment of the A. viscosus cells with the recombinant protein. These findings suggest that the 40-kDa OMP may be an important aggregation factor of P. gingivalis.
Collapse
Affiliation(s)
- K Hiratsuka
- Department of Biochemistry, Nihon University School of Dentistry, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Strömberg N, Borén T, Carlén A, Olsson J. Salivary receptors for GalNAc beta-sensitive adherence of Actinomyces spp.: evidence for heterogeneous GalNAc beta and proline-rich protein receptor properties. Infect Immun 1992; 60:3278-86. [PMID: 1322372 PMCID: PMC257312 DOI: 10.1128/iai.60.8.3278-3286.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The receptors for GalNAc beta 1-3Gal alpha Oethyl (GalNAc beta)-sensitive adherence of Actinomyces strains to salivary pellicles were investigated. Parotid and submaxillary saliva from one individual was size fractionated and utilized in hydroxyapatite adherence assays with Actinomyces naeslundii 12104 and A. viscosus 19246 and LY7 with and without GalNAc beta. Three parotid salivary fractions, the high-molecular-weight, acidic proline-rich protein (PRP), and statherin fractions, promote GalNAc beta-sensitive adherence of strain 12104, whereas only the high-molecular-weight fraction of submaxillary saliva promotes such adherence. In contrast, strain LY7, possessing a variant GalNAc beta specificity, shows GalNAc beta-sensitive adherence to the leading and trailing regions of the submaxillary PRP fractions but less distinct adherence to the parotid and submaxillary high-molecular-weight fractions. In addition, the PRP and statherin fractions promote adherence of strains LY7 and 19246 that is not inhibited by GalNAc beta. However, whereas strain LY7 binds more strongly to the PRP fraction than to the statherin fraction, strain 19246 binds preferentially to the statherin fractions of parotid and submaxillary saliva. These salivary protein fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunostained to detect glycosylated proteins. The different salivary receptor properties are paralleled by different glycosylation patterns. The variable GalNAc beta specificities may have evolved to match different salivary glycosylation patterns, and PRP and statherin binding properties seem to be heterogeneous among the Actinomyces strains.
Collapse
Affiliation(s)
- N Strömberg
- Department of Cardiology, Faculty of Odontology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
25
|
Nesbitt WE, Beem JE, Leung KP, Clark WB. Isolation and characterization of Actinomyces viscosus mutants defective in binding salivary proline-rich proteins. Infect Immun 1992; 60:1095-100. [PMID: 1347286 PMCID: PMC257599 DOI: 10.1128/iai.60.3.1095-1100.1992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have provided evidence for human salivary proline-rich proteins (PRPs) serving as potential receptors in the acquired pellicle for Actinomyces viscosus type 1 fimbriae. We report here the isolation of mutants derived from A. viscosus T14V-J1 which are defective in binding to PRPs partially purified from parotid gland saliva. Mutagenesis with ethyl methanesulfonate preceded enrichment for cells nonreactive with PRPs by successive adsorptions with PRP-treated latex beads. Screening was accomplished by random selection of 250 isolated colonies from each of four enrichment cycles and reaction with PRP-treated latex beads in microtiter plates. Two mutants of independent origin were examined for adherence to hydroxyapatite treated with either PRPs, proline-rich glycoproteins, deglycosylated proline-rich glycoproteins, or whole saliva. Additional surface properties that were examined included agglutination with polyclonal antisera to type 1 and type 2 fimbriae, agglutination by a monoclonal antibody to type 1 fimbriae that inhibits adherence of the parent strain to saliva-treated hydroxyapatite, the ability to bind monoclonal antibody to the type 1 fimbrial subunit, and lactose-reversible coaggregation with Streptococcus sanguis 34. Both mutants exhibited reduced binding to hydroxyapatite treated with whole saliva or salivary protein preparations but were still capable of reaction with antiserum to type 1 and type 2 fimbriae. In addition, these mutants possessed the ability to bind monoclonal antibody to the type 1 fimbrial subunit in amounts comparable to the amount bound by the parent strain but were not agglutinated by the adherence-inhibiting monoclonal antibody. When considered with previously published data, these results suggest that an adhesive molecule is probably associated with type 1 fimbriae and allows for the interaction of A. viscosus with constituents in the salivary pellicle.
Collapse
Affiliation(s)
- W E Nesbitt
- Periodontal Disease Research Center, College of Dentistry, University of Florida, Gainesville 32610
| | | | | | | |
Collapse
|
26
|
Abstract
A genomic library of Actinomyces viscosus T14V DNA in lambda gt11 was screened for expression of neuraminidase activities. Four recombinant clones were detected that gave blue fluorescence upon incubation with a fluorogenic substrate, 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Of these, two were identical, and all of the neuraminidase-positive clones shared a common 3.4-kbp DNA region. Expression of the enzyme activities in Escherichia coli carrying the cloned DNA was independent of the lacZ promoter of the vector. Maxicell analysis revealed that the 3.4-kbp DNA insert directed synthesis of a protein with an apparent molecular mass of 100,000 Da. The protein from cell extracts of E. coli clones migrated as a single band that stained for enzyme activity after electrophoresis in a nondissociating polyacrylamide gel. Moreover, human erythrocytes incubated previously with cell lysates from neuraminidase-positive E. coli were hemagglutinated by Actinomyces spp. The enzyme expressed by E. coli was active on substrates containing alpha-2,3 and alpha-2,6 ketosidic linked sialyl residues. Similar substrate specificities were obtained for both the extracellular and cell-associated neuraminidases from A. viscosus T14V. The 3.4-kbp insert hybridized to DNA fragments in a Southern blot containing A. viscosus T14V chromosomal DNA that had been digested with various restriction endonucleases. Data from hybridization studies show that A. viscosus T14V contains a single copy of the neuraminidase gene.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio 78284
| | | |
Collapse
|
27
|
Holt SC, Bramanti TE. Factors in virulence expression and their role in periodontal disease pathogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1991; 2:177-281. [PMID: 1912148 DOI: 10.1177/10454411910020020301] [Citation(s) in RCA: 265] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The classic progression of the development of periodontitis with its associated formation of an inflammatory lesion is characterized by a highly reproducible microbiological progression of a Gram-positive microbiota to a highly pathogenic Gram-negative one. While this Gram-negative microbiota is estimated to consist of at least 300 different microbial species, it appears to consist of a very limited number of microbial species that are involved in the destruction of periodontal diseases. Among these "putative periodontopathic species" are members of the genera Porphyromonas, Bacteroides, Fusobacterium, Wolinella, Actinobacillus, Capnocytophaga, and Eikenella. While members of the genera Actinomyces and Streptococcus may not be directly involved in the microbial progression, these species do appear to be essential to the construction of the network of microbial species that comprise both the subgingival plaque matrix. The temporal fluctuation (emergence/disappearance) of members of this microbiota from the developing lesion appears to depend upon the physical interaction of the periodontal pocket inhabitants, as well as the utilization of the metabolic end-products of the respective species intimately involved in the disease progression. A concerted action of the end-products of prokaryotic metabolism and the destruction of host tissues through the action of a large number of excreted proteolytic enzymes from several of these periodontopathogens contribute directly to the periodontal disease process.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S C Holt
- Department of Periodontics, University of Texas Health Science Center, San Antonio 78284-7894
| | | |
Collapse
|
28
|
Li J, Ellen RP, Hoover CI, Felton JR. Association of proteases of Porphyromonas (Bacteroides) gingivalis with its adhesion to Actinomyces viscosus. J Dent Res 1991; 70:82-6. [PMID: 1846887 DOI: 10.1177/00220345910700021501] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
P. gingivalis adheres to A. viscosus on mineral surfaces mimicking teeth. To study whether P. gingivalis proteases contribute to its binding, mutants of P. gingivalis deficient in proteases were compared with their parent strain and a P. gingivalis-type strain for their adherence to A. viscosus on saliva-coated hydroxyapatite by manipulating a radio-isotope binding assay. Adherence of P. gingivalis 2561 to A. viscosus was studied by tests of the effects of incubation temperature and known inhibitors or promoters of proteases. Controls were handled by the assay run in PBS buffer at 22 degrees C. Two mutants deficient in trypsin-like protease were found to be deficient in adherence (% attachment relative to control: 3.2 +/- 0.1% and 11.2 +/- 0.4%), while a collagenase-deficient mutant had an adherence score (51.6 +/- 8.4) closer to that of the parent strain (75.6 +/- 7.2%). Heating P. gingivalis at 70 degrees C decreased its subsequent adherence at 22 degrees C by 80%. Adherence decreased by 60% when the assay was run at 4 degrees C, but increased by 70% at 37 degrees C. Reducing agents (dithiothreitol, cysteine, and mercaptoethanol) enhanced P. gingivalis adherence by 50 to 60%. Protease inhibitors (BZMD, SBTI, TPCK, TLCK, CMPS, PMSF) decreased adherence by 10 to 50%. Also, Hg2+ and Zn2+ decreased adherence by 30 to 50%, and arginine decreased it by 50%. Most of these effects on P. gingivalis adherence were statistically significant (p less than 0.05). Analysis of these data suggests that P. gingivalis proteases may contribute to the cohesion of P. gingivalis and A. viscosus.
Collapse
Affiliation(s)
- J Li
- Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Cooperative complement- and bacterial lectin-initiated bactericidal activity of polymorphonuclear leukocytes. Infect Immun 1991; 59:216-21. [PMID: 1987035 PMCID: PMC257729 DOI: 10.1128/iai.59.1.216-221.1991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recognition of glycoconjugate receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc-reactive fimbrial lectin of Actinomyces viscosus T14V has previously been shown to initiate lactose-inhibitable phagocytosis and subsequent killing of the bacteria. Although a mutant lacking fimbriae, A. viscosus 147, was not destroyed by this mechanism, the present studies demonstrate that the deposition of C3 fragments on this bacterium by anti-A. viscosus 147 immunoglobulin M (IgM) prior to incubation with either untreated or sialidase-treated PMNs correlated with a reduction in viability of approximately 2 log10. This bactericidal activity was unaffected by lactose. A similar decrease in viability was observed following the addition of untreated PMNs to A. viscosus T14V preincubated with anti-A. viscosus 147 IgM and complement, conditions favorable for C3- but not lectin-mediated bactericidal activity. Neither IgM nor complement alone was opsonic for either strain, and individually they did not alter killing of A. viscosus T14V by sialidase-treated PMNs or inhibition of this bactericidal activity by lactose. The number of viable A. viscosus T14V cells was decreased by approximately 3.5 log10 when the bacteria were incubated with IgM and complement prior to the addition of sialidase-treated PMNs, and lactose only partially inhibited this response. Thus, the PMN-dependent bactericidal activity initiated by the participation of both the actinomyces lectin and complement was significantly greater than that achieved by either ligand alone.
Collapse
|
30
|
Strömberg N, Karlsson KA. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38584-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Leung KP, Nesbitt WE, Fischlschweiger W, Hay DI, Clark WB. Binding of colloidal gold-labeled salivary proline-rich proteins to Actinomyces viscosus type 1 fimbriae. Infect Immun 1990; 58:1986-91. [PMID: 1971260 PMCID: PMC258754 DOI: 10.1128/iai.58.6.1986-1991.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Salivary proline-rich proteins (PRPs), which were purified from parotid saliva, were adsorbed onto 15-nm-diameter gold particles to visualize specific binding of the salivary molecules to Actinomyces viscosus type 1 fimbriae. Negatively stained preparations incubated with PRP-gold conjugates but not bovine serum albumin-gold complexes bound specifically to bacteria possessing type 1 fimbriae, A. viscosus T14V-J1 and 5519. Binding of the PRP-gold probes to strains deficient in type 1 fimbriae, i.e., strains 5951 (type 2 fimbriae only) and 147 (no fimbriae), was negligible.
Collapse
Affiliation(s)
- K P Leung
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville 32610
| | | | | | | | | |
Collapse
|
32
|
Leung KP, Fukushima H, Sagawa H, Walker CB, Clark WB. Surface appendages, hemagglutination, and adherence to human epithelial cells of Bacteroides intermedius. ORAL MICROBIOLOGY AND IMMUNOLOGY 1989; 4:204-10. [PMID: 2640314 DOI: 10.1111/j.1399-302x.1989.tb00253.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Four types of morphologically distinct surface appendages were found on oral strains of Bacteroides intermedius. These appendages, designated as A, B, C, and D, were different in size, with diameters of 1-2 nm, 12 nm, 8 nm, and 5 nm, respectively. Twenty different strains were examined by electron microscopy and 5 strains, 5, 17, 27, 113, and 25611, were selected to be representative of the different appendages encountered. Type A appendages were thin filaments peritrichously arranged on the cell surface and were associated mainly with Strains 5, 113, and ATCC 25611. Type B appendages were present on all 5 strains but these structures were scarce (i.e., less than or equal to 3 per organism). Type C appendages were associated exclusively with Strain 17. Type D appendages were present mainly on Strain 27. Hemagglutination activity of these organisms and their ability to adhere to human buccal epithelial cells were also tested. Strain 17, which possessed Type C appendage (uncommon to the other strains), agglutinated strongly with 5 different species of erythrocytes and adhered avidly to human buccal epithelial cells. The other strains, possessing different types of appendages, showed considerable variation in hemagglutination activity and adherence properties. Correlation between these surface appendages and adherent functions was speculated.
Collapse
|
33
|
Weiss EI, London J, Kolenbrander PE, Andersen RN. Fimbria-associated adhesin of Bacteroides loeschei that recognizes receptors on procaryotic and eucaryotic cells. Infect Immun 1989; 57:2912-3. [PMID: 2569449 PMCID: PMC313548 DOI: 10.1128/iai.57.9.2912-2913.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inhibition studies with a set of adhesin-specific monoclonal antibodies and various sugars revealed that a fimbria-associated adhesin of Bacteroides loeschei recognizes receptors on both procaryotic and eucaryotic cells. These interactions permit this bacterium to attach to both types of cells, producing coaggregates in the presence of strains of Streptococcus sanguis and hemagglutination in the presence of neuraminidase-treated human erythrocytes.
Collapse
Affiliation(s)
- E I Weiss
- Goldschlager School of Dental Medicine, Tel Aviv University, Ramat-Aviv, Israel
| | | | | | | |
Collapse
|
34
|
Okuda K, Ono M, Kato T. Neuraminidase-enhanced attachment of Bacteroides intermedius to human erythrocytes and buccal epithelial cells. Infect Immun 1989; 57:1635-7. [PMID: 2707865 PMCID: PMC313328 DOI: 10.1128/iai.57.5.1635-1637.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacteroides intermedius strains strongly agglutinated only neuraminidase-treated erythrocytes. The neuraminidase-dependent hemagglutinating activity of B. intermedius was abolished by heating or treating with protease. The adherence of these microorganisms to human buccal epithelial cells was enhanced by neuraminidase pretreatment of the cells (P less than 0.01).
Collapse
Affiliation(s)
- K Okuda
- Department of Microbiology, Tokyo Dental College, Chiba City, Japan
| | | | | |
Collapse
|
35
|
Ellen RP, Buivids IA, Simardone JR. Actinomyces viscosus fibril antigens detected by immunogold electron microscopy. Infect Immun 1989; 57:1327-31. [PMID: 2564376 PMCID: PMC313271 DOI: 10.1128/iai.57.4.1327-1331.1989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Strains representing taxonomic clusters of Actinomyces viscosus and Actinomyces naeslundii were studied by indirect immunogold electron microscopy with either monospecific anti-type 1 and anti-type 2 rabbit antibodies or species-specific monoclonal antibodies. The monoclonal and anti-type 2 antibodies localized on long fibrils, whereas the anti-type 1 antibodies mostly localized close to the cell body or on shorter appendages.
Collapse
Affiliation(s)
- R P Ellen
- Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Moncla BJ, Braham P. Detection of sialidase (neuraminidase) activity in Actinomyces species by using 2'-(4-methylumbelliferyl)alpha-D-N-acetylneuraminic acid in a filter paper spot test. J Clin Microbiol 1989; 27:182-4. [PMID: 2643620 PMCID: PMC267258 DOI: 10.1128/jcm.27.1.182-184.1989] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A rapid method for the detection of acetylneuraminyl hydrolase, EC 3.2.1.18 (sialidase or neuraminidase), was developed by using 2'-(4-methylumbelliferyl)alpha-D-N-acetylneuraminic acid as substrate in a filter paper spot test. The method was compared to conventional assays that use 2'-(4-methylumbelliferyl)alpha-D-N-acetylneuraminic acid and bovine submaxillary mucin and was found to be in excellent agreement. Organisms with greater than 10 U of enzyme activity (in nanomoles per minute per milligram of cell protein) gave positive reactions, while those with 2.7 to 9.0 U gave only weak reactions. Isolates with less than 2.7 U of activity were detected upon prolonged incubation. Sialidase activity was detected in 79% of 71 clinical isolates representing five species of Actinomyces. The percentage of sialidase-producing isolates of each species varied considerably: Actinomyces israelii, 63%; A. meyeri, 73%; A. naeslundii, 85%; A. odontolyticus, 73%; and A. viscosus, 100%.
Collapse
Affiliation(s)
- B J Moncla
- Department of Oral Biology, University of Washington, Seattle 98195
| | | |
Collapse
|
37
|
Neeser JR, Chambaz A, Del Vedovo S, Prigent MJ, Guggenheim B. Specific and nonspecific inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystyrene by caseinoglycopeptide derivatives. Infect Immun 1988; 56:3201-8. [PMID: 3182077 PMCID: PMC259725 DOI: 10.1128/iai.56.12.3201-3208.1988] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Various caseinoglycopeptide derivatives prepared from mammalian milk were evaluated as inhibitors of hemagglutinations mediated by Actinomyces viscosus Ny1, Streptococcus sanguis OMZ9, and, for comparative purposes, plant lectins from Arachis hypogaea and Bauhinia purpurea. It was found that recognition of the beta-D-galactose-(1----3)-2-acetamido-2-deoxy-D-galactose carbohydrate chain by Actinomyces viscosus Ny1 organisms and Arachis hypogaea and B. purpurea agglutinins had similar structural requirements; in all cases, the desialylated bovine caseinoglycomacropeptide, on which several units of the above mentioned disaccharide are clustered, behaved as the most potent hemagglutination inhibitor. By contrast, none of the preparations tested inhibited erythrocyte agglutination by S. sanguis OMZ9. Thus, the desialylated bovine caseinoglycomacropeptide acts as a potent and specific inhibitor of oral Actinomyces adhesion to cell membranes (a soft surface) and could be used as a probe for the study of recognition mechanisms mediated by Actinomyces galactose-binding lectins. During the present study, both native and desialylated variants of the same bovine glycomacropeptide also totally prevented the adhesion of Actinomyces viscosus Ny1, S. sanguis OMZ9, and S. mutans OMZ176 to polystyrene surfaces. Comparative evaluations of various structurally different compounds gave the following results. Neither mono- nor disaccharides related to caseinoglycopeptide carbohydrates prevented adhesion; highly positively or negatively charged polypeptides and polysaccharides were either not or only moderately active. Besides these glycomacropeptides, an inhibitory activity was also exhibited by other mucin-type glycoproteins carrying short O-linked carbohydrate chains (including bovine submaxillary mucin), polyethylene glycol, and bovine serum albumin. Consequently, caseinoglycopeptide prevention of oral bacterial adhesion to polystyrene tubes (a hard surface) takes place with no species specificity and can be compared to nonspecific inhibition exhibited by various polymers with very different structural characteristics.
Collapse
Affiliation(s)
- J R Neeser
- Nestlé Research Centre, Nestec Limited, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Childs WC, Gibbons RJ. Use of Percoll density gradients for studying the attachment of bacteria to oral epithelial cells. J Dent Res 1988; 67:826-30. [PMID: 3163351 DOI: 10.1177/00220345880670050601] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An assay for studying the attachment of bacteria to oral epithelial cells has been developed which utilizes Percoll density gradient centrifugation to separate bacteria and epithelial cells. 3H-thymidine-labeled bacteria were incubated with suspensions of buccal epithelial cells in microtitration plates for 2.5 hr at 35 degrees C. The mixtures were then subjected to density gradient centrifugation in 50% Percoll. Epithelial cells with attached bacteria formed a band near the top of the tube, while unattached bacteria formed a band near the bottom. The epithelial cells were collected on membrane filters, and the number of attached bacteria was determined by scintillation counting. Binding of S. mitis C5 was found to increase with time, and equilibrium was attained within two hr. Saturation of available binding sites occurred when 10(7) S. mitis cells were incubated with 1.5 x 10(4) buccal epithelial cells. The numbers of streptococci which attached as determined with this assay were in good agreement with values obtained by direct microscopic counts. Adsorption of S. mitis C5 cells was adequately described by a Langmuir isotherm (correlation coefficient 0.998). This permitted calculation of estimates of the number of binding sites and the affinity of the organism. The assay proved reliable even when as few as 1000 epithelial cells were used. Treating the epithelial cells with neuraminidase or trypsin significantly decreased the number of S. mitis C5 cells which attached. In contrast, binding of A. naeslundii 12104 to neuraminidase-treated cells was increased, and attachment of B. gingivalis 381 was also enhanced, especially to epithelial cells which had been treated with trypsin.
Collapse
Affiliation(s)
- W C Childs
- Forsyth Dental Center, Boston, Massachusetts 02115
| | | |
Collapse
|
39
|
Yamazaki Y, Ebisu S, Okada H. Partial purification of a bacterial lectinlike substance from Eikenella corrodens. Infect Immun 1988; 56:191-6. [PMID: 3121509 PMCID: PMC259255 DOI: 10.1128/iai.56.1.191-196.1988] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A bacterial lectinlike substance, which is considered to participate in the adherence of Eikenella corrodens to various host cells, was purified from E. corrodens cells. The substance was extracted in 1% Triton X-100 with sonication from the cell envelope of E. corrodens 1073 and partially purified by galactosamine affinity chromatography and gel filtration chromatography based on its hemagglutination (HA) activity. The lectinlike substance was purified about 256-fold as evaluated by its specific HA activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified lectinlike substance (PPL) produced a single protein band of large molecular weight when it was applied to the gel without the addition of beta-mercaptoethanol and heating. Chemical analysis showed that PPL contained 14.4 micrograms of hexose per 100 micrograms of protein and that it did not contain muramic acid, glucosamine, or 2,6-diaminopimelic acid, which are characteristic of peptidoglycans. The HA activity of PPL was inhibited by EDTA but restored by adding Ca2+. The HA activity was remarkably inhibited by sugars containing N-acetyl-D-galactosamine and D-galactose. These results indicate that the lectinlike substance on the E. corrodens cells is an essential factor for the adherence to host cells.
Collapse
Affiliation(s)
- Y Yamazaki
- Department of Endodontology and Periodontology, Osaka University, Faculty of Dentistry, Japan
| | | | | |
Collapse
|
40
|
Sandberg AL, Mudrick LL, Cisar JO, Metcalf JA, Malech HL. Stimulation of superoxide and lactoferrin release from polymorphonuclear leukocytes by the type 2 fimbrial lectin of Actinomyces viscosus T14V. Infect Immun 1988; 56:267-9. [PMID: 2891619 PMCID: PMC259267 DOI: 10.1128/iai.56.1.267-269.1988] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polymorphonuclear leukocyte (PMN)-dependent destruction of Actinomyces viscosus T14V is initiated by the recognition of galactose-containing receptors on sialidase-treated PMNs by the lectin associated with the type 2 fimbriae of these bacteria. A. viscosus T14V also stimulates the respiratory burst in PMNs as well as the release of contents of the secondary granules, as determined by the presence of lactoferrin in the culture supernatants. Under the experimental conditions employed, these bacteria do not induce the release of beta-glucuronidase, a constituent of primary granules. None of the three PMN responses studied occurs in cultures containing a mutant of A. viscosus T14V that lacks fimbriae. Activation of the PMNs is mediated by the lectin associated with the type 2 fimbriae, as demonstrated by the finding that beta-linked galactosides inhibit stimulation of the respiratory burst. Thus, the interaction of the Actinomyces fimbrial lectin with its complementary receptors on PMNs results not only in killing of these bacteria but also in the release of reactive oxygen intermediates and enzymes that may be detrimental to surrounding host tissues.
Collapse
Affiliation(s)
- A L Sandberg
- Laboratory of Microbiology and Immunology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
41
|
Miki Y, Ebisu S, Okada H. The adherence of Eikenella corrodens to guinea pig macrophages in the absence and presence of anti-bacterial antibodies. J Periodontal Res 1987; 22:359-65. [PMID: 2961867 DOI: 10.1111/j.1600-0765.1987.tb01599.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Brennan MJ, Joralmon RA, Cisar JO, Sandberg AL. Binding of Actinomyces naeslundii to glycosphingolipids. Infect Immun 1987; 55:487-9. [PMID: 3804448 PMCID: PMC260356 DOI: 10.1128/iai.55.2.487-489.1987] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The type 2 fimbrial lectin of Actinomyces naeslundii WVU45 mediated the binding of this bacterium to glycosphingolipids chromatographed on thin-layer silica gel plates. Radioiodinated bacteria attached to GM1, GD1b, and globoside. After chromatograms were treated with sialidase, the bacteria also bound to GD1a and GT1b. The actinomyces lectin apparently recognized the Gal beta 3GalNAc termini of these gangliosides and the GalNAc beta 3Gal terminus of globoside, suggesting that glycolipids containing these sequences may serve as receptors for A. naeslundii on mammalian cells.
Collapse
|
43
|
Sandberg AL, Mudrick LL, Cisar JO, Brennan MJ, Mergenhagen SE, Vatter AE. Type 2 fimbrial lectin-mediated phagocytosis of oral Actinomyces spp. by polymorphonuclear leukocytes. Infect Immun 1986; 54:472-6. [PMID: 2876961 PMCID: PMC260185 DOI: 10.1128/iai.54.2.472-476.1986] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phagocytosis of Actinomyces viscosus T14V and A. naeslundii WVU45 by human polymorphonuclear leukocytes in the absence of antibody or complement was mediated by the lectin associated with the type 2 fimbriae of these bacteria. This effect was markedly enhanced by exogenous sialidase, an enzyme also secreted by these actinomyces. Since sialidase treatment of the bacteria did not result in increased phagocytosis, this enzyme presumably acts by unmasking receptors for the fimbrial lectin on phagocytic cells. The viability of A. viscosus T14V, which possesses type 1 and type 2 fimbriae (1+ 2+), and A. naeslundii WVU45, which possesses only type 2 fimbriae (2+), was decreased by at least 98% following incubation with polymorphonuclear leukocytes in the presence of sialidase. Entirely analogous findings were obtained with a 1- 2+ mutant of A. viscosus T14V. In contrast, the phagocytosis of 1+ 2- and 1- 2- mutants of A. viscosus T14V and a 2- mutant of A. naeslundii WVU45 was minimal or absent. Lactose and beta-methylgalactoside inhibited the destruction of the bacteria, whereas cellobiose and alpha-methylgalactoside were ineffective. Thus, the type 2 fimbriae of the oral actinomyces recognize galactose-containing receptors on polymorphonuclear leukocytes which have been exposed by the removal of sialic acid, an interaction that is followed by internalization and subsequent killing of the bacteria.
Collapse
|
44
|
Brennan MJ, Cisar JO, Sandberg AL. A 160-kilodalton epithelial cell surface glycoprotein recognized by plant lectins that inhibit the adherence of Actinomyces naeslundii. Infect Immun 1986; 52:840-5. [PMID: 2872166 PMCID: PMC260936 DOI: 10.1128/iai.52.3.840-845.1986] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adherence of Actinomyces naeslundii to human epithelial (KB) cells is mediated by the interaction of a fimbrial lectin on this oral bacterium with epithelial cell receptors exposed by sialidase. The D-galactose- and N-acetyl-D-galactosamine-reactive plant lectins from peanut and from Bauhinia purpurea inhibit this interaction. This report describes the partial purification and characterization of a 160-kilodalton (kDa) cell surface glycoprotein which is the principal receptor for these lectins. Radioiodinated lectins detected a band of 160 kDa on sialidase-treated Western blots of epithelial cell extracts but did not detect bands on nontreated filters. However, wheat germ agglutinin was reactive with the 160-kDa band on filters that were not treated with sialidase, suggesting that this lectin recognizes the sialic acid residues of this molecule. The 160-kDa component was partially purified from n-octylglucoside extracts of the epithelial cells by wheat germ agglutinin affinity chromatography. This molecule was metabolically labeled with D-[14C]glucosamine and labeled at the cell surface by lactoperoxidase-catalyzed iodination or periodate oxidation followed by sodium borotritide reduction. Incubation of epithelial cells with sialidase before extraction resulted in the loss of the 160-kDa band and the appearance of a band at 200 kDa which was directly reactive with 125I-labeled peanut agglutinin. These results indicate that the 160-kDa glycoprotein on the surface of the epithelial cell serves as a receptor for the agglutinins from the peanut and B. purpurea and presumably the fimbrial lectin of actinomyces.
Collapse
|
45
|
Abaas S. Binding of lectins to Streptococcus mitis cells. Studies of the specificity of ligand mediated aggregation. ACTA PATHOLOGICA, MICROBIOLOGICA, ET IMMUNOLOGICA SCANDINAVICA. SECTION B, MICROBIOLOGY 1985; 93:15-20. [PMID: 3920867 DOI: 10.1111/j.1699-0463.1985.tb02845.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that the mechanism of spontaneous aggregation of Streptococcus mitis ATCC 903 depends on a lectin-ligand type interaction. To study the specificity of the ligand, the binding of a number of lectins of different sugar specificities to the surface of untreated, trypsin and beta-galactosidase-treated bacteria was studied by assessing aggregation. Untreated bacteria were rapidly aggregated by concanavalin A (Con A), wheat-germ agglutination (WGA) and helix pomatia lectin (HPL). Other lectins tested, e.g. peanut agglutinin and soy bean lectin, did not induce aggregation. Lectin-induced aggregation was distinguished from the spontaneous one by recording the course of aggregation and inhibition of lectins by specific sugars. Trypsin-treated bacteria lost their ability for both spontaneous and lectin-induced aggregation. beta-galactosidase-treated bacteria were aggregated only in the presence of Con A and HPL. The bacteria retained their ability for spontaneous aggregation after removal of lectins and inhibitory sugars. These findings suggest that ligand is of glycoprotein nature, since it was removed from the bacterial surface by treatment with trypsin, as shown by the inability of treated cells for both spontaneous and lectin-induced aggregation. Partial degradation of the carbohydrate part of the ligand is indicated by the ability of beta-galactosidase-treated bacteria to aggregate in the presence of Con A and HPL.
Collapse
|
46
|
Heeb MJ, Marini AM, Gabriel O. Factors affecting binding of galacto ligands to Actinomyces viscosus lectin. Infect Immun 1985; 47:61-7. [PMID: 2578122 PMCID: PMC261466 DOI: 10.1128/iai.47.1.61-67.1985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The specificity requirements for the binding of Actinomyces viscosus T14V were examined by testing simple sugars, oligopeptides, and glycoproteins as inhibitors of the aggregation of glycoprotein-coated latex beads and washed A. viscosus cells. Lactose was the most inhibitory simple sugar; D-fucose and D-galactose were equally inhibitory, methyl-alpha-D-fucoside was slightly less inhibitory, and L-fucose and raffinose were not inhibitory. The concentration of galactose residues required for 50% inhibition of aggregation was 15 times higher in the form of lactose than in the form of asialoglycoprotein, suggesting an enhancement of lectin binding when galactose residues are clustered. However, when the inhibitory power of bi-, tri-, and tetraantennary asialooligopeptides of alpha 1-acid glycoprotein was compared with that of equivalent concentrations of galactose in the form of lactose, the biantennary form was slightly less effective than lactose, the triantennary form was approximately as effective as lactose, and the tetraantennary form was slightly more effective than lactose. Steric interference may prevent this type of clustering from enhancing lectin binding. The O-linked asialooligopeptides of asialofetuin were 10 times more inhibitory than an equivalent concentration of galactose in the form of N-linked asialooligopeptides. Thus, galactose beta-1----3 linked to N-acetylgalactosamine exhibits greater specificity for the A. viscosus lectin than does galactose beta-1----4 linked to N-acetylglucosamine. These results, taken together with previously reported data, are consistent with a lectin of low affinity, binding enhanced by multivalency, and specificity for beta-linked galactose.
Collapse
|
47
|
Cisar JO, David VA, Curl SH, Vatter AE. Exclusive presence of lactose-sensitive fimbriae on a typical strain (WVU45) of Actinomyces naeslundii. Infect Immun 1984; 46:453-8. [PMID: 6150007 PMCID: PMC261554 DOI: 10.1128/iai.46.2.453-458.1984] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lactose-sensitive fimbriae were identified as the only fimbriae present on Actinomyces naeslundii WVU45 (ATCC 12104). A single antigen reactive with antiserum against WVU45 cells was detected by cross immunoelectrophoresis of isolated fimbriae, and a monospecific antiserum against this antigen reacted with all fimbriae observed on the bacterial surface by immunoelectron microscopy. Moreover, the loss of one cell surface antigen by a spontaneous mutant of A. naeslundii WVU45 (WVU45M), isolated by its failure to react with a monospecific antibody against the fimbriae, was associated with the loss of all fimbriae. The functional involvement of the fimbriae in lactose-sensitive bacterial adherence was demonstrated by the ability of WVU45, but not WVU45M, cells to agglutinate neuraminidase-treated erythrocytes and by the lactose-sensitive hemagglutinating activity of immune complexes formed with isolated fimbriae and monospecific antibody. Bacterial agglutination assays with different monospecific antibodies revealed an antigenic similarity between the fimbriae of A. naeslundii WVU45 and the lactose-sensitive fimbriae (type 2) of Actinomyces viscosus T14V. In contrast, cross-reactivity was not observed between the WVU45 fimbriae and type 1 fimbriae, the structures involved in lactose-resistant adherence of strain T14V to saliva-treated hydroxyapatite. Functional differences between the fimbriae of A. naeslundii and A. viscosus strains may be correlated with well-established differences in the in vivo distribution of these organisms: namely, the preference of typical A. naeslundii for epithelial surfaces and of A. viscosus for tooth surfaces.
Collapse
|
48
|
Brennan MJ, Cisar JO, Vatter AE, Sandberg AL. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells. Infect Immun 1984; 46:459-64. [PMID: 6150008 PMCID: PMC261555 DOI: 10.1128/iai.46.2.459-464.1984] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adherence of Actinomyces naeslundii WVU45 to monolayer cultures of human epithelial cell lines was mediated by the lactose-sensitive fimbriae (type 2) of strain WVU45. The attachment of Actinomyces viscosus T14V, which has both types 1 and 2 fimbriae, was approximately half that of A. naeslundii, and only minimal attachment of A. naeslundii and A. viscosus mutants lacking type 2 fimbriae was detected. The adherence of strain WVU45 was enhanced two- to threefold by neuraminidase treatment of the epithelial cells. The Fab fragments of antibodies which recognize the type 2 fimbriae inhibited the adherence of A. naeslundii WVU45 to the epithelial cells. The bacterial interaction with epithelial cells was inhibited by lactose, methyl-beta-D-galactoside, and N-acetyl-D-galactosamine, but not by methyl-alpha-D-galactoside, cellobiose, N-acetyl-D-glucosamine, L-fucose, or D-mannose. To further characterize the epithelial cell receptors for the bacterial lectin, we utilized several plant and invertebrate lectins as potential inhibitors of bacterial adherence. Lectins from Bauhinia purpurea and Arachis hypogaea which recognize N-acetyl-D-galactosamine, D-galactose, and D-galactose-beta-(1----3)-N-acetyl-D-galactosamine inhibited bacterial attachment, and binding of these lectins to epithelial cells was enhanced by the addition of neuraminidase. Lectins reacting with alpha-linked D-galactose, alpha-linked N-acetyl-D-galactosamine, D-mannose, or sialic acid were not inhibitory. Under similar assay conditions, adherence of a mannose-sensitive strain of Escherichia coli was inhibited by concanavalin A but not by the lectin from Bauhinia purpurea. These results indicate that certain plant lectins have specificities similar to that of the actinomyces fimbrial lectin and are, therefore, useful probes for identifying receptors on epithelial cells for certain bacteria.
Collapse
|
49
|
Abstract
The macromolecular surface components involved in intraspecific cell surface interactions of the green microalga Chlorella vulgaris and closely associated bacteria were investigated. The specific surface attachment between this alga and its associated bacteria is mediated by lectin-like macromolecules associated with the surfaces of these cells. The binding activity of these surface polymers was inhibited by specific simple sugars; this suggests the involvement of specific receptor-ligand binding sites on the interactive surfaces. Epifluorescent microscopic evaluation of bacteria-alga interactions in the presence and absence of the macromolecules that mediate these interactions showed that the glycoproteins active in these processes were specific to the microbial sources from which they were obtained. The demonstration and definition of the specificity of these interactions in mixed microbial populations may play an important role in our understanding of the dynamics of marine microbial populations in the sea.
Collapse
|
50
|
Komiyama K, Gibbons RJ. Interbacterial adherence between Actinomyces viscosus and strains of Streptococcus pyogenes, Streptococcus agalactiae, and Pseudomonas aeruginosa. Infect Immun 1984; 44:86-90. [PMID: 6423545 PMCID: PMC263473 DOI: 10.1128/iai.44.1.86-90.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Interbacterial adherence was sought between strains of Actinomyces viscosus indigenous to the human mouth and strains of Streptococcus pyogenes, Streptococcus agalactiae, and Pseudomonas aeruginosa. Six of nine strains of S. pyogenes, three of five strains of S. agalactiae, and two of four strains of P. aeruginosa were found to coaggregate with each of five strains of A. viscosus tested. Some coaggregation reactions were inhibited by 0.05 M lactose and were dependent upon heat- and protease-sensitive Actinomyces components. Such reactions appear to involve the galactosyl-binding adhesin previously described in type 2 fimbriae on A. viscosus. Other coaggregation reactions were dependent upon heat- and protease-sensitive components of the pathogen. That such pathogen strains possessed an adhesin(s) was further suggested by the observation that they agglutinated human erythrocytes. The ability of coaggregation-positive and -negative strains of S. pyogenes and S. agalactiae to adhere to Actinomyces-coated agarose beads was also studied. Coaggregation-positive streptococcal strains attached in higher numbers to the Actinomyces-coated beads than did strains which were coaggregation negative. Lactose (0.05 M) inhibited the attachment of those streptococcal strains which coaggregated with A. viscosus in a lactose-sensitive manner. The adherence of those streptococcal strains whose coaggregation appeared to depend upon the galactosyl-binding adhesin of A. viscosus was also reduced by components of human saliva. Crude sonic extracts of coaggregation-positive streptococci or of P. aeruginosa were also effective in aggregating Actinomyces cells. The effect of lactose and of salivary components on this extract-induced aggregation of Actinomyces cells generally paralleled that observed in other assays. The apparent prevalence and diversity of adherent reactions between the pathogens studied and indigenous strains of A. viscosus suggest that some may affect host susceptibility to these infectious agents.
Collapse
|