1
|
Yu J, Tang H, Chen Y, Wang Z, Huang W, Zhou T, Wen B, Wang C, Gu S, Ni J, Tao J, Wang D, Lu J, Xie Q, Yao YF. Salmonella utilizes L-arabinose to silence virulence gene expression for accelerated pathogen growth within the host. Gut Microbes 2025; 17:2467187. [PMID: 39954030 PMCID: PMC11834461 DOI: 10.1080/19490976.2025.2467187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/11/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Carbon source is an important nutrient for bacteria to sustain growth and often acts as a signal that modulates virulence expression. L-arabinose is produced by plants and plays an important role in regulating the global gene expression of bacteria. Previously, we have shown that L-arabinose induces a more severe systemic infection in Salmonella-infected mice with normal microbiota, but does not affect the disease progression in mice with microbiota depleted by antibiotic treatment. The underlying mechanism remains elusive. In this study, we demonstrate that L-arabinose represses the expression of Salmonella type III secretion system 1 (T3SS-1) genes by negatively regulating the activity of the cyclic 3' 5'-AMP (cAMP)-cAMP receptor protein (CRP) complex. The cAMP-CRP complex can activate ribosome-associated inhibitor A, encoded by yfiA, to maintain the stability of HilD, a key transcriptional regulator of T3SS-1. L-arabinose supplementation promotes Salmonella initial bloom in the antibiotic-pretreated mouse gut and ultimately compensates for reduced virulence within the host. These results decipher the molecular mechanism by which cAMP-CRP directs regulatory changes of virulence in response to L-arabinose in Salmonella. It further implies that Salmonella exploits L-arabinose both as a nutrient and a regulatory signal to maintain a balance between growth and virulence within the host.
Collapse
Affiliation(s)
- Jingchen Yu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yana Chen
- Department of Pediatrics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingjie Wen
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyue Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Gu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai Key Laboratory of Emergency Prevention, Shanghai, China
| |
Collapse
|
2
|
Johnson TJ, Flores-Figueroa C, Munoz-Aguayo J, Pinho G, Miller E. Persistence of vaccine origin Salmonella Typhimurium through the poultry production continuum, and development of a rapid typing scheme for their differentiation from wild type field isolates. Poult Sci 2024; 103:103707. [PMID: 38608390 PMCID: PMC11017335 DOI: 10.1016/j.psj.2024.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is one of the top Salmonella serovars annually linked to poultry production and corresponding human illnesses. Because of this, vaccination of commercial poultry against Salmonella Typhimurium has been a focal point in recent years. There are several commercially available Salmonella Typhimurium vaccines available for use in poultry production. Among these are modified live vaccines, including Poulvac ST (Zoetis), Megan Egg (AviPro), and Megan Vac 1 (AviPro). In this study, analyses of 27 field isolates of Salmonella Typhimurium from poultry sources indicated evidence for the persistence of some vaccine-origin strains through the commercial production cycle. Further analyses of 26,812 database isolates indicated vaccine-origin isolates are persisting frequently through processing, are present on retail meat products, and are even occasionally found in human patients. A novel polymerase chain reaction (PCR) was created and validated which enables simultaneous identification of Salmonella enterica sp., the Salmonella Typhimurium serovar, and differentiation of wild type Salmonella Typhimurium from live attenuated vaccines involving mutations in the cya/crp or aroA genes. The PCR was developed considering whole genome differences between the vaccines and wild type field isolates and was validated using different field isolates and recovered vaccine strains. This method enables poultry producers to rapidly determine if recovered field isolates have a vaccine origin.
Collapse
Affiliation(s)
- Timothy J Johnson
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN 55108, USA; University of Minnesota, Mid-Central Research and Outreach Center, Willmar, MN 56201, USA.
| | - Cristian Flores-Figueroa
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN 55108, USA; University of Minnesota, Mid-Central Research and Outreach Center, Willmar, MN 56201, USA
| | - Jeannette Munoz-Aguayo
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN 55108, USA; University of Minnesota, Mid-Central Research and Outreach Center, Willmar, MN 56201, USA
| | - Glenda Pinho
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN 55108, USA
| | - Elizabeth Miller
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN 55108, USA
| |
Collapse
|
3
|
Maurer JJ, Cheng Y, Pedroso A, Thompson KK, Akter S, Kwan T, Morota G, Kinstler S, Porwollik S, McClelland M, Escalante-Semerena JC, Lee MD. Peeling back the many layers of competitive exclusion. Front Microbiol 2024; 15:1342887. [PMID: 38591029 PMCID: PMC11000858 DOI: 10.3389/fmicb.2024.1342887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
Baby chicks administered a fecal transplant from adult chickens are resistant to Salmonella colonization by competitive exclusion. A two-pronged approach was used to investigate the mechanism of this process. First, Salmonella response to an exclusive (Salmonella competitive exclusion product, Aviguard®) or permissive microbial community (chicken cecal contents from colonized birds containing 7.85 Log10Salmonella genomes/gram) was assessed ex vivo using a S. typhimurium reporter strain with fluorescent YFP and CFP gene fusions to rrn and hilA operon, respectively. Second, cecal transcriptome analysis was used to assess the cecal communities' response to Salmonella in chickens with low (≤5.85 Log10 genomes/g) or high (≥6.00 Log10 genomes/g) Salmonella colonization. The ex vivo experiment revealed a reduction in Salmonella growth and hilA expression following co-culture with the exclusive community. The exclusive community also repressed Salmonella's SPI-1 virulence genes and LPS modification, while the anti-virulence/inflammatory gene avrA was upregulated. Salmonella transcriptome analysis revealed significant metabolic disparities in Salmonella grown with the two different communities. Propanediol utilization and vitamin B12 synthesis were central to Salmonella metabolism co-cultured with either community, and mutations in propanediol and vitamin B12 metabolism altered Salmonella growth in the exclusive community. There were significant differences in the cecal community's stress response to Salmonella colonization. Cecal community transcripts indicated that antimicrobials were central to the type of stress response detected in the low Salmonella abundance community, suggesting antagonism involved in Salmonella exclusion. This study indicates complex community interactions that modulate Salmonella metabolism and pathogenic behavior and reduce growth through antagonism may be key to exclusion.
Collapse
Affiliation(s)
- John J. Maurer
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ying Cheng
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Adriana Pedroso
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Kasey K. Thompson
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Shamima Akter
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Tiffany Kwan
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Gota Morota
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sydney Kinstler
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | | - Margie D. Lee
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
4
|
Liu Q, Ding J, Zhang X, Bian X, Li M, Chen J, Liu C, Chen X, Liu X, Chen Y, Zhang W, Lei M, Yuan H, Wen Y, Kong Q. Construction and characterization of Aeromonas hydrophila crp and fur deletion mutants and evaluation of its potential as live-attenuated vaccines in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109380. [PMID: 38244821 DOI: 10.1016/j.fsi.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Aeromonas hydrophila (A. hydrophila) is a typical zoonotic pathogenic bacterium that infects humans, animals, and fish. It has been reported that the Fur, a Fe2+ regulatory protein, and the Crp, a cAMP receptor protein, play important roles in bacterial virulence in many bacteria, but no research has been investigated on A. hydrophila. In this study, the Δfur and Δcrp mutant strains were constructed by the suicide plasmid method. These two mutant strains exhibited a slightly diminished bacterial growth and also were observed some alterations in the number of outer membrane proteins, and the disappearance of hemolysis in the Δcrp strain. Animal experiments of crucian carp showed that the Δfur and Δcrp mutant strains significantly decreased virulence compared to the wild-type strain, and both mutant strains were able to induce good immune responses by two kinds of administration routes of intraperitoneal immunization (i.p) and immersion immunization, and the protection rates through intraperitoneal injection of Δfur and Δcrp to crucian carp were as high as 83.3 % and 73.3 %, respectively, and immersion immunization route of Δfur and Δcrp to crucian carp provided protection as high as 40 % and 20 %, respectively. These two mutant strains showed abilities to induce changes in enzymatic activities of the non-specific enzymes SOD, LZM, AKP, and ACP in crucian carp. Together, these results indicated the Δfur and Δcrp mutants were safe and effective candidate vaccine strains, showing good protection against the wild-type A. hydrophila challenge.
Collapse
Affiliation(s)
- Qing Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China; Yibin Academy of Southwest University, Yibin, China.
| | - Jianjun Ding
- College of Veterinary Medicine, Southwest University, Chongqing, China; Yibin Academy of Southwest University, Yibin, China
| | - Xiaofen Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoping Bian
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengru Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jin Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chengying Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xin Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xinyu Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yaolin Chen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Wenjin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Meihong Lei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Haoxiang Yuan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yusong Wen
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Raccoursier M, Siceloff AT, Shariat NW. In silico and PCR Screening for a Live Attenuated Salmonella Typhimurium Vaccine Strain. Avian Dis 2024; 68:18-24. [PMID: 38687103 DOI: 10.1637/aviandiseases-d-23-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/10/2023] [Indexed: 05/02/2024]
Abstract
The application of live attenuated Salmonella Typhimurium vaccines has significantly helped control Salmonella in poultry products. Because the U.S. Department of Agriculture-Food Safety Inspection Service (USDA-FSIS) scores all Salmonella as positive, regardless of serovar, attenuated vaccine strains that are identified at processing contribute negatively toward Salmonella performance standards. This study was designed to determine the incidence of a live attenuated Salmonella serovar Typhimurium vaccine identified in broiler products by FSIS and to develop a PCR assay for screening of isolates. Salmonella Typhimurium short-read sequences from broiler samples uploaded to the National Center for Biotechnology Information (NCBI) Pathogen Detection database by the USDA-FSIS from 2016 to 2022 were downloaded and assembled. These were analyzed using the Basic Local Alignment Search Tool (BLAST) with a sequence unique to field strains, followed by a sequence unique to the vaccine strain. The PCR assays were developed against field and vaccine strains by targeting transposition events in the crp and cya genes and validated by screening Salmonella serovar Typhimurium isolates. Between 2016 and 2022, 1708 Salmonella Typhimurium isolates of chicken origin were found in the NCBI Pathogen Detection database, corresponding to 7.99% of all Salmonella identified. Of these, 104 (5.97%) were identified as the vaccine strain. The PCR assay differentiated field strains from the vaccine strain when applied to isolates and was also able to detect the vaccine strain from DNA isolated from mixed serovar overnight Salmonella enrichment cultures. Live attenuated Salmonella vaccines are a critical preharvest tool for Salmonella control and are widely used in industry. With forthcoming regulations that will likely focus on Salmonella Typhimurium, along with other serovars, there is a need to distinguish between isolates belonging to the vaccine strain and those that are responsible for causing human illness.
Collapse
Affiliation(s)
- Maurice Raccoursier
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602
| | - Amy T Siceloff
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602
| | - Nikki W Shariat
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602,
| |
Collapse
|
6
|
Abstract
This review is focused on describing and analyzing means by which Salmonella enterica serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present Salmonella-induced disease in poultry and to prevent Salmonella colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated. Practical considerations are also discussed in hope of facilitating means to move lab-proven successful vaccination procedures and vaccine candidates to the marketplace to benefit the poultry industry.
Collapse
Affiliation(s)
- Roy Curtiss
- College of Veterinary Medicine, University of Florida, Gainesville, Florida,
| |
Collapse
|
7
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
8
|
Liu G, Li C, Liao S, Guo A, Wu B, Chen H. C500 variants conveying complete mucosal immunity against fatal infections of pigs with Salmonella enterica serovar Choleraesuis C78-1 or F18+ Shiga toxin-producing Escherichia coli. Front Microbiol 2023; 14:1210358. [PMID: 37779705 PMCID: PMC10536267 DOI: 10.3389/fmicb.2023.1210358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli.
Collapse
Affiliation(s)
- Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Chunqi Li
- College of Animal Science, Yangtze University, Jingzhou, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Shengrong Liao
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Multiple immunodominant O-epitopes co-expression in live attenuated Salmonella serovars induce cross-protective immune responses against S. Paratyphi A, S. Typhimurium and S. Enteritidis. PLoS Negl Trop Dis 2022; 16:e0010866. [PMID: 36228043 PMCID: PMC9595534 DOI: 10.1371/journal.pntd.0010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/25/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Salmonella enterica subsp. enterica (S. enterica) is a significant public health concern and is estimated to cause more than 300,000 deaths annually. Nowadays, the vaccines available for human Salmonellosis prevention are all targeting just one serovar, i.e., S. Typhi, leaving a huge potential risk of Salmonella disease epidemiology change. In this study, we explored the strategy of multiple immunodominant O-epitopes co-expression in S. enterica serovars and evaluated their immunogenicity to induce cross-immune responses and cross-protections against S. Paratyphi A, S. Typhimurium and S. Enteritidis. We found that nucleotide sugar precursors CDP-Abe and CDP-Par (or CDP-Tyv) could be utilized by S. enterica serovars simultaneously, exhibiting O2&O4 (or O4&O9) double immunodominant O-serotypes without obvious growth defects. More importantly, a triple immunodominant O2&O4&O9 O-serotypes could be achieved in S. Typhimurium by improving the substrate pool of CDP-Par, glycosyltransferase WbaV and flippase Wzx via a dual-plasmid overexpressing system. Through immunization in a murine model, we found that double or triple O-serotypes live attenuated vaccine candidates could induce significantly higher heterologous serovar-specific antibodies than their wild-type parent strain. Meanwhile, the bacterial agglutination, serum bactericidal assays and protection efficacy experiments had all shown that these elicited serum antibodies are cross-reactive and cross-protective. Our work highlights the potential of developing a new type of live attenuated Salmonella vaccines against S. Paratyphi A, S. Typhimurium and S. Enteritidis simultaneously.
Collapse
|
10
|
Aganja RP, Sivasankar C, Hewawaduge C, Lee JH. Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems. Vet Res 2022; 53:76. [PMID: 36183131 PMCID: PMC9526937 DOI: 10.1186/s13567-022-01096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
In the present study, two prospective Salmonella delivery strains, JOL2782 and JOL2837, were developed by gene deletions of lon and cpxR, which are related to cellular adhesion and intracellular survival. Additionally, sifA deletion was introduced for JOL2782, which confers immune susceptibility and improves antigen delivery. Similarly, the rfaL deletion and lpxE substitution for pagL were accomplished in JOL2837 to reduce virulence and endotoxicity. Thus, enhanced adhesion and invasion and reduced intracellular survival were attained. Furthermore, aspartic acid auxotrophic (asd) was deleted to impose Darwinian selection on retention of the foreign antigen-expressing plasmid. Both delivery strains induced sufficient cytokine expression, but the level was significantly lower than that of the wild-type strain; the lowest cytokine expression was induced by the JOL2837 strain, indicating reduced endotoxicity. In parallel, IgG production was significantly enhanced by both delivery strains. Thus, the innate and adaptive immunogenicity of the strains was ensured. The environmental safety of these strains was ascertained through faecal dissemination assays. The nonpathogenicity of these strains to the host was confirmed by body weight monitoring, survival assays, and morphological and histological assessments of the vital organs. The in vitro assay in murine and human cell lines and in vivo safety assessments in mice suggest that these novel strains possess safety, invasiveness, and immunogenicity, making them ideal delivery strains. Overall, the results clearly showed that strain JOL2782 with sifA deletion had higher invasiveness, demonstrating superior vaccine deliverability, while JOL2837 with lpxE substitution for pagL and rfaL deletion had outstanding safety potential with drastically abridged endotoxicity.
Collapse
Affiliation(s)
- Ram Prasad Aganja
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Chandran Sivasankar
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Chamith Hewawaduge
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
11
|
Bhowmik BK, Kumar A, Gangaiah D. Transcriptome Analyses of Chicken Primary Macrophages Infected With Attenuated Salmonella Typhimurium Mutants. Front Microbiol 2022; 13:857378. [PMID: 35591991 PMCID: PMC9111174 DOI: 10.3389/fmicb.2022.857378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is one of the most common foodborne illnesses in the United States and worldwide, with nearly one-third of the cases attributed to contaminated eggs and poultry products. Vaccination has proven to be an effective strategy to reduce Salmonella load in poultry. The Salmonella Typhimurium Δcrp-cya (MeganVac1) strain is the most commonly used vaccine in the United States; however, the mechanisms of virulence attenuation and host response to this vaccine strain are poorly understood. Here, we profiled the invasion and intracellular survival phenotypes of Δcrp-cya and its derivatives (lacking key genes required for intra-macrophage survival) in HD11 macrophages and the transcriptome response in primary chicken macrophages using RNA-seq. Compared to the parent strain UK1, all the mutant strains were highly defective in metabolizing carbon sources related to the TCA cycle and had greater doubling times in macrophage-simulating conditions. Compared to UK1, the majority of the mutants were attenuated for invasion and intra-macrophage survival. Compared to Δcrp-cya, while derivatives lacking phoPQ, ompR-envZ, feoABC and sifA were highly attenuated for invasion and intracellular survival within macrophages, derivatives lacking ssrAB, SPI13, SPI2, mgtRBC, sitABCD, sopF, sseJ and sspH2 showed increased ability to invade and survive within macrophages. Transcriptome analyses of macrophages infected with UK1, Δcrp-cya and its derivatives lacking phoPQ, sifA and sopF demonstrated that, compared to uninfected macrophages, 138, 148, 153, 155 and 142 genes were differentially expressed in these strains, respectively. Similar changes in gene expression were observed in macrophages infected with these strains; the upregulated genes belonged to innate immune response and host defense and the downregulated genes belonged to various metabolic pathways. Together, these data provide novel insights on the relative phenotypes and early response of macrophages to the vaccine strain and its derivatives. The Δcrp-cya derivatives could facilitate development of next-generation vaccines with improved safety.
Collapse
Affiliation(s)
| | - Arvind Kumar
- Discovery Bacteriology and Microbiome, Elanco Animal Health Inc., Greenfield, IN, United States
| | - Dharanesh Gangaiah
- Discovery Bacteriology and Microbiome, Elanco Animal Health Inc., Greenfield, IN, United States
| |
Collapse
|
12
|
Mallick S, Mishra N, Barik BK, Negi VD. Salmonella Typhimurium fepB negatively regulates C. elegans behavioral plasticity. J Infect 2022; 84:518-530. [PMID: 34990707 DOI: 10.1016/j.jinf.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Dauer is an alternative developmental stage of Caenorhabditis elegans (C. elegans) that gives survival benefits under unfavorable environmental conditions. Our study aims to decipher C. elegans dauer larvae development upon Salmonella Typhimurium infection and how the bacterial gene regulating the worm's behavioural plasticity for better survival. METHODS Age-synchronized L4 C. elegans worms were infected with Salmonella Typhimurium 14028s (WT-STM) strain and mutant strains to check the dauer larvae development using 1% SDS. Besides, bacterial load in animals' gut, pharyngeal pumping rate and viability were checked. Worm's immune genes (e.g., ilys-3, lys-7, pmk-1, abf-2, clec-60) and dauer regulatory genes (e.g., daf-7, daf-11, daf-12, daf-16, daf-3) were checked by performing qRT-PCR under infection conditions. RESULTS We found that deletion of the fepB gene in S. Typhimurium strain became less pathogenic with reduced flagellar motility and biofilm-forming ability. Besides, there was decreased bacterial burden in the worm's gut with no damage to their pharynx. The fepB mutant strain was also able to enhance the immune responses for better survival of worms. Infection with mutant strain could activate dauer signaling via the TGF-β pathway leading to a significant increase in dauer formation than WT-STM infection. CONCLUSION Our study indicated that the bacteria act as a food source for the growth of C. elegans and development and can act as a signal that might be playing an essential role in regulating the host physiology for their survival. Such a study can help us in understanding the complex host-pathogen interaction benefiting pathogen in host dissemination.
Collapse
Affiliation(s)
- Swarupa Mallick
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Neha Mishra
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Bedanta Kumar Barik
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
13
|
Jung B, Park S, Kim E, Yoon H, Hahn TW. Salmonella Typhimurium lacking phoBR as a live vaccine candidate against poultry infection. Vet Microbiol 2022; 266:109342. [PMID: 35063827 DOI: 10.1016/j.vetmic.2022.109342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Salmonella enterica serovar Typhimurium, with a broad-host range, is a predominant cause of non-typhoidal Salmonella infection in humans, and the infectious source is highly associated with food animals, especially poultry. Considering the horizontal transmission of S. Typhimurium from farm animals to humans, vaccination has been strongly recommended in industrial animals. In an effort to eradicate S. Typhimurium in poultry farms, a live candidate vaccine strain lacking the phoBR genes, which encode the PhoB/PhoR two-component regulatory system responsible for cellular phosphate signaling, was evaluated in mice and chickens. Lack of the phoBR genes promoted overgrowth of intracellular Salmonella. However, notably, in BALB/c mouse models, the ΔphoBR mutant showed attenuated virulence and instead, provided protection against infection with virulent Salmonella, thereby clearing out Salmonella in the spleen and liver. Accordingly, immunization with the ΔphoBR mutant increased immunoglobulin (Ig)G and IgM antibody responses and also tended to increase the IgG2a/IgG1 ratio, which is indicative of T helper (Th)1-mediated cellular immunity. In chicken challenge models, immunization with the ΔphoBR mutant significantly boosted the production of IgG and IgM antibodies after the second vaccination. The vaccinated chickens ceased fecal shedding of challenged Salmonella earlier than the non-vaccinated ones and showed no Salmonella in their caecum and ileum. These results demonstrate the potential of the S. Typhimurium ΔphoBR mutant as a vaccine in chickens.
Collapse
Affiliation(s)
- Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
14
|
Debnath N, Thakur M, Khushboo, Negi NP, Gautam V, Kumar Yadav A, Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol Bioeng 2021; 119:327-346. [PMID: 34755343 DOI: 10.1002/bit.27987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neelam P Negi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
15
|
Abstract
The steadfast advance of the synthetic biology field has enabled scientists to use genetically engineered cells, instead of small molecules or biologics, as the basis for the development of novel therapeutics. Cells endowed with synthetic gene circuits can control the localization, timing and dosage of therapeutic activities in response to specific disease biomarkers and thus represent a powerful new weapon in the fight against disease. Here, we conceptualize how synthetic biology approaches can be applied to programme living cells with therapeutic functions and discuss the advantages that they offer over conventional therapies in terms of flexibility, specificity and predictability, as well as challenges for their development. We present notable advances in the creation of engineered cells that harbour synthetic gene circuits capable of biological sensing and computation of signals derived from intracellular or extracellular biomarkers. We categorize and describe these developments based on the cell scaffold (human or microbial) and the site at which the engineered cell exerts its therapeutic function within its human host. The design of cell-based therapeutics with synthetic biology is a rapidly growing strategy in medicine that holds great promise for the development of effective treatments for a wide variety of human diseases.
Collapse
|
16
|
Jiang C, Ren J, Zhang X, Li C, Hu Y, Cao H, Zeng W, Li Z, He Q. Deletion of the crp gene affects the virulence and the activation of the NF-κB and MAPK signaling pathways in PK-15 and iPAM cells derived from G. parasuis serovar 5. Vet Microbiol 2021; 261:109198. [PMID: 34411995 DOI: 10.1016/j.vetmic.2021.109198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023]
Abstract
Glaesserella parasuis can cause serious systemic disease (Glasser's disease) that is characterized by fibrinous polyserositis, polyarthritis and meningitis. cAMP receptor protein (CRP) is among the well studied global regulator proteins which could modulate the virulence of many pathogenic bacteria. Our previous study showed that the crp gene was involved in the regulation of growth rate, biofilm formation, stress tolerance, serum resistance, and iron utilization in G. parasuis. However, whether the crp gene could regulate the virulence of G. parasuis has not been analyzed previously. In this study, it was observed that the crp gene in G. parasuis serovar 5 (HPS5) was involved in regulating the adhesion and invasion abilities on iPAM cells, and the mRNA expression of various virulence-related factors. It also possessed the ability to induce the mRNA expression of pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8 and TNF-α), promoted the activation of the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in porcine kidney epithelial (PK-15) and immortalized swine pulmonary alveolar macrophage (iPAM) cells, and contributed to the pathogenicity and organs colonization in mice. As compared with the wild type, both the expression of virulence-related factors in the crp mutant strain and its ability to induce the mRNA expression of pro-inflammatory cytokines, as well as the expression of phospho-p65 and phospho-p38 in PK-15 and iPAM cells was reduced significantly. Furthermore, it also found that the virulence of crp mutant was significantly reduced as compared with the wild type. However, the abilities of adherence and invasion on iPAM cell of Δcrp strain was noted to be significantly enhanced as compared with the wild type. These results suggested that the crp gene deletion could effectively attenuate the virulence of G. parasuis, and crp gene may act as an important potential target for the formulation of a novel vaccine against G. parasuis.
Collapse
Affiliation(s)
- Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaofang Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Cao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
17
|
Ante VM, Farris LC, Saputra EP, Hall AJ, O'Bier NS, Oliva Chávez AS, Marconi RT, Lybecker MC, Hyde JA. The Borrelia burgdorferi Adenylate Cyclase, CyaB, Is Important for Virulence Factor Production and Mammalian Infection. Front Microbiol 2021; 12:676192. [PMID: 34113333 PMCID: PMC8186283 DOI: 10.3389/fmicb.2021.676192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, traverses through vastly distinct environments between the tick vector and the multiple phases of the mammalian infection that requires genetic adaptation for the progression of pathogenesis. Borrelial gene expression is highly responsive to changes in specific environmental signals that initiate the RpoS regulon for mammalian adaptation, but the mechanism(s) for direct detection of environmental cues has yet to be identified. Secondary messenger cyclic adenosine monophosphate (cAMP) produced by adenylate cyclase is responsive to environmental signals, such as carbon source and pH, in many bacterial pathogens to promote virulence by altering gene regulation. B. burgdorferi encodes a single non-toxin class IV adenylate cyclase (bb0723, cyaB). This study investigates cyaB expression along with its influence on borrelial virulence regulation and mammalian infectivity. Expression of cyaB was specifically induced with co-incubation of mammalian host cells that was not observed with cultivated tick cells suggesting that cyaB expression is influenced by cellular factor(s) unique to mammalian cell lines. The 3′ end of cyaB also encodes a small RNA, SR0623, in the same orientation that overlaps with bb0722. The differential processing of cyaB and SR0623 transcripts may alter the ability to influence function in the form of virulence determinant regulation and infectivity. Two independent cyaB deletion B31 strains were generated in 5A4-NP1 and ML23 backgrounds and complemented with the cyaB ORF alone that truncates SR0623, cyaB with intact SR0623, or cyaB with a mutagenized full-length SR0623 to evaluate the influence on transcriptional and posttranscriptional regulation of borrelial virulence factors and infectivity. In the absence of cyaB, the expression and production of ospC was significantly reduced, while the protein levels for BosR and DbpA were substantially lower than parental strains. Infectivity studies with both independent cyaB mutants demonstrated an attenuated phenotype with reduced colonization of tissues during early disseminated infection. This work suggests that B. burgdorferi utilizes cyaB and potentially cAMP as a regulatory pathway to modulate borrelial gene expression and protein production to promote borrelial virulence and dissemination in the mammalian host.
Collapse
Affiliation(s)
- Vanessa M Ante
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Lauren C Farris
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Elizabeth P Saputra
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Allie J Hall
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Meghan C Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
18
|
Belias AM, Sbodio A, Truchado P, Weller D, Pinzon J, Skots M, Allende A, Munther D, Suslow T, Wiedmann M, Ivanek R. Effect of Weather on the Die-Off of Escherichia coli and Attenuated Salmonella enterica Serovar Typhimurium on Preharvest Leafy Greens following Irrigation with Contaminated Water. Appl Environ Microbiol 2020; 86:e00899-20. [PMID: 32591379 PMCID: PMC7440809 DOI: 10.1128/aem.00899-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
The Food Safety Modernization Act (FSMA) includes a time-to-harvest interval following the application of noncompliant water to preharvest produce to allow for microbial die-off. However, additional scientific evidence is needed to support this rule. This study aimed to determine the impact of weather on the die-off rate of Escherichia coli and Salmonella on spinach and lettuce under field conditions. Standardized, replicated field trials were conducted in California, New York, and Spain over 2 years. Baby spinach and lettuce were grown and inoculated with an ∼104-CFU/ml cocktail of E. coli and attenuated Salmonella Leaf samples were collected at 7 time points (0 to 96 h) following inoculation; E. coli and Salmonella were enumerated. The associations of die-off with study design factors (location, produce type, and bacteria) and weather were assessed using log-linear and biphasic segmented log-linear regression. A segmented log-linear model best fit die-off on inoculated leaves in most cases, with a greater variation in the segment 1 die-off rate across trials (-0.46 [95% confidence interval {95% CI}, -0.52, -0.41] to -6.99 [95% CI, -7.38, -6.59] log10 die-off/day) than in the segment 2 die-off rate (0.28 [95% CI, -0.20, 0.77] to -1.00 [95% CI, -1.16, -0.85] log10 die-off/day). A lower relative humidity was associated with a faster segment 1 die-off and an earlier breakpoint (the time when segment 1 die-off rate switches to the segment 2 rate). Relative humidity was also found to be associated with whether die-off would comply with FSMA's specified die-off rate of -0.5 log10 die-off/day.IMPORTANCE The log-linear die-off rate proposed by FSMA is not always appropriate, as the die-off rates of foodborne bacterial pathogens and specified agricultural water quality indicator organisms appear to commonly follow a biphasic pattern with an initial rapid decline followed by a period of tailing. While we observed substantial variation in the net culturable population levels of Salmonella and E. coli at each time point, die-off rate and FSMA compliance (i.e., at least a 2 log10 die-off over 4 days) appear to be impacted by produce type, bacteria, and weather; die-off on lettuce tended to be faster than that on spinach, die-off of E. coli tended to be faster than that of attenuated Salmonella, and die-off tended to become faster as relative humidity decreased. Thus, the use of a single die-off rate for estimating time-to-harvest intervals across different weather conditions, produce types, and bacteria should be revised.
Collapse
Affiliation(s)
| | - Adrian Sbodio
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Pilar Truchado
- Department of Food Science and Technology, CEBAS-CSIC (Spanish National Research Council), Murcia, Spain
| | - Daniel Weller
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Janneth Pinzon
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Mariya Skots
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Ana Allende
- Department of Food Science and Technology, CEBAS-CSIC (Spanish National Research Council), Murcia, Spain
| | - Daniel Munther
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Trevor Suslow
- Department of Plant Sciences, University of California, Davis, California, USA
- Produce Marketing Association, Newark, Delaware, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, New York, USA
| |
Collapse
|
19
|
Phenotype, Virulence and Immunogenicity of Edwardsiella piscicida Cyclic AMP Receptor Protein (Crp) Mutants in Catfish Host. Microorganisms 2020; 8:microorganisms8040517. [PMID: 32260465 PMCID: PMC7232391 DOI: 10.3390/microorganisms8040517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
Edwardsiella piscicida, a facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis that causes significant economic loses in the aquaculture industry. cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. Here we characterize the crp gene and report the effect of a crp deletion in E. piscicida. The crp-deficient mutant lost the capacity to utilize maltose, and showed significantly reduced motility due to the lack of flagella synthesis. We further constructed a ΔPcrp mutant to support that the phenotype above was caused by the crp deletion. Evidence obtained in fish serum killing assay and competitive infection assay strongly indicated that the inactivation of crp impaired the ability of E. piscicida to evade host immune clearance. More importantly, the virulence of the crp mutant was attenuated in both zebrafish and channel catfish, with reductions in mortality rates. In the end, we found that crp mutant could confer immune protection against E. piscicida infection to zebrafish and channel catfish, indicating its potential as a live attenuated vaccine.
Collapse
|
20
|
Kingsbury JM, Thom K, Erskine H, Olsen L, Soboleva T. Prevalence and Genetic Analysis of Salmonella enterica from a Cross-Sectional Survey of the New Zealand Egg Production Environment. J Food Prot 2019; 82:2201-2214. [PMID: 31742446 DOI: 10.4315/0362-028x.jfp-19-159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological evidence suggests that Salmonella on New Zealand eggs is not an important pathway for human salmonellosis. However, robust nationally representative data for Salmonella contamination of eggs is not available to support this. To better understand the exposure of New Zealand commercial eggs to Salmonella, a cross-sectional survey collected data on prevalence and serotypes of Salmonella in the feed, laying sheds (feces, dust, and boot or manure belt swabs), and packhouses (egg contact surfaces) of New Zealand commercial egg layer farms. Salmonella was not detected on 16 of 28 surveyed farms, and 4 farms had only one positive sample. Of the 43 (13.3%) of 323 Salmonella-positive samples, dust samples had the highest prevalence (19 of 67, 28.4%), followed by boot or manure belt swabs (11 of 67, 16.4%), feces (7 of 67, 10.4%), packhouse egg contact surfaces (5 of 87, 5.7%), and feed (1 of 33, 3.0%). A significantly higher prevalence was from caged (33 of 75, 44.0%; P < 0.001) compared with cage-free (4 of 126, 3.2%) systems, yet multiple practices differ between laying systems, which could influence prevalence. Salmonella-positive packhouse samples were only identified on the three farms with the highest laying shed prevalence, and isolates were genetically related (as determined by single nucleotide polymorphism analyses) suggesting cross-contamination between the laying shed and packhouse surfaces. Serotypes isolated included Salmonella Infantis, Salmonella Thompson, Salmonella Typhimurium, Salmonella Anatum, and Salmonella Mbandaka. Importantly, Salmonella Enteritidis, which causes egg-associated outbreaks internationally, was not isolated. Genomic comparisons of isolates supported the presence of a common contamination source in the shed and farm environments rather than multiple sporadic contamination events. This survey establishes a benchmark of Salmonella prevalence and types in the New Zealand egg production environment and provides a reference point for assessing the impact of changes to practices on Salmonella prevalence.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand (ORCID: https://orcid.org/0000-0002-5939-7255 [J.M.K.])
| | - Kirstin Thom
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand (ORCID: https://orcid.org/0000-0002-5939-7255 [J.M.K.])
| | - Hayley Erskine
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand (ORCID: https://orcid.org/0000-0002-5939-7255 [J.M.K.])
| | - Lisa Olsen
- New Zealand Food Safety, Ministry for Primary Industries, P.O. Box 2526, Wellington 6140, New Zealand
| | - Tanya Soboleva
- New Zealand Food Safety, Ministry for Primary Industries, P.O. Box 2526, Wellington 6140, New Zealand
| |
Collapse
|
21
|
Liu Q, Li P, Luo H, Curtiss R, Kong Q. Attenuated Salmonella Typhimurium expressing Salmonella Paratyphoid A O-antigen induces protective immune responses against two Salmonella strains. Virulence 2019; 10:82-96. [PMID: 31874075 PMCID: PMC6363073 DOI: 10.1080/21505594.2018.1559673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/26/2018] [Accepted: 12/09/2018] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica serovar Paratyphi A is the main causative agent of paratyphoid fever in many Asian countries. As paratyphoid is spread by the fecal-oral route, the most effective means of controlling S. Paratyphi A infection is through the availability of clean water supplies and working sanitation services. Because sanitation facilities improve slowly in these poor areas and antibiotic resistance is severe, the development of a safe and effective vaccine remains a priority for controlling the spread of paratyphoid disease. In this study, we investigated the strategy of heterologous O-antigenic O2 serotype (S. Paratyphi A characterized) conversion in S. Typhimurium to prevent paratyphoid infections. A series of S. Typhimurium mutants were constructed with replacement of abe, wzxB1 and wbaVB1 genes with respective prt-tyvA1, wzxA1 and wbaVA1, and the results showed that only three genes including prt, wbaVA1 and wzxA1 from S. Paratyphi A presence enable S. Typhimurium to sufficiently express O2 antigen polysaccharide. We also constructed a series of live attenuated S. Typhimurium vaccine candidates expressing heterologous O2 O-antigens, and a mouse model was used to evaluate the immunogenicity of live vaccines. ELISA data showed that vaccine candidates could induce a comparatively high level of S. Paratyphi A and/or S. Typhimurium LPS-specific IgG and IgA responses in murine model, and IgG2a levels were consistently higher than IgG1 levels. Moreover, the functional properties of serum antibodies were evaluated using in vitro C3 complement deposition and opsonophagocytic assays. Our work highlights the potential for developing S. Typhimurium live vaccines against S. Paratyphi A.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hongyan Luo
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Griffin HG. Attenuated Salmonella as live vaccines: prospects for multivalent poultry vaccines. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps19910014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hugh G. Griffin
- Division of Molecular Biology, AFRC Institute for Animal Health, Houghton Laboratory, Houghton, Huntingdon, Cambridgeshire, UK
| |
Collapse
|
23
|
Shivcharan S, Yadav J, Qadri A. Host lipid sensing promotes invasion of cells with pathogenic Salmonella. Sci Rep 2018; 8:15501. [PMID: 30341337 PMCID: PMC6195605 DOI: 10.1038/s41598-018-33319-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023] Open
Abstract
Pathogenic Salmonella species initiate infection by invading non-phagocytic intestinal epithelial cells (IEC). This invasion is brought about by a number of Salmonella invasion promoting molecules (Sips) encoded by the Salmonella Pathogenicity Island - 1 (SPI-1). Intracellular delivery of some of these molecules also brings about caspase-1 - mediated pyroptotic cell death that contributes to pathogen clearance. These molecules are secreted and delivered inside cells upon contact of Salmonella with one or more host signals whose identity has not been established. We show that lysophosphatidylcholine (LPC) released following activation of caspase-1 in Salmonella - infected cells and abundant in plasma amplifies production of Sips from this pathogen and promotes its cellular invasion. LPC brings about adenylate cyclase and cAMP receptor protein (CRP) - dependent de novo synthesis of SipC that is accompanied by its translocation to bacterial cell surface and release into the outside milieu. Treatment of Salmonella with LPC produces sustained induction of SPI - 1 transcriptional regulator, hilA. Our findings reveal a novel host lipid sensing - driven regulatory mechanism for Salmonella invasion.
Collapse
Affiliation(s)
- Sonia Shivcharan
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Yadav
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
24
|
Effective mucosal live attenuated Salmonella vaccine by deleting phosphotransferase system component genes ptsI and crr. J Microbiol 2018; 57:64-73. [PMID: 30552632 DOI: 10.1007/s12275-019-8416-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Abstract
Salmonella enterica is a major human pathogen that causes invasive non-typhoidal Salmonellosis (iNTS), resulting in significant morbidity and mortality. Although a number of pre-clinical and clinical studies have reported on the feasibility of developing a safe and effective vaccine against iNTS, there have been no licensed Salmonella vaccines available to protect against NTS strains. Vaccine formulations of highest priority for NTS are live attenuated vaccines, which can elicit effective induction of intestinal mucosal and intracellular bacteria-specific cell mediated immune responses. Since glucose is crucial for intracellular survival and replication in host cells, we constructed strains with mutations in components of the glucose uptake system, called the phosphotransferase system (PTS), and compared the relative virulence and immune responses in mice. In this study, we found that the strain with mutations in both ptsI and crr (KST0556) was the most attenuated strain among the tested strains, and proved to be highly effective in inducing a mucosal immune response that can protect against NTS infections in mice. Thus, we suggest here that KST0556 (ΔptsIΔcrr) is a potential live vaccine candidate for NTS, and may also be a candidate for a live delivery vector for heterologous antigens. Moreover, since PTS is a well-conserved glucose transporter system in both Gramnegative and Gram-positive bacteria, the ptsI and crr genes may be potential targets for creating live bacterial vectors or vaccine strains.
Collapse
|
25
|
Milanez GP, Werle CH, Amorim MR, Ribeiro RA, Tibo LHS, Roque-Barreira MC, Oliveira AF, Brocchi M. HU-Lacking Mutants of Salmonella enterica Enteritidis Are Highly Attenuated and Can Induce Protection in Murine Model of Infection. Front Microbiol 2018; 9:1780. [PMID: 30186241 PMCID: PMC6113365 DOI: 10.3389/fmicb.2018.01780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/16/2018] [Indexed: 01/31/2023] Open
Abstract
Salmonella enterica infection is a major public health concern worldwide, particularly when associated with other medical conditions. The serovars Typhimurium and Enteritidis are frequently associated with an invasive illness that primarily affects immunocompromised adults and children with HIV, malaria, or malnutrition. These serovars can also cause infections in a variety of animal hosts, and they are the most common isolates in poultry materials. Here, we described S. Enteritidis mutants, where hupA and hupB genes were deleted, and evaluated their potential use as live-attenuated vaccine candidates. In vitro, the mutants behaved like S. Typhimurium described previously, but there were some particularities in macrophage invasion and survival experiments. The virulence and immunogenicity of the mutant lacking both hupA and hupB (PT4ΔhupAB) were evaluated in a BALB/c mice model. This mutant was highly attenuated and could, therefore, be administrated at doses higher than 109 CFU/treatment, which was sufficient to protect all treated mice challenged with the wild-type parental strain with a single dose. Additionally, the PT4ΔhupAB strain induced production of specific IgG and IgA antibodies against Salmonella and TH1-related cytokines (IFN-γ and TNF-α), indicating that this strain can induce systemic and mucosal protection in the murine model. Additional studies are needed to better understand the mechanisms that lead to attenuation of the double-mutant PT4ΔhupAB and to elucidate the immune response induced by immunization using this strain. However, our data allow us to state that hupAB mutants could be potential candidates to be explore as live-attenuated vaccines.
Collapse
Affiliation(s)
- Guilherme P Milanez
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catierine H Werle
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mariene R Amorim
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Rafael A Ribeiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Luiz H S Tibo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Maria Cristina Roque-Barreira
- Department of Cellular and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Aline F Oliveira
- Department of Cellular and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
26
|
Lalsiamthara J, Kim JH, Lee JH. Engineering of a rough auxotrophic mutant Salmonella Typhimurium for effective delivery. Oncotarget 2018; 9:25441-25457. [PMID: 29876000 PMCID: PMC5986645 DOI: 10.18632/oncotarget.25192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/05/2018] [Indexed: 11/25/2022] Open
Abstract
Live Salmonella vaccine vectors offer a remarkable platform for delivering immunogens and therapeutic molecules by mimicking natural intracellular infections; however, pre-existing anti-vector immunity can impede effective deployment. Measures to alleviate pre-existing immunity include the use of heterologous vectors, development of highly attenuated strain enabling greater payload, removal of major immunoreactive components from the vector, and/or augmentation of delivered antigens via increased presentation in antigen presenting cells. Here we report a Salmonella Typhimurium (ST) vector-JOL1800 that embodies these requisite properties. JOL1800 is a highly attenuated, auxotrophic, and O-antigen deficient rough-mutant strain. Heterologous bacterial and viral antigens were expressed and delivered using JOL1800 in mice, irrespective of the inoculation route successful inductions of the mucosal and systemic humoral responses were observed. Compared to smooth LPS vector delivery, we observed an increased fraction of delivered-antigen presenting dendritic cells and a higher frequency of delivered-antigen displayed per macrophage. Upon post-priming with JOL1800 delivery, efficacy of the delivery was minimally affected as indicated by insignificant decrease in colonization, humoral and cellular responses. Our results show that the generated vector is capable of remote antigen delivery, manifests higher antigen presentation, is Differentiating Infected from Vaccinated Animals (DIVA) capable, evades normal pre-existing immunity, and can be deployed for effective delivery.
Collapse
Affiliation(s)
- Jonathan Lalsiamthara
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| | - Je Hyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| |
Collapse
|
27
|
Abstract
Our ability to generate bacterial strains with unique and increasingly complex functions has rapidly expanded in recent times. The capacity for DNA synthesis is increasing and costing less; new tools are being developed for fast, large-scale genetic manipulation; and more tested genetic parts are available for use, as is the knowledge of how to use them effectively. These advances promise to unlock an exciting array of 'smart' bacteria for clinical use but will also challenge scientists to better optimize preclinical testing regimes for early identification and validation of promising strains and strategies. Here, we review recent advances in the development and testing of engineered bacterial diagnostics and therapeutics. We highlight new technologies that will assist the development of more complex, robust and reliable engineered bacteria for future clinical applications, and we discuss approaches to more efficiently evaluate engineered strains throughout their preclinical development.
Collapse
|
28
|
Erickson MC, Liao JY, Webb CC, Habteselassie MY, Cannon JL. Inactivation of Escherichia coli O157:H7 and Salmonella deposited on gloves in a liquid state and subjected to drying conditions. Int J Food Microbiol 2018; 266:200-206. [PMID: 29232632 DOI: 10.1016/j.ijfoodmicro.2017.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/04/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
Abstract
Gloves are worn by workers harvesting ready-to-eat produce as a deterrent for contaminating the produce with enteric pathogens that may reside on their hands. As fields are not sterile environments, the probability for gloves to become contaminated still exists and therefore it is critical to understand the conditions that affect the survival of pathogens on gloves. Both Escherichia coli O157:H7 and Salmonella deposited on glove surfaces in a liquid state survived longer when the pathogen had been suspended in lettuce sap than when suspended in water. Despite this protection, pathogens deposited on clean single-use gloves were more likely to survive during drying than pathogens deposited on dirty gloves (a film of lettuce sap had been applied to the surface prior to pathogen application and soil had been ground into the gloves). Survival of both E. coli O157:H7 and Salmonella was biphasic with the greatest losses occurring during the first hour of drying followed by much slower losses in the ensuing hours. Pathogens grown in rich media (tryptic soy broth) versus minimal media (M9) as well as those cultured on solid agar versus liquid broth were also more likely to be resistant to desiccation when deposited onto gloves. Although survival of E. coli O157:H7 on nitrile gloves was in general greater than it was on latex gloves, the relative survival of Salmonella on the two glove types was inconsistent. Due to these inconsistencies, no one glove type is considered better than another in reducing the risk for contamination with enteric pathogens. In addition, the extended survival of what are generally referred to as stress-resistant pathogens suggests that gloves either be changed frequently during the day or washed in a disinfectant to reduce the risk of glove contamination that could otherwise contaminate product handled with the contaminated gloves.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA.
| | - Jye-Yin Liao
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | - Cathy C Webb
- Cape Securities, 1600 Pennsylvania Avenue, McDonough, GA 30253, USA
| | - Mussie Y Habteselassie
- Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | | |
Collapse
|
29
|
Bi-valent polysaccharides of Vi capsular and O9 O-antigen in attenuated Salmonella Typhimurium induce strong immune responses against these two antigens. NPJ Vaccines 2018; 3:1. [PMID: 29354293 PMCID: PMC5760606 DOI: 10.1038/s41541-017-0041-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 11/17/2022] Open
Abstract
Salmonella Typhi is the causative agent of typhoid fever in humans, responsible for approximately 21 million infections and 222,000 deaths globally each year. The current licensed vaccines provide moderate protection to recipients aged >2 years. Prior work on typhoid vaccines has focused on injectable Vi capsular polysaccharide or Vi–protein conjugates and live, oral attenuated S. Typhi vaccines to induce humoral anti-Vi antibodies, while the value and importance of anti-O9 antibodies is less well established. In this study, we constructed a S. Typhimurium strain that synthesizes Vi capsular antigen in vivo and produces the immunodominant O9-antigen polysaccharide instead of its native O4-antigen. The live recombinant attenuated S. Typhimurium mutants were effective in stimulating anti-Vi and anti-O9 antibodies in a mouse model, and the surface Vi capsular expression did not affect the immune responses against the O9 O-antigen polysaccharide. Moreover, the resulting anti-Vi and anti-O9 antibodies were effective at killing S. Typhi and other Salmonella spp. expressing Vi or O9 antigen polysaccharides and provided efficient protection against lethal challenge by S. Typhimurium and S. Enteritidis. Our work highlights the strategy of developing live attenuated S. Typhimurium vaccines to prevent typhoid fever by targeting the both Vi capsular and O9 O-polysaccharide antigens simultaneously. An attenuated strain of modified Salmonella Typhimurium bacteria could answer calls for a more effective typhoid fever vaccine. Current vaccines against typhoid-causing Salmonella Typhi are only moderately effective and potentially ineffective in children under 5 years. Qingke Kong and Roy Curtiss, leading a team of US and Chinese researchers, developed an attenuated version of the less-pathogenic S. Typhimurium that, when orally dosed in mice, expresses bacterial sugar-chain molecules known to elicit a strong immune response. In an in vitro assay, the antibodies produced by the mice in response to these molecules killed S. Typhi and related Salmonella bacteria with similar surface molecules, indicating a potential cross-protective ability. Further research would reveal whether this two-pronged live vaccine has the potential to protect in vivo, in live animals and in humans.
Collapse
|
30
|
Li P, Liu Q, Luo H, Liang K, Yi J, Luo Y, Hu Y, Han Y, Kong Q. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections. Front Immunol 2017; 8:1647. [PMID: 29255460 PMCID: PMC5722840 DOI: 10.3389/fimmu.2017.01647] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S. Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S. Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion–insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S. Typhimurium vaccine S738 (Δcrp Δcya) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD50) of wild-type S. Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S. Typhimurium, S. Enteritidis, and S. Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S. Typhimurium vaccines against NTS infections.
Collapse
Affiliation(s)
- Pei Li
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hongyan Luo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Luo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunlong Hu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Han
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
31
|
Valderrama K, Saravia M, Santander J. Phenotype of Aeromonas salmonicida sp. salmonicida cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants and its virulence in rainbow trout (Oncorhynchus mykiss). JOURNAL OF FISH DISEASES 2017; 40:1849-1856. [PMID: 28548689 DOI: 10.1111/jfd.12658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Precise deletion of genes related to virulence can be used as a strategy to produce attenuated bacterial vaccines. Here, we study the deletion of the cyclic-3',5'-adenosine monophosphate (cAMP) receptor protein (Crp) in Aeromonas salmonicida, the aetiologic agent of furunculosis in marine and freshwater fish. The Crp protein is a conserved global regulator, controlling physiology processes, like sugar utilization. Deletion of the crp gene has been utilized in live attenuated vaccines for mammals, birds and warm water fish. Here, we characterized the crp gene and reported the effect of a crp deletion in A. salmonicida virulent and non-virulent isolates. We found that A. salmonicida Δcrp was not able to utilize maltose and other sugars, and its generation time was similar to the wild type. A. salmonicida ∆crp showed a higher ability of cell invasion compared to the wild type. Fish challenges showed that A. salmonicida ∆crp is ~6 times attenuated in Oncorhynchus mykiss and conferred protective immunity against the intraperitoneal challenge with A. salmonicida wild type. We concluded that deletion of A. salmonicida crp influences sugar utilization, cell invasion and virulence. Deletion of crp in A. salmonicida could be considered as part of an effective strategy to develop immersion live attenuated vaccines against furunculosis.
Collapse
Affiliation(s)
- K Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
- PhD Program in Aquaculture, Universidad Católica del Norte, Coquimbo, Chile
| | - M Saravia
- Faculty of Sciences, Universidad Mayor, Huechuraba, Chile
| | - J Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
- Faculty of Sciences, Universidad Mayor, Huechuraba, Chile
| |
Collapse
|
32
|
Choe Y, Park J, Yu JE, Oh JI, Kim S, Kang HY. Edwardsiella piscicida lacking the cyclic AMP receptor protein (Crp) is avirulent and immunogenic in fish. FISH & SHELLFISH IMMUNOLOGY 2017; 68:243-250. [PMID: 28668485 DOI: 10.1016/j.fsi.2017.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Edwardsiella piscicida is a Gram-negative pathogen that generally causes lethal septicemia in marine and freshwater fish. We generated a E. piscicida CK216 Δcrp mutant to investigate various biological roles related to this organism, including pathogenesis. Lack of Crp in CK216 was demonstrated by immunoblotting using a Crp-specific antibody. Compared to the parental strain, the mutant exhibited changes in three biochemical phenotypes, including ornithine decarboxylation, citrate utilization, and H2S production. Complementation of crp deletion in trans rescued the phenotype of the parental strain. This study proved that hemolytic activity in E. piscicida is controlled by Crp. In addition, significantly reduced motility of E. piscicida CK216 was observed, which resulted from a lack of flagella synthesis. To examine the virulence in fish, E. piscicida cells were injected into the goldfish (Carassius auratus) via intraperitoneal route. The LD50 of CK216 was 9.25 × 108 CFU, while that of the CK108 parental strain was 9.24 × 105 CFU, attenuated 1000 fold in goldfish. Fish immunized with CK216 elicited IgM responses. Moreover, 80% of goldfish immunized with 1 × 106 CFU survived after administration of a lethal dose (1 × 107 CFU) of virulent E. piscicida CK41, suggesting the potential for E. piscicida CK216 to serve as a live attenuated vaccine in aquaculture.
Collapse
Affiliation(s)
- Yunjeong Choe
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Junmo Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Jong Earn Yu
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, South Korea
| | - Ho Young Kang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
33
|
Multiple Signals Govern Utilization of a Polysaccharide in the Gut Bacterium Bacteroides thetaiotaomicron. mBio 2016; 7:mBio.01342-16. [PMID: 27729509 PMCID: PMC5061871 DOI: 10.1128/mbio.01342-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The utilization of simple sugars is widespread across all domains of life. In contrast, the breakdown of complex carbohydrates is restricted to a subset of organisms. A regulatory paradigm for integration of complex polysaccharide breakdown with simple sugar utilization was established in the mammalian gut symbiont Bacteroides thetaiotaomicron, whereby sensing of monomeric fructose regulates catabolism of both fructose and polymeric fructans. We now report that a different regulatory paradigm governs utilization of monomeric arabinose and the arabinose polymer arabinan. We establish that (i) arabinan utilization genes are controlled by a transcriptional activator that responds to arabinan and by a transcriptional repressor that responds to arabinose, (ii) arabinose utilization genes are regulated directly by the arabinose-responding repressor but indirectly by the arabinan-responding activator, and (iii) activation of both arabinan and arabinose utilization genes requires a pleiotropic transcriptional regulator necessary for survival in the mammalian gut. Genomic analysis predicts that this paradigm is broadly applicable to the breakdown of other polysaccharides in both B. thetaiotaomicron and other gut Bacteroides spp. The uncovered mechanism enables regulation of polysaccharide utilization genes in response to both the polysaccharide and its breakdown products. Breakdown of complex polysaccharides derived from “dietary fiber” is achieved by the mammalian gut microbiota. This breakdown creates a critical nutrient source for both the microbiota and its mammalian host. Because the availability of individual polysaccharides fluctuates with variations in the host diet, members of the microbiota strictly control expression of polysaccharide utilization genes. Our findings define a regulatory architecture that controls the breakdown of a polysaccharide by a gut bacterium in response to three distinct signals. This architecture integrates perception of a complex polysaccharide and its monomeric constituent as well as feedback of central metabolism. Moreover, it is broadly applicable to several prominent members of the mammalian gut microbiota. The identified regulatory strategy may contribute to the abundance of gut Bacteroides, despite fluctuations in the host diet.
Collapse
|
34
|
Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infect Immun 2016; 84:2131-2140. [PMID: 27185789 DOI: 10.1128/iai.00250-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023] Open
Abstract
Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen.
Collapse
|
35
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
36
|
Lin IYC, Van TTH, Smooker PM. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines (Basel) 2015; 3:940-72. [PMID: 26569321 PMCID: PMC4693226 DOI: 10.3390/vaccines3040940] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.
Collapse
Affiliation(s)
- Ivan Y C Lin
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| |
Collapse
|
37
|
What Makes A Bacterial Oral Vaccine a Strong Inducer of High-Affinity IgA Responses? Antibodies (Basel) 2015. [DOI: 10.3390/antib4040295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
38
|
Factors affecting cell population density during enrichment and subsequent molecular detection of Salmonella enterica and Escherichia coli O157:H7 on lettuce contaminated during field production. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Ji Z, Shang J, Li Y, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vaccine vector displaying regulated delayed attenuation and regulated delayed antigen synthesis to confer protection against Streptococcus suis in mice. Vaccine 2015; 33:4858-67. [PMID: 26238722 DOI: 10.1016/j.vaccine.2015.07.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 01/29/2023]
Abstract
Salmonella enterica serotype Choleraesuis (S. Choleraesuis) and Streptococcus suis (S. suis) are important swine pathogens. Development of a safe and effective attenuated S. Choleraesuis vaccine vector would open a new window to prevent and control pig diseases. To achieve this goal, the mannose and arabinose regulated delayed attenuated systems (RDAS), Δpmi and ΔPcrp::TT araC PBADcrp, were introduced into the wild type S. Choleraesuis strain C78-3. We also introduced ΔrelA::araC PBADlacI TT to achieve regulated delayed antigen synthesis and ΔasdA to constitute a balanced-lethal plasmid system. The safety and immunogenicity of the resulted RDAS S. Choleraesuis strain rSC0011 carrying 6-phosphogluconate dehydrogenase (6-PGD) of S. suis serotype 2 (SS2) were evaluated in vitro and in vivo. Compared with the wild type parent strain C78-3 and vaccine strain C500, a live attenuated S. Choleraesuis vaccine licensed for piglet in China, the results showed that the survival curves of the vaccine strain rSC0011 were similar to those of strains C78-3 and C500 at the early stage of infection, but lower than those of C78-3 and higher than those of C500 at the later stage in both porcine alveolar macrophages and peripheral porcine monocytes. The LD50 of the RDAS strains rSC0011 by oral route in mice was close to that of C500 and 10,000-fold higher than that of C78-3. Similar results were achieved by intraperitoneal (i.p.) route, suggesting that the RDAS strains rSC0011 achieved similar attenuation as C500. However, the RDAS strain rSC0011 was superior to C500 in colonization of Peyer's patches. Adult mice orally immunized with strain rSC0011 carrying a plasmid expression 6-phosphogluconate dehydrogenase (6-PGD) gene from SS2 developed strong immune responses against 6-PGD and Salmonella antigens, and conferred high protection against i.p. challenge with SS2.
Collapse
Affiliation(s)
- Zhenying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jing Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yuan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Wang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA; Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Co-Innovation Center of Jiangsu for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
40
|
Tennant SM, Levine MM. Live attenuated vaccines for invasive Salmonella infections. Vaccine 2015; 33 Suppl 3:C36-41. [PMID: 25902362 PMCID: PMC4469493 DOI: 10.1016/j.vaccine.2015.04.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.
Collapse
Affiliation(s)
- Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Knapp GS, Lyubetskaya A, Peterson MW, Gomes ALC, Ma Z, Galagan JE, McDonough KA. Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria. Nucleic Acids Res 2015; 43:5377-93. [PMID: 25940627 PMCID: PMC4477654 DOI: 10.1093/nar/gkv420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/19/2015] [Indexed: 11/14/2022] Open
Abstract
Bacterial pathogens adapt to changing environments within their hosts, and the signaling molecule adenosine 3', 5'-cyclic monophosphate (cAMP) facilitates this process. In this study, we characterized in vivo DNA binding and gene regulation by the cAMP-responsive protein CRP in M. bovis BCG as a model for tuberculosis (TB)-complex bacteria. Chromatin immunoprecipitation followed by deep-sequencing (ChIP-seq) showed that CRP associates with ∼900 DNA binding regions, most of which occur within genes. The most highly enriched binding region was upstream of a putative copper transporter gene (ctpB), and crp-deleted bacteria showed increased sensitivity to copper toxicity. Detailed mutational analysis of four CRP binding sites upstream of the virulence-associated Rv0249c-Rv0247c succinate dehydrogenase genes demonstrated that CRP directly regulates Rv0249c-Rv0247c expression from two promoters, one of which requires sequences intragenic to Rv0250c for maximum expression. The high percentage of intragenic CRP binding sites and our demonstration that these intragenic DNA sequences significantly contribute to biologically relevant gene expression greatly expand the genome space that must be considered for gene regulatory analyses in mycobacteria. These findings also have practical implications for an important bacterial pathogen in which identification of mutations that affect expression of drug target-related genes is widely used for rapid drug resistance screening.
Collapse
Affiliation(s)
- Gwendowlyn S Knapp
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - Anna Lyubetskaya
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | | | | | - Zhuo Ma
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - James E Galagan
- Bioinformatics Program, Boston University, Boston, MA 02215, USA Department of Biomedical Engineering, Boston, MA 02215, USA Department of Microbiology, Boston University, Boston, MA 02215, USA
| | - Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12201, USA
| |
Collapse
|
42
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
43
|
Papenfort K, Vogel J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol 2014; 4:91. [PMID: 25077072 PMCID: PMC4098024 DOI: 10.3389/fcimb.2014.00091] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022] Open
Abstract
Enteric pathogens often cycle between virulent and saprophytic lifestyles. To endure these frequent changes in nutrient availability and composition bacteria possess an arsenal of regulatory and metabolic genes allowing rapid adaptation and high flexibility. While numerous proteins have been characterized with regard to metabolic control in pathogenic bacteria, small non-coding RNAs have emerged as additional regulators of metabolism. Recent advances in sequencing technology have vastly increased the number of candidate regulatory RNAs and several of them have been found to act at the interface of bacterial metabolism and virulence factor expression. Importantly, studying these riboregulators has not only provided insight into their metabolic control functions but also revealed new mechanisms of post-transcriptional gene control. This review will focus on the recent advances in this area of host-microbe interaction and discuss how regulatory small RNAs may help coordinate metabolism and virulence of enteric pathogens.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University Princeton, NJ, USA
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg Würzburg, Germany
| |
Collapse
|
44
|
Mazé A, Glatter T, Bumann D. The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion. Cell Rep 2014; 7:1426-1433. [PMID: 24835993 DOI: 10.1016/j.celrep.2014.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/07/2014] [Accepted: 04/14/2014] [Indexed: 11/29/2022] Open
Abstract
The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2) involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism.
Collapse
Affiliation(s)
- Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland; Synthetic Biology, UMR7242, ESBS, University of Strasbourg, 67412 Illkirch, France
| | - Timo Glatter
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
45
|
Kallapura G, Morgan MJ, Pumford NR, Bielke LR, Wolfenden AD, Faulkner OB, Latorre JD, Menconi A, Hernandez-Velasco X, Kuttappan VA, Hargis BM, Tellez G. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella Enteritidis and Salmonella Typhimurium. Poult Sci 2014; 93:340-6. [PMID: 24570455 PMCID: PMC4990883 DOI: 10.3382/ps.2013-03602] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Experimental and epidemiological evidence suggests that primary infection of Salmonella is by the oral-fecal route for poultry. However, the airborne transmission of Salmonella and similar enteric zoonotic pathogens has been historically neglected. Increasing evidence of Salmonella bioaerosol generation in production facilities and studies suggesting the vulnerabilities of the avian respiratory architecture together have indicated the possibility of the respiratory system being a potential portal of entry for Salmonella in poultry. Presently, we evaluated this hypothesis through intratracheal (IT) administration of Salmonella Enteritidis and Salmonella Typhimurium, as separate challenges, in a total of 4 independent trials, followed by enumeration of cfu recovery in ceca-cecal tonsils and recovery incidence in liver and spleen. In all trials, both Salmonella Enteritidis and Salmonella Typhimurium, challenged IT colonized cecae to a similar or greater extent than oral administration at identical challenge levels. In most trials, chickens cultured for cfu enumeration from IT-challenged chicks at same dose as orally challenged, resulted in an increase of 1.5 log higher Salmonella Enteritidis from ceca-cecal tonsils and a much lower dose IT of Salmonella Enteritidis could colonize ceca to the same extent than a higher oral challenge. This trend of increased cecal colonization due to IT challenge was observed with all trails involving week-old birds (experiment 2 and 3), which are widely considered to be more difficult to infect via the oral route. Liver-spleen incidence data showed 33% of liver and spleen samples to be positive for Salmonella Enteritidis administered IT (106 cfu/chick), compared with 0% when administered orally (experiment 2, trial 1). Collectively, these data suggest that the respiratory tract may be a largely overlooked portal of entry for Salmonella infections in chickens.
Collapse
Affiliation(s)
- G Kallapura
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Daudel D, Weidinger G, Spreng S. Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 2014; 6:97-110. [PMID: 17280482 DOI: 10.1586/14760584.6.1.97] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Live, attenuated bacterial vaccines (LBV) are promising candidates for the induction of a broad-based immune response directed at recombinant heterologous antigens and the corresponding pathogen. LBVs allow vaccination through the mucosal surfaces and specific targeting of professional antigen-presenting cells located at the inductive sites of the immune system. A novel approach exploits attenuated intracellular bacteria as delivery vectors for eukaryotic antigen-expression plasmids (so-called DNA vaccines). Candidate carrier bacteria include attenuated strains of Gram-positive and Gram-negative bacteria. These bacteria have been shown to deliver DNA vaccines to human cells in vitro and have also proven their in vivo efficacy in several experimental animal models of infectious diseases and different cancers. The clinical assessment of the safety, immunogenicity and efficacy of these candidate strains will be the next challenging step towards live bacterial DNA vaccines.
Collapse
Affiliation(s)
- Damini Daudel
- Berna Biotech AG, Rehhagstrasse 79, CH-3018 Berne, Switzerland.
| | | | | |
Collapse
|
47
|
Kim YR, Lee SE, Kim B, Choy H, Rhee JH. A dual regulatory role of cyclic adenosine monophosphate receptor protein in various virulence traits of Vibrio vulnificus. Microbiol Immunol 2013; 57:273-80. [PMID: 23586631 DOI: 10.1111/1348-0421.12031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/01/2022]
Abstract
Vibrio vulnificus causes fatal septicemia in susceptible subjects after the ingestion of raw seafood. In the present study, the roles of cyclic adenosine monophosphate (cAMP) receptor protein (CRP) in V. vulnificus pathogenesis were investigated. A mutation in the V. vulnificus crp gene resulted in a significant down-regulation of various virulence phenotypes, except for RtxA1-mediated cytoskeletal rearrangement. Bacterial growth was impeded by the crp mutation. In addition, colony morphology was converted from opaque to translucent type by this mutation, which implies a decrease in capsule production. The crp mutant also showed significant decrease in motility and adhesion to host cells. V. vulnificus CRP positively regulated production of hemolysin and protease at transcriptional level. All these changes in the crp mutant were fully complemented in trans by a plasmid harboring the wild-type gene. In contrast, CRP negatively regulated the expression of RtxA1. The crp mutant caused the cytoskeletal rearrangement in HeLa cells, which is a hallmark activity of RtxA1 toxin. Taken together, CRP seems to play a dual regulatory role in various virulence traits of V. vulnificus.
Collapse
Affiliation(s)
- Young Ran Kim
- Clinical Vaccine Research and Development Center, Chonnam National University Medical School, Gwangju, South Korea
| | | | | | | | | |
Collapse
|
48
|
Sivamaruthi BS, Balamurugan K. Physiological and Immunological Regulations in Caenorhabditis elegans Infected with Salmonella enterica serovar Typhi. Indian J Microbiol 2013; 54:52-8. [PMID: 24426167 DOI: 10.1007/s12088-013-0424-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/02/2013] [Indexed: 11/24/2022] Open
Abstract
Studies pertaining to Salmonella enterica serovar Typhimurium infection by utilizing model systems failed to mimic the essential aspects of immunity induced by Salmonella enterica serovar Typhi, as the determinants of innate immunity are distinct. The present study investigated the physiological and innate immune responses of S. Typhi infected Caenorhabditis elegans and also explored the Ty21a mediated immune enhancement in C. elegans. Ty21a is a known live vaccine for typhoidal infection in human beings. Physiological responses of C. elegans infected with S. Typhi assessed by survival and behavioral assays revealed that S. Typhi caused host mortality by persistent infection. However, Ty21a exposure to C. elegans was not harmful. Ty21a pre-exposed C. elegans, exhibited significant resistance against S. Typhi infection. Elevated accumulation of S. Typhi inside the infected host was observed when compared to Ty21a exposures. Transcript analysis of candidate innate immune gene (clec-60, clec-87, lys-7, ilys-3, scl-2, cpr-2, F08G5.6, atf-7, age-1, bec-1 and daf-16) regulations in the host during S. Typhi infection have been assessed through qPCR analysis to understand the activation of immune signaling pathways during S. Typhi infections. Gene silencing approaches confirmed that clec-60 and clec-87 has a major role in the defense system of C. elegans during S. Typhi infection. In conclusion, the study revealed that preconditioning of host with Ty21a protects against subsequent S. Typhi infection.
Collapse
|
49
|
Lopez-Velasco G, Tomas-Callejas A, Diribsa D, Wei P, Suslow T. Growth of Salmonella enterica
in foliar pesticide solutions and its survival during field production and postharvest handling of fresh market tomato. J Appl Microbiol 2013; 114:1547-58. [DOI: 10.1111/jam.12150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/04/2013] [Accepted: 01/23/2013] [Indexed: 11/27/2022]
Affiliation(s)
- G. Lopez-Velasco
- Department of Plant Sciences; University of California; Davis CA USA
| | - A. Tomas-Callejas
- Department of Plant Sciences; University of California; Davis CA USA
| | - D. Diribsa
- Department of Plant Sciences; University of California; Davis CA USA
| | - P. Wei
- Department of Plant Sciences; University of California; Davis CA USA
| | - T.V. Suslow
- Department of Plant Sciences; University of California; Davis CA USA
| |
Collapse
|
50
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|