1
|
Abstract
Ticks are hematophagous ectoparasites capable of transmitting multiple human pathogens. Environmental changes have supported the expansion of ticks into new geographical areas that have become the epicenters of tick-borne diseases (TBDs). The spotted fever group (SFG) of Rickettsia frequently infects ticks and causes tick-transmitted rickettsioses in areas of endemicity where ixodid ticks support host transmission during blood feeding. Ticks also serve as a reservoir for SFG Rickettsia. Among the members of SFG Rickettsia, R. rickettsii causes Rocky Mountain spotted fever (RMSF), the most lethal TBD in the United States. Cases of RMSF have been reported for over a century in association with several species of ticks in the United States. However, the isolation of R. rickettsii from ticks has decreased, and recent serological and epidemiological studies suggest that novel species of SFG Rickettsia are responsible for the increased number of cases of RMSF-like rickettsioses in the United States. Recent analyses of rickettsial genomes and advances in genetic and molecular studies of Rickettsia provided insights into the biology of Rickettsia with the identification of conserved and unique putative virulence genes involved in the rickettsial life cycle. Thus, understanding Rickettsia-host-tick interactions mediating successful disease transmission and pathogenesis for SFG rickettsiae remains an active area of research. This review summarizes recent advances in understanding how SFG Rickettsia species coopt and manipulate ticks and mammalian hosts to cause rickettsioses, with a particular emphasis on newly described or emerging SFG Rickettsia species.
Collapse
|
2
|
de Andrade CM, Rey FM, Bianchini FJ, Sampaio SV, Torqueti MR. Crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, as a potential tool against thrombosis development. Int J Biol Macromol 2019; 134:653-659. [DOI: 10.1016/j.ijbiomac.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 11/28/2022]
|
3
|
Quiroz-Castañeda RE, Cobaxin-Cárdenas M, Cuervo-Soto LI. Exploring the diversity, infectivity and metabolomic landscape of Rickettsial infections for developing novel therapeutic intervention strategies. Cytokine 2018; 112:63-74. [PMID: 30072088 DOI: 10.1016/j.cyto.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Rickettsioses are zoonotic infections caused by obligate intracellular bacteria of the genera Rickettsia that affect human health; sometimes humans being considered as accidental hosts. At a molecular level, the rickettsiae infection triggers molecular signaling leading to the secretion of proinflammatory cytokines. These cytokines direct the immune response to the host cell damage and pathogen removal. In this review, we present metabolic aspects of the host cell in the presence of rickettsiae and how this presence triggers an inflammatory response to cope with the pathogen. We also reviewed the secretion of cytokines that modulates host cell response at immune and metabolic levels.
Collapse
Affiliation(s)
- Rosa Estela Quiroz-Castañeda
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Mayra Cobaxin-Cárdenas
- Unidad de Anaplasmosis, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, (CENID-PAVET, INIFAP), Carretera Federal Cuernavaca Cuautla 8534, Progreso, 62574 Jiutepec, Morelos, Mexico.
| | - Laura Inés Cuervo-Soto
- Facultad de Ciencias, Departamento de Biología, Universidad Antonio Nariño, Sede Circunvalar Carrera 3 Este, No. 47 A15, Bogotá, Colombia
| |
Collapse
|
4
|
Abstract
Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic, and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group (SFG) and typhus group (TG) rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism toward cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and non-pathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and non-pathogenic species of SFG rickettsiae (SFGR) in mammalian cells. The growth of non-pathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of non-pathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the non-pathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review.
Collapse
Affiliation(s)
- Tsuneo Uchiyama
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School Tokushima, Japan
| |
Collapse
|
5
|
Paris DH, Chansamouth V, Nawtaisong P, Löwenberg EC, Phetsouvanh R, Blacksell SD, Lee SJ, Dondorp AM, van der Poll T, Newton PN, Levi M, Day NPJ. Coagulation and inflammation in scrub typhus and murine typhus--a prospective comparative study from Laos. Clin Microbiol Infect 2011; 18:1221-8. [PMID: 22192733 PMCID: PMC3533763 DOI: 10.1111/j.1469-0691.2011.03717.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Scrub typhus (caused by Orientia tsutsugamushi) and murine typhus (caused by Rickettsia typhi) cause up to 28% of febrile episodes in Thailand and Laos. The current understanding of coagulation and inflammation in the pathogenesis of these clinically very similar vasculotropic diseases is limited. This study compared human in vivo changes in 15 coagulation, inflammation and endothelial activation markers in prospectively collected admission and follow-up samples of 121 patients (55 scrub typhus, 55 murine typhus, and 11 typhus-like illness) and 51 healthy controls from Laos. As compared with controls, all but one of the markers assessed were significantly affected in typhus patients; however, the activation patterns differed significantly between scrub and murine typhus patients. The levels of markers of coagulation activation and all inflammatory cytokines, except for interleukin-12, were significantly higher in patients with scrub typhus than in those with murine typhus. In patients with murine typhus, however, the levels of endothelium-derived markers were significantly higher. Anticoagulant factors were inhibited in both typhus patient groups. This is the first study demonstrating that, in scrub typhus, in vivo coagulation activation is prominent and is related to a strong proinflammatory response, whereas in murine typhus, changes in coagulant and fibrinolytic pathways are suggestive of endothelial cell perturbation. These data suggest that, although late-stage endothelial infection is common in both diseases, the in vivo pathogenic mechanisms of R. typhi and O. tsutsugamushi could differ in the early phase of infection and may contribute to disease differentiation.
Collapse
Affiliation(s)
- D H Paris
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The vascular endothelium is the main target of a limited number of infectious agents, Rickettsia, Ehrlichia ruminantium, and Orientia tsutsugamushi are among them. These arthropod-transmitted obligately-intracellular bacteria cause serious systemic diseases that are not infrequently lethal. In this review, we discuss the bacterial biology, vector biology, and clinical aspects of these conditions with particular emphasis on the interactions of these bacteria with the vascular endothelium and how it responds to intracellular infection. The study of these bacteria in relevant in vivo models is likely to offer new insights into the physiology of the endothelium that have not been revealed by other models.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0609, USA.
| | | |
Collapse
|
7
|
Sahni SK, Rydkina E. Host-cell interactions with pathogenic Rickettsia species. Future Microbiol 2009; 4:323-39. [PMID: 19327117 DOI: 10.2217/fmb.09.6] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathogenic Rickettsia species are Gram-negative, obligate intracellular bacteria responsible for the spotted fever and typhus groups of diseases around the world. It is now well established that a majority of sequelae associated with human rickettsioses are the outcome of the pathogen's affinity for endothelium lining the blood vessels, the consequences of which are vascular inflammation, insult to vascular integrity and compromised vascular permeability, collectively termed 'Rickettsial vasculitis'. Signaling mechanisms leading to transcriptional activation of target cells in response to Rickettsial adhesion and/or invasion, differential activation of host-cell signaling due to infection with spotted fever versus typhus subgroups of Rickettsiae, and their contributions to the host's immune responses and determination of cell fate are the major subtopics of this review. Also included is a succinct analysis of established in vivo models and their use for understanding Rickettsial interactions with host cells and pathogenesis of vasculotropic rickettsioses. Continued progress in these important but relatively under-explored areas of bacterial pathogenesis research should further highlight unique aspects of Rickettsial interactions with host cells, elucidate the biological basis of endothelial tropism and reveal novel chemotherapeutic and vaccination strategies for debilitating Rickettsial diseases.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | |
Collapse
|
8
|
Rydkina E, Sahni A, Baggs RB, Silverman DJ, Sahni SK. Infection of human endothelial cells with spotted Fever group rickettsiae stimulates cyclooxygenase 2 expression and release of vasoactive prostaglandins. Infect Immun 2006; 74:5067-74. [PMID: 16926398 PMCID: PMC1594856 DOI: 10.1128/iai.00182-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsiae, a diverse group of obligately intracellular gram-negative bacteria, include etiologic agents of the spotted fever and typhus groups of diseases. Rocky Mountain spotted fever and boutonneuse fever, due to Rickettsia rickettsii and R. conorii, respectively, are characterized by widespread infection of the vascular endothelium, microvascular injury, and vasculitis. Cultured human endothelial cells (EC) are highly susceptible to infection and respond by altering the expression of adhesion molecules, regulatory cytokines, and the antioxidant enzyme heme oxygenase (HO). In the vasculature, HO regulates the cyclooxygenase (COX) enzymes, among which the inducible isozyme COX-2 facilitates the synthesis of prostaglandins (PGs). Using in vitro and ex vivo models of infection, we demonstrate here that R. rickettsii infection of human EC causes robust induction of COX-2 mRNA and protein expression but has no apparent effect on the constitutive COX-1 isoform. Cells infected with viable rickettsiae consistently displayed significantly increased secretion of 6-keto-PGF(1alpha) and PGE(2). R. rickettsii-induced COX-2 was sensitive to inhibitors of de novo transcription and the pyridinylimidazole-based compound SB 203580, suggesting that this transcriptional host cell response involves signaling through p38 mitogen-activated protein kinase. PG production by infected cells was abrogated by NS 398 (a selective COX-2 inhibitor) and indomethacin (a pan-COX inhibitor). Immunohistochemical staining of sections of infected umbilical cords and corresponding uninfected controls revealed comparatively more intense and abundant staining for COX-2 in infected endothelia. Induction of the endothelial COX-2 system and the resultant enhanced release of vasoactive PGs may contribute to the regulation of inflammatory responses and vascular permeability changes during spotted fever rickettsioses.
Collapse
Affiliation(s)
- Elena Rydkina
- Department of Medicine, Hematology-Oncology Unit, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
9
|
Damås JK, Jensenius M, Ueland T, Otterdal K, Yndestad A, Frøland SS, Rolain JM, Myrvang B, Raoult D, Aukrust P. Increased Levels of Soluble CD40L in African Tick Bite Fever: Possible Involvement of TLRs in the Pathogenic Interaction betweenRickettsia africae, Endothelial Cells, and Platelets. THE JOURNAL OF IMMUNOLOGY 2006; 177:2699-706. [PMID: 16888032 DOI: 10.4049/jimmunol.177.4.2699] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pathophysiological hallmark of spotted fever group rickettsioses comprises infection of endothelial cells with subsequent infiltration of inflammatory cells. Based on its ability to promote inflammation and endothelial cell activation, we investigated the role of CD40L in African tick bite fever (ATBF), caused by Rickettsia africae, using different experimental approaches. Several significant findings were revealed. 1) Patients with ATBF (n = 15) had increased serum levels of soluble CD40 ligand (sCD40L), which decreased during follow-up. 2) These enhanced sCD40L levels seem to reflect both direct and indirect (through endothelial cell activation involving CX3CL1-related mechanisms) effects of R. africae on platelets. 3) In combination with sCD40L, R. africae promoted a procoagulant state in endothelial cells by up-regulating tissue factor and down-regulating thrombomodulin expression. 4) Although the R. africae-mediated activation of platelets involved TLR2, the combined procoagulant effects of R. africae and sCD40L on endothelial cells involved TLR4. 5) Doxycycline counteracted the combined procoagulant effects of R. africae and sCD40L on endothelial cells. Our findings suggest an inflammatory interaction between platelets and endothelial cells in ATBF, involving TLR-related mechanisms. This interaction, which includes additive effects between sCD40L and R. africae, may contribute to endothelial inflammation and hypercoagulation in this disorder.
Collapse
Affiliation(s)
- Jan K Damås
- Research Institute for Internal Medicine, Rikshospitalet University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rocky Mountain spotted fever (RMSF) is an unusual but important dermatological condition to identify without hesitation. The classic triad of headache, fever, and a rash that begins on the extremities and travels proximally to involve the trunk is found in a majority of patients. The cutaneous centripetal pattern is a result of cell to cell migration by the causative organism Rickettsia rickettsii. Such individuals should receive prompt antimicrobial therapy and supportive care to avoid serious and potentially fatal complications.
Collapse
Affiliation(s)
- N L Lacz
- UMDNJ-New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | | | |
Collapse
|
11
|
Rydkina E, Sahni SK, Santucci LA, Turpin LC, Baggs RB, Silverman DJ. Selective modulation of antioxidant enzyme activities in host tissues during Rickettsia conorii infection. Microb Pathog 2004; 36:293-301. [PMID: 15120155 DOI: 10.1016/j.micpath.2004.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 01/19/2004] [Accepted: 01/21/2004] [Indexed: 10/26/2022]
Abstract
The involvement of oxidative mechanisms in the pathogenesis of rickettsiosis was investigated using infection of C3H/HeN mice with sub-lethal and lethal infectious doses of Rickettsia conorii, the causative agent of Mediterranean spotted fever. Microscopic examination of tissues at 48 and 96 h post-infection revealed characteristic pathologic features and the presence of rickettsiae in the endothelium of infected tissues. Activities of key antioxidant enzymes, namely glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, and superoxide dismutase, at these times exhibited a pattern of differential and selective modulation in brain, lungs, and testes of mice infected with viable organisms, whereas heat-inactivated or sonically disrupted rickettsiae had no effect. Of these, most significant changes were evident in the lungs of infected animals. Adaptive alterations in oxidant-scavenging enzymes occurred in apparent correlation with the dose and duration of infection. Treatment with an antioxidant, alpha-lipoic acid, protected against infection-induced oxidative injury via regulation of antioxidant enzyme activities and maintenance of reduced glutathione levels. These results suggest the involvement of regulatory enzymes of glutathione redox and superoxide scavenging systems in the antioxidant response during in vivo infection, the extent of which varies with the titer of viable rickettsiae in different organs of the host.
Collapse
Affiliation(s)
- Elena Rydkina
- Hematology-Oncology Unit, Hemostasis and Thrombosis Program, Department of Medicine, University of Rochester School of Medicine and Dentistry, Box 610, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
12
|
Joshi SG, Francis CW, Silverman DJ, Sahni SK. Nuclear factor kappa B protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity. Infect Immun 2003; 71:4127-36. [PMID: 12819104 PMCID: PMC162038 DOI: 10.1128/iai.71.7.4127-4136.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Apoptotic host cell death is a critical determinant in the progression of microbial infections and outcome of resultant diseases. The potentially fatal human infection caused by Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever, involves the vascular endothelium of various organ systems of the host. Earlier studies have shown that survival of endothelial cells (EC) during this infection depends on their ability to activate the transcription factor nuclear factor kappa B (NF-kappa B). Here, we investigated the involvement of caspase cascades and associated signaling pathways in regulation of host cell apoptosis by NF-kappa B. Infection of cultured human EC with R. rickettsii with simultaneous inhibition of NF-kappa B induced the activation of apical caspases 8 and 9 and also the executioner enzyme, caspase 3, whereas infection alone had no significant effect. Inhibition of either caspase-8 or caspase-9 with specific cell-permeating peptide inhibitors caused a significant decline in the extent of apoptosis, confirming their importance. The peak caspase-3 activity occurred at 12 h postinfection and led to cleavage of poly(ADP-ribose) polymerase, followed by DNA fragmentation and apoptosis. However, the activities of caspases 6 and 7, other important downstream executioners, remained unchanged. Caspase-9 activation was mediated through the mitochondrial pathway of apoptosis, as evidenced by loss of transmembrane potential and cytoplasmic release of cytochrome c. These findings suggest that activation of NF-kappa B is required for maintenance of mitochondrial integrity of host cells and protection against infection-induced apoptotic death by preventing activation of caspase-9- and caspase-8-mediated pathways. Targeted inhibition of NF-kappa B may therefore be exploited to enhance the clearance of infections with R. rickettsii and other intracellular pathogens with similar survival strategies.
Collapse
Affiliation(s)
- Suresh G Joshi
- Hematology-Oncology Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
13
|
Rydkina E, Sahni A, Silverman DJ, Sahni SK. Rickettsia rickettsii infection of cultured human endothelial cells induces heme oxygenase 1 expression. Infect Immun 2002; 70:4045-52. [PMID: 12117910 PMCID: PMC128148 DOI: 10.1128/iai.70.8.4045-4052.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 04/02/2002] [Accepted: 05/03/2002] [Indexed: 01/09/2023] Open
Abstract
Existing evidence suggests that oxidative insults and antioxidant defense mechanisms play a critical role in the host cell response during infection of endothelial cells by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever. Heme oxygenase (HO), a rate-limiting enzyme in the pathway for heme catabolism, protects against oxidant damage in a variety of stress situations. Here, we report on the expression of the inducible and constitutive HO isozymes, HO-1 and HO-2, during R. rickettsii infection of endothelial cells. Steady-state levels for HO-1 mRNA were increased two- to threefold, as early as 4 h postinfection, whereas HO-2 mRNA was not affected. Induction of HO-1 mRNA was dependent on the dose of infection and occurred in a time-dependent manner, reaching maximal levels at 4 to 7 h. The increase in HO-1 mRNA occurred at the level of trancription as it was blocked by the transcriptional inhibitors, actinomycin D and alpha-amanitin. The eukaryotic protein synthesis inhibitor, cycloheximide, caused a >50% reduction in the infection-induced increase in HO-1 mRNA level, suggesting its dependence on de novo protein synthesis of host cell. The uptake of viable organisms appeared to be necessary, since inactivation of R. rickettsii by heat or formalin fixation, or incubation of cells with cytochalasin B to prevent entry resulted in marked inhibition of HO-1 response. N-Acetyl-L-cysteine, a known oxidant scavenger, inhibited the HO-1 induction by R. rickettsii. Finally, Western analysis with a specific monoclonal antibody revealed higher levels of HO-1 protein ( approximately 32 kDa), confirming that changes in HO-1 mRNA levels were followed by increases in the levels of protein. The findings indicate that R. rickettsii infection induces HO-1 expression in host endothelial cells and suggest an important role for this enzyme in cellular response to infection, possibly by serving a protective function against oxidative injury.
Collapse
Affiliation(s)
- Elena Rydkina
- Hematology-Oncology Unit, Vascular Medicine Progam, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
14
|
Shi RJ, Simpson-Haidaris PJ, Marder VJ, Silverman DJ, Sporn LA. Post-transcriptional regulation of endothelial cell plasminogen activator inhibitor-1 expression during R. rickettsii infection. Microb Pathog 2000; 28:127-33. [PMID: 10702354 DOI: 10.1006/mpat.1999.0333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular infection of endothelial cells with Rickettsia rickettsii results in increased steady-state levels of plasminogen activator inhibitor-1 (PAI-1) mRNA. Control mechanisms governing such increased expression in response to this novel stimulus have not been defined. In this study, we compared the stability of PAI-1 mRNA in infected and uninfected endothelial cells (EC) and explored the requirement for de novo host cell protein synthesis in the infection-induced increase of steady-state levels. The half-life of PAI-1 mRNA, which is constitutively expressed in cultured EC, increased from 18 h in uninfected EC to greater than 30 h in EC infected for 24 h, a time point at which increases in steady-state PAI-1 mRNA levels are noted. There was no change in stability of gamma-actin due to infection. Nuclear run-on studies revealed no apparent increase in transcription rate at 4, 18 and 24 h. R. rickettsii -induced increase in PAI-1 mRNA was blocked by the eukaryotic protein synthesis inhibitor, cycloheximide, which suggests that this response requires de novo host cell protein synthesis. These results provide evidence that post-transcriptional control mechanisms are operative in the regulation of PAI-1 during R. rickettsii infection.
Collapse
Affiliation(s)
- R J Shi
- Vascular Medicine Unit, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
15
|
Sahni SK, Turpin LC, Brown TL, Sporn LA. Involvement of protein kinase C in Rickettsia rickettsii-induced transcriptional activation of the host endothelial cell. Infect Immun 1999; 67:6418-23. [PMID: 10569758 PMCID: PMC97050 DOI: 10.1128/iai.67.12.6418-6423.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our laboratory has reported on a biphasic pattern of nuclear factor kappaB (NF-kappaB) activation in cultured human umbilical vein endothelial cells during infection with Rickettsia rickettsii, an obligate, intracellular bacterium, and the etiologic agent of Rocky Mountain spotted fever. Transcriptional activation of the tissue factor (TF) gene during this infection has been shown to involve NF-kappaB. To further understand the signal transduction events underlying these phenomena, we studied the role of protein kinase C (PKC), a ubiquitous family of phospholipid-dependent enzymes implicated in the regulation of a variety of cell signaling pathways. Two inhibitors of PKC, namely, bisindolylmaleimide I hydrochloride (BM-1) and calphostin C, which exhibit different inhibitory properties towards various isozymes of PKC, were used. Infection of cells with R. rickettsii in the presence of BM-1 (50 nM) did not significantly affect NF-kappaB, whereas calphostin C (2.5 microM) completely blocked the early phase of NF-kappaB activation. The late, sustained phase also was not affected by treatment with BM-1. Downregulation of phorbol ester-sensitive PKCs by long-term treatment with phorbol 12-myristate 13-acetate (PMA) did not inhibit NF-kappaB activation. Likewise, this downregulation had no effect on induction of TF activity. The activity of TF was, however, sensitive to BM-1 and calphostin C, whereas expression of TF mRNA was inhibited only by calphostin C. Overall, these results suggest the lack of involvement of classical PKC pathways in R. rickettsii-induced NF-kappaB activation but the possible involvement of a non-PMA-responsive PKC isoform in the posttranscriptional control of TF expression.
Collapse
Affiliation(s)
- S K Sahni
- Vascular Medicine Unit, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Apoptosis is a highly regulated process of cell death that is required for the development and homeostasis of multicellular organisms. In contrast to necrosis, apoptosis eliminates individual cells without inducing an inflammatory response. Activation or prevention of cell death could be a critical factor in the outcome of an infection. Programmed cell death has been observed as a response to infection by a wide range of animal and plant pathogens and is mediated by an array of pathogen-encoded virulence determinants. Pathogen-induced modulation of the host cell-death pathway may serve to eliminate key immune cells or evade host defenses that can act to limit the infection. Alternatively, suppression of the death pathway may facilitate the proliferation of intracellular pathogens.
Collapse
Affiliation(s)
- Y Weinrauch
- Department of Microbiology, Skirball Institute, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
17
|
Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB, Marder VJ, Silverman DJ, Sporn LA. NF-kappa B-dependent inhibition of apoptosis is essential for host cellsurvival during Rickettsia rickettsii infection. Proc Natl Acad Sci U S A 1998; 95:4646-51. [PMID: 9539792 PMCID: PMC22544 DOI: 10.1073/pnas.95.8.4646] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The possibility that bacteria may have evolved strategies to overcome host cell apoptosis was explored by using Rickettsia rickettsii, an obligate intracellular Gram-negative bacteria that is the etiologic agent of Rocky Mountain spotted fever. The vascular endothelial cell, the primary target cell during in vivo infection, exhibits no evidence of apoptosis during natural infection and is maintained for a sufficient time to allow replication and cell-to-cell spread prior to eventual death due to necrotic damage. Prior work in our laboratory demonstrated that R. rickettsii infection activates the transcription factor NF-kappa B and alters expression of several genes under its control. However, when R. rickettsii-induced activation of NF-kappa B was inhibited, apoptosis of infected but not uninfected endothelial cells rapidly ensued. In addition, human embryonic fibroblasts stably transfected with a superrepressor mutant inhibitory subunit Ikappa B that rendered NF-kappa B inactivatable also underwent apoptosis when infected, whereas infected wild-type human embryonic fibroblasts survived. R. rickettsii, therefore, appeared to inhibit host cell apoptosis via a mechanism dependent on NF-kappa B activation. Apoptotic nuclear changes correlated with presence of intracellular organisms and thus this previously unrecognized proapoptotic signal, masked by concomitant NF-kappa B activation, likely required intracellular infection. Our studies demonstrate that a bacterial organism can exert an antiapoptotic effect, thus modulating the host cell's apoptotic response to its own advantage by potentially allowing the host cell to remain as a site of infection.
Collapse
Affiliation(s)
- D R Clifton
- Department of Environmental Medicine, Department of Medicine and Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shi RJ, Simpson-Haidaris PJ, Lerner NB, Marder VJ, Silverman DJ, Sporn LA. Transcriptional regulation of endothelial cell tissue factor expression during Rickettsia rickettsii infection: involvement of the transcription factor NF-kappaB. Infect Immun 1998; 66:1070-5. [PMID: 9488397 PMCID: PMC108017 DOI: 10.1128/iai.66.3.1070-1075.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelial cell (EC) is a primary target of infection with Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever. Changes in gene transcription elicited by intracellular infection, including EC expression of the coagulation pathway initiator known as tissue factor (TF), may contribute to the vascular pathology observed during disease. Nuclear run-on analysis of uninfected and infected, cultured human endothelial cells revealed that the rate of TF mRNA transcription is enhanced more than twofold at 3 h following infection, thus coinciding with increased steady-state levels of TF mRNA. TF mRNA remained relatively unstable during infection, with a half-life of 1.6 h. The eukaryotic protein synthesis inhibitor cycloheximide did not block R. rickettsii-induced increase in TF mRNA levels and actually resulted in its superinduction, thus revealing that de novo synthesis of host cell protein was not prerequisite to this transcriptional response. Involvement of the transcription factor NF-kappaB in R. rickettsii-induced TF expression was demonstrated by using two unrelated inhibitors of NF-kappaB activation. The antioxidant pyrrolidinedithiocarbamate and the proteasome inhibitor N-tosyl-L-phenylalanine chloromethyl ketone blocked expression of TF mRNA and activity during infection. This study demonstrates that R. rickettsii infection results in transcriptional activation of the TF gene and that this response involves activation of the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- R J Shi
- Department of Medicine, University of Rochester School of Medicine & Dentistry, New York, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sporn LA, Sahni SK, Lerner NB, Marder VJ, Silverman DJ, Turpin LC, Schwab AL. Rickettsia rickettsii infection of cultured human endothelial cells induces NF-kappaB activation. Infect Immun 1997; 65:2786-91. [PMID: 9199451 PMCID: PMC175393 DOI: 10.1128/iai.65.7.2786-2791.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever, is an obligate intracellular bacterial organism that infects primarily the vascular endothelial cells (EC). A component of the EC response to infection is transcriptional activation, which may contribute to the thrombotic and inflammatory consequences of disease. In this study, we explore R. rickettsii-induced activation of the nuclear factor-kappaB/Rel (NF-kappaB) family of transcription factors involved in early transcriptional responses to injurious stimuli. Two NF-kappaB species were activated by infection and reacted with a double-stranded oligonucleotide probe corresponding to the kappaB binding domain of the murine kappa light-chain gene enhancer. Gel supershift analysis demonstrated the reactivity of these complexes with antibodies against p65 and p50, and the induced species were tentatively identified as p50-p50 homodimers and p50-p65 heterodimers. Semiquantitative reverse transcription-PCR analysis revealed dramatic increases in the steady-state levels of mRNA coding for the inhibitory subunit of NF-kappaB (IkappaB alpha), transcription of which is enhanced by the binding of NF-kappaB within the IkappaB alpha promoter region. NF-kappaB activation was first detected 1.5 h following infection and was biphasic, with an early peak of activation at approximately 3 h, a return to baseline levels at 14 h, and even higher levels of activation at 24 h. It is likely that NF-kappaB activation requires cellular uptake of R. rickettsii, since treatment of EC with cytochalasin B during infection to block entry inhibited activation by only 70% at 3 h. R. rickettsii-induced activation of NF-kappaB may be an important controlling factor in the transcriptional responses of EC to infection with this obligate intracellular organism.
Collapse
Affiliation(s)
- L A Sporn
- Department of Medicine, University of Rochester School of Medicine & Dentistry, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kaplanski G, Teysseire N, Farnarier C, Kaplanski S, Lissitzky JC, Durand JM, Soubeyrand J, Dinarello CA, Bongrand P. IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J Clin Invest 1995; 96:2839-44. [PMID: 8675654 PMCID: PMC185994 DOI: 10.1172/jci118354] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mediterranean spotted fever due to infection by Rickettsia conorii, is characterized by a general vasculitis. This vasculitis is thought to be due to a direct injury to endothelial cells induced by R. conorii. However, production and activity of cytokines on endothelial cells is an important pathway in inflammation, and part of the underlying mechanism of vasculitis. In the present studies, human umbilical vein endothelial cells (HUVEC) infected with R. conorii actively secrete high levels of IL-8 and IL-6 (P < 0.002, and P < 0.03, respectively, compared with uninfected cells). IL-1alpha, IL-1beta, or TNFalpha were not detected in the culture supernates. Nevertheless, IL-6 and IL-8 production was due, in a large part, to a cell-associated form of IL-1 alpha expressed on R. conorii-infected HUVEC, since production of these cytokines was suppressed by 80% (P = 0.0001) and 85% (P < 0.04) by the addition of IL-1 receptor antagonist, or anti-IL-1alpha antibodies (60% inhibition, P < 0.01 and 65% inhibition, P < 0.05, respectively) and IL-1alpha was measured after lysis of R. conorii-infected HUVEC but not in uninfected cells (P < 0.01). Rickettsial lipopolysaccharide does not seem to be involved, since polymyxin B did not reduce cytokine secretion. On the contrary, infection by intracellular R. conorii appears to be necessary to induce IL-1alpha and subsequently IL-8, since formalin-fixed R. conorii did not induce cytokine production. These observations demonstrate that R. conorii-infected HUVEC secrete IL-6 and IL-8 via the induction of cell-associated IL-1alpha, providing a possible mechanism for the vasculitis observed in Mediterranean spotted fever.
Collapse
Affiliation(s)
- G Kaplanski
- Service de Médecine Interne, Laboratoire d'Immunologie-INSERM U 387, Hôpital Sainte-Marguerite, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vicente V, Estellés A, Moraleda J, España F, Aznar J. Fibrinolytic changes during acute vascular damage induced by Mediterranean spotted fever. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0268-9499(93)90148-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Teysseire N, Arnoux D, George F, Sampol J, Raoult D. von Willebrand factor release and thrombomodulin and tissue factor expression in Rickettsia conorii-infected endothelial cells. Infect Immun 1992; 60:4388-93. [PMID: 1328057 PMCID: PMC257476 DOI: 10.1128/iai.60.10.4388-4393.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mediterranean spotted fever, a tick-borne rickettsiosis caused by Rickettsia conorii, may lead to small-vessel or deep-vein thrombosis. In order to evaluate the role of endothelial cell alteration in this lesion, we infected human endothelial cells derived from umbilical veins with R. conorii. We report the induction of two previously unreported prothrombotic mechanisms in rickettsial disease: (i) a progressive decline in thrombomodulin antigen and (ii) early expression of tissue factor, and, as described for R. rickettsii infection, later release of von Willebrand factor from Weibel-Palade bodies. Thrombomodulin expression in infected endothelial cells, measured by the thrombin-dependent activation of protein C or flow cytometric analysis, decreased steadily between 4 and 24 h after inoculation with rickettsiae. R. conorii infection induced tissue factor expression, measured by clotting assay and flow cytometric analysis, which was detectable 2 h postinoculation, reached its maximum 4 h postinoculation, and progressively decreased thereafter. Infection resulted in a relatively late release of von Willebrand factor antigen into the culture medium. A double-label immunofluorescence assay for the simultaneous evaluation of von Willebrand factor and R. conorii showed that the depletion of cytoplasmic von Willebrand factor stored in Weibel-Palade bodies was due to a direct effect of the intracellular R. conorii. These disturbances of endothelial function observed with R. conorii-infected cells may provide a paradigm for the elucidation of thrombotic pathobiology with Mediterranean spotted fever.
Collapse
Affiliation(s)
- N Teysseire
- Unité des Rickettsies, Faculté de Médecine, Hôpital de la Conception, Marseille, France
| | | | | | | | | |
Collapse
|
23
|
Takahasi K, Sawasaki Y. Rare spontaneously transformed human endothelial cell line provides useful research tool. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:380-2. [PMID: 1378828 DOI: 10.1007/bf02634037] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Semeraro N, Colucci M. Changes in the coagulation-fibrinolysis balance of endothelial cells and mononuclear phagocytes: role in disseminated intravascular coagulation associated with infectious diseases. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1992; 21:214-20. [PMID: 1591371 PMCID: PMC7102176 DOI: 10.1007/bf02591649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the last few years, evidence has accumulated that the pathogenetic mechanism of disseminated intravascular coagulation encountered in patients with infectious diseases is extraordinarily complex and involves multiple interactions between the microorganism itself and/or a number of mediators, both microorganism derived and host manufactured, and multifunctional cellular systems, namely endothelial cells and mononuclear phagocytes. In particular, infectious agents and mediators shift the coagulation-fibrinolysis equilibrium of these cells towards fibrin formation and accumulation, via enhancement of procoagulant properties and reduction of both anticoagulant and fibrinolytic capacities. New insights into the pathogenetic mechanism may have important implications for the management of infected patients with disseminated intravascular coagulation.
Collapse
Affiliation(s)
- N Semeraro
- Dipartimento di Scienze Biomediche e Oncologia Umana, University of Bari, Italy
| | | |
Collapse
|