1
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Thiriot JD, Liang Y, Gonzales C, Sun J, Yu X, Soong L. Differential cellular immune responses against Orientia tsutsugamushi Karp and Gilliam strains following acute infection in mice. PLoS Negl Trop Dis 2023; 17:e0011445. [PMID: 38091346 PMCID: PMC10752558 DOI: 10.1371/journal.pntd.0011445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/27/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023] Open
Abstract
Scrub typhus is a leading cause of febrile illness in endemic countries due to infection with Orientia tsutsugamushi (Ot), a seriously understudied intracellular bacterium. Pulmonary involvement associated with vascular parasitism in patients is common and can develop into life threatening interstitial pneumonia. The diverse antigenicity of Ot genotypes and inter-strain differences in genome content are connected to varied virulence and clinical outcomes; however, detailed studies of strain-related pulmonary immune responses in human patients or small animal models of infection are lacking. In this study, we have used two clinically prevalent bacterial strains (Karp and Gilliam) to reveal cellular immune responses in inflamed lungs and potential biomarkers of disease severity. The results demonstrate that outbred CD-1 mice are highly susceptible to both Karp and Gilliam strains; however, C57BL/6 (B6) mice were susceptible to Karp, but resistant to Gilliam (with self-limiting infection), corresponding to their tissue bacterial burdens and lung pathological changes. Multicolor flow cytometric analyses of perfused B6 mouse lungs revealed robust and sustained influx and activation of innate immune cells (macrophages, neutrophils, and NK cells), followed by CD4+ and CD8+ T cells, during Karp infection, but such responses were greatly attenuated during Gilliam infection. The robust cellular responses in Karp-infected B6 mice positively correlated with significantly early and high levels of serum cytokine/chemokine protein levels (CXCL1, CCL2/3/5, and G-CSF), as well as pulmonary gene expression (Cxcl1/2, Ccl2/3/4, and Ifng). In vitro infection of B6 mouse-derived primary macrophages also revealed bacterial strain-dependent immune gene expression profiles. This study provided the lines of evidence that highlighted differential tissue cellular responses against Karp vs. Gilliam infection, offering a framework for future investigation of Ot strain-related mechanisms of disease pathogenesis vs. infection control.
Collapse
Affiliation(s)
- Joseph D. Thiriot
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Casey Gonzales
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiaoying Yu
- Department of Biostatistics & Data Science, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Burke TP, Engström P, Tran CJ, Langohr IM, Glasner DR, Espinosa DA, Harris E, Welch MD. Interferon receptor-deficient mice are susceptible to eschar-associated rickettsiosis. eLife 2021; 10:e67029. [PMID: 34423779 PMCID: PMC8428839 DOI: 10.7554/elife.67029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/31/2021] [Indexed: 01/08/2023] Open
Abstract
Arthropod-borne rickettsial pathogens cause mild and severe human disease worldwide. The tick-borne pathogen Rickettsia parkeri elicits skin lesions (eschars) and disseminated disease in humans; however, inbred mice are generally resistant to infection. We report that intradermal infection of mice lacking both interferon receptors (Ifnar1-/-;Ifngr1-/-) with as few as 10 R. parkeri elicits eschar formation and disseminated, lethal disease. Similar to human infection, eschars exhibited necrosis and inflammation, with bacteria primarily found in leukocytes. Using this model, we find that the actin-based motility factor Sca2 is required for dissemination from the skin to internal organs, and the outer membrane protein OmpB contributes to eschar formation. Immunizing Ifnar1-/-;Ifngr1-/- mice with sca2 and ompB mutant R. parkeri protects against rechallenge, revealing live-attenuated vaccine candidates. Thus, Ifnar1-/-;Ifngr1-/- mice are a tractable model to investigate rickettsiosis, virulence factors, and immunity. Our results further suggest that discrepancies between mouse and human susceptibility may be due to differences in interferon signaling.
Collapse
Affiliation(s)
- Thomas P Burke
- Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Patrik Engström
- Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Cuong J Tran
- Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - Dustin R Glasner
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Diego A Espinosa
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Eva Harris
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, BerkeleyBerkeleyUnited States
| | - Matthew D Welch
- Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nat Commun 2020; 11:3363. [PMID: 32620750 PMCID: PMC7335160 DOI: 10.1038/s41467-020-17094-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Studying emerging or neglected pathogens is often challenging due to insufficient information and absence of genetic tools. Dual RNA-seq provides insights into host-pathogen interactions, and is particularly informative for intracellular organisms. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium that causes the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning to study the transcriptional architecture of Ot, we find evidence for wide-spread post-transcriptional antisense regulation. Comparing the host response to two clinical isolates, we identify distinct immune response networks for each strain, leading to predictions of relative virulence that are validated in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot.
Collapse
|
5
|
Min CK, Kim HI, Ha NY, Kim Y, Kwon EK, Yen NTH, Youn JI, Jeon YK, Inn KS, Choi MS, Cho NH. A Type I Interferon and IL-10 Induced by Orientia tsutsugamushi Infection Suppresses Antigen-Specific T Cells and Their Memory Responses. Front Immunol 2018; 9:2022. [PMID: 30233599 PMCID: PMC6131522 DOI: 10.3389/fimmu.2018.02022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022] Open
Abstract
Despite the various roles of type I interferon (type I IFN) responses during bacterial infection, its specific effects in vivo have been poorly characterized in scrub typhus caused by Orientia tsutsugamushi infection. Here, we show that type I IFNs are primarily induced via intracellular nucleic acids sensors, including RIG-I/MAVS and cGAS/STING pathways, during O. tsutsugamushi invasion. However, type I IFN signaling did not significantly affect pathogenesis, mortality, or bacterial burden during primary infection in vivo, when assessed in a mice model lacking a receptor for type I IFNs (IFNAR KO). Rather, it significantly impaired the induction of antigen-specific T cells and reduced memory T cell responses. IFNAR KO mice that recovered from primary infection showed stronger antigen-specific T cell responses, especially Th1, and more efficiently controlled bacteremia during secondary infection than wild type mice. Enhanced IL-10 expression by macrophages in the presence of type I IFN signaling might play a significant role in the suppression of antigen-specific T cell responses as neutralization or knock-out (KO) of IL-10 increased T cell responses in vitro. Therefore, induction of the type I IFN/IL-10 axis by O. tsutsugamushi infection might play a significant role in the suppression of T cell responses and contribute to the short longevity of cell-mediated immunity, often observed in scrub typhus patients.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea
| | - Hong-Ii Kim
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea
| | - Na-Young Ha
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea
| | - Yuri Kim
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea
| | - Eun-Kyung Kwon
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea
| | - Nguyen Thi Hai Yen
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea
| | - Je-In Youn
- Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Gangwon-do, South Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology,Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences,Seoul National University College of Medicine, Seoul, South Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Gangwon-do, South Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, South Korea
| |
Collapse
|
6
|
Complexity of type-specific 56 kDa antigen CD4 T-cell epitopes of Orientia tsutsugamushi strains causing scrub typhus in India. PLoS One 2018; 13:e0196240. [PMID: 29698425 PMCID: PMC5919512 DOI: 10.1371/journal.pone.0196240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 01/31/2023] Open
Abstract
Orientia tsutsugamushi (Ots) is an obligate, intracellular, mite-transmitted human pathogen which causes scrub typhus. Understanding the diversity of Ots antigens is essential for designing specific diagnostic assays and efficient vaccines. The protective immunodominant type-specific 56 kDa antigen (TSA) of Ots varies locally and across its geographic distribution. TSA contains four hypervariable domains. We bioinformatically analyzed 345 partial sequences of TSA available from India, most of which contain only the three variable domains (VDI-III) and three spacer conserved domains (SVDI, SVDII/III, SVDIII). The total number (152) of antigenic types (amino acid variants) varied from 14–36 in the six domains of TSA that we studied. Notably, 55% (787/1435) of the predicted CD4 T-cell epitopes (TCEs) from all the six domains had high binding affinities (HBA) to at least one of the prevalent Indian human leukocyte antigen (HLA) alleles. A surprisingly high proportion (61%) of such TCEs were from spacer domains; indeed 100% of the CD4 TCEs in the SVDI were HBA. TSA sequences from India had more antigenic types (AT) than TSA from Korea. Overall, >90% of predicted CD4 TCEs from spacer domains were predicted to have HBA against one or more prevalent HLA types from Indian, Korean, Asia-Pacific region or global population data sets, while only <50% of CD4 TCEs in variable domains exhibited such HBA. The phylogenetically and immunologically important amino acids in the conserved spacer domains were identified. Our results suggest that the conserved spacer domains are predicted to be functionally more important than previously appreciated in immune responses to Ots infections. Changes occurring at the TCE level of TSA may contribute to the wide range of pathogenicity of Ots in humans and mouse models. CD4 T-cell functional experiments are needed to assess the immunological significance of these HBA spacer domains and their role in clearance of Ots from Indian patients.
Collapse
|
7
|
Díaz FE, Abarca K, Kalergis AM. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection. Clin Microbiol Rev 2018; 31:e00076-17. [PMID: 29386235 PMCID: PMC5967693 DOI: 10.1128/cmr.00076-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi, including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models.
Collapse
Affiliation(s)
- Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Abarca
- Departamento en Enfermedades Infecciosas e Inmunología Pediátricas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Scrub typhus: pathophysiology, clinical manifestations and prognosis. ASIAN PAC J TROP MED 2012; 5:261-4. [PMID: 22449515 DOI: 10.1016/s1995-7645(12)60036-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/27/2012] [Accepted: 03/15/2012] [Indexed: 01/10/2023] Open
Abstract
Scrub typhus is a zoonosis caused by the pathogen Orientia tsutsugamushi (O. tsutsugamushi). The disease has significant prevalence in eastern and Southeast Asia. Usually presenting as an acute febrile illness, the diagnosis is often missed because of similarities with other tropical febrile infections. Many unusual manifestations are present, and these are described in this review, together with an outline of current knowledge of pathophysiology. Awareness of these unusual clinical manifestations will help the clinician to arrive at an early diagnosis, resulting in early administration of appropriate antibiotics. Prognostic indicators for severe disease have not yet been clearly established.
Collapse
|
9
|
Park SW, Lee CS, Lee CK, Kwak YG, Moon C, Kim BN, Kim ES, Kang JM, Oh MD. Severity predictors in eschar-positive scrub typhus and role of serum osteopontin. Am J Trop Med Hyg 2011; 85:924-30. [PMID: 22049051 DOI: 10.4269/ajtmh.2011.11-0134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We prospectively evaluated severity predictors in terms of host, microorganism, and treatment factors in 153 eschar-positive scrub typhus patients. Severity was assessed with the Acute Physiology and Chronic Health Evaluation (APACHE) II score (< 10 versus ≥ 10) and predefined criteria of severe complications. Genotypes of Orientia tsutsugamushi were determined. Independent risk factors for severity (APACHE II score ≥ 10) were old age, diabetes mellitus, serum osteopontin > 100 ng/mL, and a group of underlying diseases (congestive heart failure, cerebrovascular disease, chronic liver disease, bronchial asthma, and chronic obstructive lung diseases). Anemia (≤ 10 g/dL) and C-reactive protein > 10 mg/dL were indicators of current severity. Neither the delay in antibiotics administration nor strain types (Boryong, Taguchi, or Kanda/Kawasaki) contributed to the severity. The risk factors for severe complications were similar. Serum osteopontin > 100 ng/mL had a negative predictive value of 96% for severe complications. This marker can be used to rule out severe disease status.
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tantibhedhyangkul W, Prachason T, Waywa D, El Filali A, Ghigo E, Thongnoppakhun W, Raoult D, Suputtamongkol Y, Capo C, Limwongse C, Mege JL. Orientia tsutsugamushi stimulates an original gene expression program in monocytes: relationship with gene expression in patients with scrub typhus. PLoS Negl Trop Dis 2011; 5:e1028. [PMID: 21610853 PMCID: PMC3096591 DOI: 10.1371/journal.pntd.0001028] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/22/2011] [Indexed: 12/14/2022] Open
Abstract
Orientia tsutsugamushi is the causal agent of scrub typhus, a public health problem in the Asia-Pacific region and a life-threatening disease. O. tsutsugamushi is an obligate intracellular bacterium that mainly infects endothelial cells. We demonstrated here that O. tsutsugamushi also replicated in monocytes isolated from healthy donors. In addition, O. tsutsugamushi altered the expression of more than 4,500 genes, as demonstrated by microarray analysis. The expression of type I interferon, interferon-stimulated genes and genes associated with the M1 polarization of macrophages was significantly upregulated. O. tsutsugamushi also induced the expression of apoptosis-related genes and promoted cell death in a small percentage of monocytes. Live organisms were indispensable to the type I interferon response and apoptosis and enhanced the expression of M1-associated cytokines. These data were related to the transcriptional changes detected in mononuclear cells isolated from patients with scrub typhus. Here, the microarray analyses revealed the upregulation of 613 genes, which included interferon-related genes, and some features of M1 polarization were observed in these patients, similar to what was observed in O. tsutsugamushi-stimulated monocytes in vitro. This is the first report demonstrating that monocytes are clearly polarized in vitro and ex vivo following exposure to O. tsutsugamushi. These results would improve our understanding of the pathogenesis of scrub typhus, during which interferon-mediated activation of monocytes and their subsequent polarization into an M1 phenotype appear critical. This study may give us a clue of new tools for the diagnosis of patients with scrub typhus.
Collapse
Affiliation(s)
- Wiwit Tantibhedhyangkul
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Thanavadee Prachason
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
- Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Duangdao Waywa
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adil El Filali
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Eric Ghigo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Wanna Thongnoppakhun
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christian Capo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Chanin Limwongse
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jean-Louis Mege
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
11
|
Iwasaki H, Mizoguchi J, Takada N, Tai K, Ikegaya S, Ueda T. Correlation between the concentrations of tumor necrosis factor-alpha and the severity of disease in patients infected with Orientia tsutsugamushi. Int J Infect Dis 2009; 14:e328-33. [PMID: 19699129 DOI: 10.1016/j.ijid.2009.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/31/2009] [Accepted: 06/01/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Patients with tsutsugamushi disease sometimes die if they do not receive appropriate chemotherapy. This study measured the concentration of several cytokines both before and after the administration of tetracyclines, and evaluated the changes in cytokine levels in patient serum to investigate the relationship between serum levels of cytokines and disease severity. METHODS A total of nine patients were infected with Orientia tsutsugamushi. The diagnosis of tsutsugamushi disease was made using an indirect immunoperoxidase antibody test. The serum concentrations of cytokines were measured using enzyme-linked immunosorbent assays. RESULTS The levels of interleukin (IL)-10 (mean 71.7 pg/ml) and IL-12p40 (mean 588 pg/ml) were elevated in all patients in the acute phase, above the normal upper limits. Tumor necrosis factor-alpha (TNF-alpha) levels (mean 9.20 pg/ml) were elevated in 89% and interferon-gamma (IFN-gamma) levels (mean 41.0 pg/ml) in 44% of patients. The down-regulation of these overproduced cytokines was observed after chemotherapy. There was a significant correlation between the concentrations of TNF-alpha in the acute phase and the severity of disease (r=0.918). CONCLUSION The concentration of TNF-alpha may predict the severity of tsutsugamushi disease in the acute infectious phase.
Collapse
Affiliation(s)
- Hiromichi Iwasaki
- First Department of Internal Medicine, Faculty of Medical Science, University of Fukui, Matsuoka, Fukui, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Chung DR, Lee YS, Lee SS. Kinetics of inflammatory cytokines in patients with scrub typhus receiving doxycycline treatment. J Infect 2007; 56:44-50. [PMID: 17976731 DOI: 10.1016/j.jinf.2007.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Animal models have suggested that various cytokines and chemokines play an important role in host defense against Orientia tsutsugamushi, however, human data are limited. We investigated the kinetics of inflammatory responses in patients with scrub typhus receiving doxycycline. METHODS Amongst patients being treated for scrub typhus, serially collected sera were tested for TNF-alpha, IFN-gamma, IL-2, IL-4, IL-5, and IL-10 by immunoassay. The mRNAs encoding TNF-alpha, IL-1 beta, IL-6, IL-8, IFN-gamma, IL-12, IL-2, IL-4, IL-5, and IL-10 were measured by semiquantitative reverse transcription-PCR. RESULTS The concentrations of TNF-alpha, IFN-gamma, and IL-10 of patients prior to doxycycline treatment were significantly higher than those of healthy volunteers. They decreased markedly within 24h after starting doxycycline. The mRNAs for IL-1 beta, TNF-alpha, IL-6, IFN-gamma, and IL-10 were highly expressed. Expression of mRNAs for IL-1 beta, IFN-gamma, and IL-10 decreased at day 2-7 of doxycycline treatment. CONCLUSIONS Inflammatory cytokines including TNF-alpha, IL-1 beta, and IL-6 are markedly upregulated in patients with scrub typhus. Doxycycline treatment rapidly reduces the production of these cytokines, corresponding to the early defervescence after the start of the treatment. The profiles of T cell-derived cytokines in patients with scrub typhus do not follow typical Th1 or Th2 patterns.
Collapse
Affiliation(s)
- Doo Ryeon Chung
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, 896 Pyeongchon-dong, Dongan-gu, Anyang-si, Gyeonggi-do 431-070, South Korea.
| | | | | |
Collapse
|
13
|
Chattopadhyay S, Jiang J, Chan TC, Manetz TS, Chao CC, Ching WM, Richards AL. Scrub typhus vaccine candidate Kp r56 induces humoral and cellular immune responses in cynomolgus monkeys. Infect Immun 2005; 73:5039-47. [PMID: 16041019 PMCID: PMC1201273 DOI: 10.1128/iai.73.8.5039-5047.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A truncated recombinant 56-kDa outer membrane protein of the Karp strain of Orientia tsutsugamushi (Kp r56) was evaluated in cynomolgus monkeys (Macaca fascicularis) for immunogenicity and safety as a vaccine candidate for the prevention of scrub typhus. This recombinant antigen induced strong humoral and cellular immune responses in two monkeys and was found to be well tolerated. Antigen-specific immunoglobulin M (IgM) and IgG were produced to almost maximal levels within 1 week of a single immunization. Peripheral blood mononuclear cells from vaccinated animals showed an induction of antigen-specific proliferation and gamma interferon production. The Kp r56 was not as efficient as infection with live organisms in preventing reinfection but was able to reduce the inflammation produced at the site of challenge. This report describes the results of the first systematic study of the immunogenicity of a recombinant scrub typhus vaccine candidate in a nonhuman primate model.
Collapse
Affiliation(s)
- Suchismita Chattopadhyay
- Rickettsial Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Orientia tsutsugamushi, an obligate intracellular bacterium, was isolated for the first time in 1930. Infections by virulent strains are characterized by fever, rash, eschar, pneumonia, myocarditis, and disseminated intravascular coagulation. Here we review the general aspects of O. tsutsugamushi and immune responses in terms of inflammation, protective immune mechanisms, and immunogenic antigens.
Collapse
Affiliation(s)
- S Y Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine and Institute of Endemic Disease, Seoul National University Medical Research Center, 28 Yongon-dong, Chongno-gu, 110-799, Seoul, South Korea
| | | | | |
Collapse
|
15
|
Byrom B, Obwolo M, Barbet AF, Mahan SM. A polarized Th1 type immune response to Cowdria ruminantium infection is detected in immune DBA/2 mice. J Parasitol 2000; 86:983-92. [PMID: 11128522 DOI: 10.1645/0022-3395(2000)086[0983:apttir]2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune responses to Cowdria ruminantium, an intracellular organism that causes heartwater in domestic ruminants, were characterized in a DBA/2 mouse model. Immunity induced by infection and treatment was adoptively transferable by splenocytes and could be abrogated by in vivo depletion of T cells but not by inhibition of nitric oxide synthase using NG-monomethyl-L-arginine. IgG2a and IgG2b C. ruminantium-specific responses were detected in immune mice. Culture supernatants of splenocytes from immune DBA/2 mice, which were stimulated with crude C. ruminantium antigens or recombinant major antigenic proteins 1 or 2, contained significant levels of interferon (IFN)-gamma and interleukin (IL)-6, but insignificant levels of IL-1alpha, IL-2, IL-4, IL-5, IL-10, IL-12, tumor necrosis factor-alpha (TNF), and nitric oxide. A similar response was detected during primary infection, although IFN-gamma levels decreased significantly during clinical illness and then increased following natural or antibiotic-aided recovery. These data support the conclusion that protective immunity to C. ruminantium in DBA/2 mice is mediated by T cells and is associated with a polarized T helper 1 type of immune response. This murine model could be utilized to screen for protective C. ruminantium antigens that provoke Th1 type immune responses and for evaluation of these antigens in recombinant vaccines against heartwater.
Collapse
Affiliation(s)
- B Byrom
- UF/USAID/SADC Heartwater Research Project, Central Veterinary Diagnostic and Research Laboratory, Harare, Zimbabwe
| | | | | | | |
Collapse
|
16
|
Iwasaki H, Takada N, Nakamura T, Ueda T. Increased levels of macrophage colony-stimulating factor, gamma interferon, and tumor necrosis factor alpha in sera of patients with Orientia tsutsugamushi infection. J Clin Microbiol 1997; 35:3320-2. [PMID: 9399546 PMCID: PMC230174 DOI: 10.1128/jcm.35.12.3320-3322.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Levels of macrophage colony-stimulating factor (nine of nine patients) and gamma interferon (six of nine patients) in serum were elevated above the range of normal in the acute phase of tsutsugamushi disease. Significant increases in levels of tumor necrosis factor alpha were observed during the convalescent phase in five patients, and they exceeded the levels observed during the acute phase. Hypercytokinemia appeared to be responsible for the emergence of the symptoms of tsutsugamushi disease.
Collapse
Affiliation(s)
- H Iwasaki
- First Department of Internal Medicine, Fukui Medical School, Matsuoka, Japan
| | | | | | | |
Collapse
|
17
|
Nagano I, Kasuya S, Noda N, Yamashita T. Virulence in mice of Orientia tsutsugamushi isolated from patients in a new endemic area in Japan. Microbiol Immunol 1996; 40:743-7. [PMID: 8981347 DOI: 10.1111/j.1348-0421.1996.tb01135.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four strains of Orientia tsutsugamushi (KN-1, KN-2, KN-3 and GJ-1) isolated from patients in an area of Gifu Prefecture, Japan, in which tsutsugamushi disease is newly endemic, were examined for their virulence in mice. Among these, KN-1 (identified as Kawasaki type), GJ-1 (identified as Kuroki type) and KN-2 strains were found to be non-lethal for BALB/c mice as well as CH3/HeJ mice, even with high doses (10(6) x being the 50% mouse infectious dose). On the other hand, the KN-3 strain was found to be sufficiently virulent to kill BALB/c mice. Among the prototype strains (Gilliam, Karp and Kato), the Karp and Kato strains exhibited high virulence to mice, while the Gilliam strain killed only a susceptible strain of mouse. BALB/c mice infected with KN-1 and KN-2 strains showed significant splenomegaly and moderate ascites accumulation in the first week of infection, while these symptoms became prominent during the second week of infection using KN-3, Karp and Kato strains. After infection with the GJ-1 strain, these symptoms were not observed. Antibody responses induced by infections with highly virulent strains were lower than that with low or intermediate virulent strains.
Collapse
Affiliation(s)
- I Nagano
- Department of Parasitology, Gifu University School of Medicine, Japan
| | | | | | | |
Collapse
|
18
|
Totté P, Vachiery N, Martinez D, Trap I, Ballingall KT, MacHugh ND, Bensaid A, Wérenne J. Recombinant bovine interferon gamma inhibits the growth of Cowdria ruminantium but fails to induce major histocompatibility complex class II following infection of endothelial cells. Vet Immunol Immunopathol 1996; 53:61-71. [PMID: 8941969 DOI: 10.1016/0165-2427(96)05603-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recombinant bovine IFN gamma is a potent inhibitor of Cowdria ruminantium growth in vitro irrespective of the rickettsial stock, or the origin of the endothelial cells. These results suggest an important role for IFN gamma in protective immune responses against C. ruminantium infections. Here we also show that IFN gamma can induce the expression of MHC class II molecules on the surface of endothelial cells. However, treatment of endothelial cells with IFN gamma following infection with Cowdria fails to induce MHC class II expression. The implications of this pathogen-specific effect on class II expression by endothelial cells with regard to its recognition by the host immune system are discussed.
Collapse
Affiliation(s)
- P Totté
- Université Libre de Bruxelles, Animal Cell Biotechnology, Faculty of Sciences, Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- M Degré
- Institute of Medical Microbiology, Rikshospitalet, University of Oslo, Norway
| |
Collapse
|
20
|
Geng P, Jerrells TR. The role of tumor necrosis factor in host defense against scrub typhus rickettsiae. I. Inhibition of growth of Rickettsia tsutsugamushi, Karp strain, in cultured murine embryonic cells and macrophages by recombinant tumor necrosis factor-alpha. Microbiol Immunol 1994; 38:703-11. [PMID: 7854211 DOI: 10.1111/j.1348-0421.1994.tb01845.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recombinant murine tumor necrosis factor-alpha (TNF-alpha) inhibited intracellular growth of Rickettsia tsutsugamushi, Karp strain, in the mouse embryo cell line C3H/10T1/2 clone 8 at doses of 100 to 10 U/ml. The growth inhibitory effect of TNF-alpha was also evident when peritoneal exudate macrophages or bone marrow-derived macrophages were used as the host cell for rickettsial growth. Interferon-gamma (IFN-gamma), at doses up to 1,000 U/ml, did not affect the growth of this strain of rickettsiae in the mouse embryo cell line but, as expected, profoundly inhibited rickettsial growth in peritoneal exudate macrophages and bone marrow-derived macrophages. The effect of TNF-alpha on rickettsial growth in the mouse embryo cell line was not reproducibly enhanced by IFN-gamma. Treatment of the cell line with TNF-alpha delayed rickettsial cytopathic effects, but the rickettsiae ultimately grew to high numbers in the cells and caused cell death. These findings show that, at least in our system, R. tsutsugamushi is resistant to IFN-gamma-mediated antirickettsial effects in cells other than macrophages. The results of this study support the suggestion that TNF-alpha may inhibit rickettsial growth in cells other than macrophages.
Collapse
Affiliation(s)
- P Geng
- Department of Pathology, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
21
|
Turco J, Winkler HH. Cytokine sensitivity and methylation of lysine in Rickettsia prowazekii EVir and interferon-resistant R. prowazekii strains. Infect Immun 1994; 62:3172-7. [PMID: 7518807 PMCID: PMC302942 DOI: 10.1128/iai.62.8.3172-3177.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Modified Rickettsia prowazekii strains have been derived from the avirulent Madrid E strain by passage in the lungs of white mice (strain EVir) or by selection for resistance to gamma interferon (IFN-gamma) (strains 427-19 and 87-17) or alpha/beta interferon (IFN-alpha/beta) (strains 83-2P, 60P, 103-2P, and 110-1P). Compared with the Madrid E strain, strain EVir has increased virulence (N. M. Balayeva and V. N. Nikolskaya, J. Hyg. Epidemiol. Microbiol. Immunol. 17:11-20, 1973) and a different lysine methylation profile in its surface protein antigen (A. V. Rodionov, M. E. Eremeeva, and N. M. Balayeva, Acta Virol. 35:557-565, 1991). The other six strains differ from the Madrid E strain in their resistance to IFN and their ability to grow well in untreated macrophagelike RAW264.7 cells. In the present study, to determine which properties are shared by these strains, we examined R. prowazekii EVir for the following: (i) the sensitivity of its growth in L929 cells to the cytokines IFN-alpha/beta, IFN-gamma, tumor necrosis factor alpha (TNF-alpha), and IFN-gamma plus TNF-alpha; (ii) the ability to grow in untreated RAW264.7 cells; and (iii) the ability to induce interferon in L929 cell cultures; we also evaluated strains 83-2P and 87-17 for lysine methylation. Multiplication of strain EVir in growing L929 cells was not markedly inhibited by either IFN-alpha/beta or IFN-gamma. In X-irradiated L929 cells, growth of strain EVir was slightly inhibited (11%) by TNF-alpha alone, somewhat inhibited (38%) by IFN-gamma alone, and markedly inhibited (87%) by IFN-gamma plus TNF-alpha. Nitrite production was induced in X-irradiated, strain EVir-infected L929 cell cultures treated with TNF-alpha alone or IFN-gamma alone; however, more nitrite was produced in infected cultures treated with IFN-gamma plus TNF-alpha. Nitrite production, the dramatic inhibitory effect of IFN-gamma plus TNF-alpha, and the modest inhibitory effect of IFN-gamma on the growth of strain EVir in X-irradiated L929 cells were all alleviated by the addition of the nitric oxide synthase inhibitor NG-methyl-L-arginine. Strain EVir grew very well in untreated macrophagelike RAW264.7 cells and appeared defective in the ability to induce IFN in L929 cell cultures. All strains grown in L929 cells in the presence of radiolabeled lysine had similar percentages of their radioactivity as methylated lysines.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Turco
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688-0002
| | | |
Collapse
|
22
|
Turco J, Winkler HH. Role of the nitric oxide synthase pathway in inhibition of growth of interferon-sensitive and interferon-resistant Rickettsia prowazekii strains in L929 cells treated with tumor necrosis factor alpha and gamma interferon. Infect Immun 1993; 61:4317-25. [PMID: 7691748 PMCID: PMC281160 DOI: 10.1128/iai.61.10.4317-4325.1993] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ability of tumor necrosis factor alpha (TNF-alpha) alone and in combination with gamma interferon (IFN-gamma) to inhibit the growth of interferon-sensitive and -resistant Rickettsia prowazekii strains in mouse L929 cells was examined, and the possible role of the nitric oxide synthase pathway in the suppression of rickettsial growth induced by TNF-alpha, IFN-gamma, or both cytokines was evaluated. TNF-alpha inhibited the growth of strains Madrid E (IFN-gamma sensitive and alpha/beta interferon [IFN-alpha/beta] sensitive) and Breinl (IFN-gamma sensitive and IFN-alpha/beta resistant), but not that of strain 83-2P (IFN-gamma resistant and IFN-alpha/beta resistant), in L929 cells. Inhibition of the growth of the Madrid E strain in L929 cells treated with TNF-alpha and IFN-gamma in combination was greater than that observed with either TNF-alpha or IFN-gamma alone. Similarly, inhibition of the growth of the Breinl strain in L929 cells treated with both cytokines was greater than that observed with TNF-alpha alone; however, it did not differ significantly from the inhibition observed with IFN-gamma alone. Although strain 83-2P was resistant to TNF-alpha or IFN-gamma alone, its growth was inhibited in L929 cells treated with TNF-alpha and IFN-gamma in combination. Nitrite production was measured in mock-infected and infected L929 cell cultures, and the nitric oxide synthase inhibitors NG-methyl-L-arginine (NGMA) and aminoguanidine were used to evaluate the role of the nitric oxide synthase pathway in cytokine-induced inhibition of rickettsial growth. Nitrite production was induced in mock-infected or R. prowazekii-infected L929 cell cultures treated with IFN-gamma plus TNF-alpha, but not in mock-infected cultures that were untreated or treated with IFN-gamma or TNF-alpha alone. Nitrite production was also not induced in untreated, R. prowazekii-infected cultures; however, in some instances, it was induced in infected cultures treated with IFN-gamma or TNF-alpha alone. Nitrite production was blocked by NGMA or aminoguanidine, and these compounds markedly relieved the synergistic inhibitory effect of IFN-gamma plus TNF-alpha on the growth of strain 83-2P in L929 cells. In contrast, NGMA did not alleviate the inhibition of the growth of the Madrid E strain in L929 cells treated with IFN-gamma or TNF-alpha alone; however, it slightly and variably relieved the inhibition of the growth of the Madrid E strain in L929 cells treated with IFN-gamma and TNF-alpha in combination.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Turco
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688-0002
| | | |
Collapse
|
23
|
Gao Q, Turco J, Winkler HH. Synthesis of DNA, rRNA, and protein by Rickettsia prowazekii growing in untreated or gamma interferon-treated mouse L929 cells. Infect Immun 1993; 61:2383-9. [PMID: 7684727 PMCID: PMC280859 DOI: 10.1128/iai.61.6.2383-2389.1993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The syntheses of DNA, rRNA, and protein by Rickettsia prowazekii growing in mouse fibroblastic L929 cells were measured at various times after the addition of gamma interferon (IFN-gamma) to correlate the inhibition of a site of macromolecular synthesis with the established IFN-gamma-induced inhibition of rickettsial growth. A method was developed to measure the syntheses of DNA, rRNA, and protein by R. prowazekii during a 2-h pulse-labeling period while the rickettsiae were growing within cultured host cells that had intact macromolecular synthesis. This method involved incubation of the rickettsia-infected cells with a radioactive precursor (H3 32PO4 or Tran35S-label), purification of the rickettsiae, purification of rickettsial nucleic acids, and analysis of rickettsial nucleic acids and proteins by electrophoresis and autoradiography. A key feature of the method involved the use of calculated specific activities from a densitometric analysis of gels and autoradiograms, a procedure that made the data independent of rickettsial recovery. Rickettsial DNA and rRNA syntheses were both inhibited 12 h after the addition of IFN-gamma to infected cultures, whereas the synthesis of rickettsial proteins was not inhibited at this time. In contrast, at 20 h after the addition of IFN-gamma, rickettsial DNA, rRNA, and protein syntheses were all inhibited.
Collapse
Affiliation(s)
- Q Gao
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile 36688
| | | | | |
Collapse
|
24
|
Moree MF, Hanson B. Growth characteristics and proteins of plaque-purified strains of Rickettsia tsutsugamushi. Infect Immun 1992; 60:3405-15. [PMID: 1379212 PMCID: PMC257328 DOI: 10.1128/iai.60.8.3405-3415.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Six plaque-purified strains of Rickettsia tsutsugamushi (Karp, Gilliam, Kato, JC472B, TA716, and TA763) that fall into three categories of virulence for mice were compared by several parameters. Five of the six strains formed plaques of identical size in mouse cells, but each of three strains tested (representing three mouse virulence types) had a different doubling time in mouse cell cultures. Neither of these properties correlated strictly with virulence in mice, although the avirulent TA716 strain replicated much more slowly than the more virulent Karp and Gilliam strains. R. tsutsugamushi strain heterogeneity was also manifested at the polypeptide level by migration rates in sodium dodecyl sulfate-polyacrylamide gels of three of the major scrub typhus antigens (Sta110, Sta56, and Sta47), with those of Sta110 differing most widely. As expected, immunoblotting with polyclonal mouse sera showed substantial cross-reactivity among the major antigens of the six strains. Similar tests with Karp-induced monoclonal antibodies (MAb) demonstrated that some epitopes on Sta110 and Sta56 were shared by fewer than the six strains, but they identified no epitope unique to Karp. In contrast to the ready demonstration of antigenic heterogeneity in Sta110 and Sta56, four of the five Sta47-specific MAb reacted well with Sta47 from each of the six strains; the remaining MAb bound Sta47 from Karp and the Karp-like JC472B strain more strongly than Sta47 from the other four strains. The MAb also were useful in indicating the possible occurrence of Sta47 as dimers and trimers, the presence of Sta110 (as well as Sta56 and Sta47) in the rickettsial membrane, and the apparent interaction of the putative heat shock protein Sta58 with Sta47 or Sta47-Sta56 complexes.
Collapse
Affiliation(s)
- M F Moree
- Department of Microbiology and Immunology, University of Maryland, Baltimore 21201
| | | |
Collapse
|
25
|
Hanson B. Susceptibility of Rickettsia tsutsugamushi Gilliam to gamma interferon in cultured mouse cells. Infect Immun 1991; 59:4125-33. [PMID: 1937771 PMCID: PMC259006 DOI: 10.1128/iai.59.11.4125-4133.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recombinant rodent gamma interferon (IFN-gamma) inhibited the infection of cultured BALB/3T3 mouse fibroblasts by Rickettsia tsutsugamushi Gilliam, apparently mainly by clearance of intracellular rickettsiae. No significant effect on rickettsial entry into the cells was noted; IFN-gamma was toxic to infected cells, as measured by the capacity of treated, infected cells to attach to the surfaces of culture vessels. In a small proportion of IFN-gamma-treated cells, rickettsial replication appeared to persist at normal levels. A fraction (28%) of rickettsiae clonally isolated from cultures treated with IFN-gamma was resistant to IFN-gamma-mediated inhibition, but four serial passages of these resistant clones in the absence of additional IFN-gamma resulted in the loss of resistance. In several respects, therefore, the IFN-gamma-mediated inhibition of scrub typhus rickettsiae in cultured fibroblasts was similar to that reported for Rickettsia prowazekii.
Collapse
Affiliation(s)
- B Hanson
- Department of Microbiology and Immunology, University of Maryland, Baltimore 21201
| |
Collapse
|