1
|
Wilkinson IVL, Bottlinger M, El Harraoui Y, Sieber SA. Profiling the Heme-Binding Proteomes of Bacteria Using Chemical Proteomics. Angew Chem Int Ed Engl 2023; 62:e202212111. [PMID: 36495310 DOI: 10.1002/anie.202212111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Heme is a cofactor with myriad roles and essential to almost all living organisms. Beyond classical gas transport and catalytic functions, heme is increasingly appreciated as a tightly controlled signalling molecule regulating protein expression. However, heme acquisition, biosynthesis and regulation is poorly understood beyond a few model organisms, and the heme-binding proteome has not been fully characterised in bacteria. Yet as heme homeostasis is critical for bacterial survival, heme-binding proteins are promising drug targets. Herein we report a chemical proteomics method for global profiling of heme-binding proteins in live cells for the first time. Employing a panel of heme-based clickable and photoaffinity probes enabled the profiling of 32-54 % of the known heme-binding proteomes in Gram-positive and Gram-negative bacteria. This simple-to-implement profiling strategy could be interchangeably applied to different cell types and systems and fuel future research into heme biology.
Collapse
Affiliation(s)
- Isabel V L Wilkinson
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Max Bottlinger
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Yassmine El Harraoui
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Stephan A Sieber
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| |
Collapse
|
2
|
Burton MJ, Cresser-Brown J, Thomas M, Portolano N, Basran J, Freeman SL, Kwon H, Bottrill AR, Llansola-Portoles MJ, Pascal AA, Jukes-Jones R, Chernova T, Schmid R, Davies NW, Storey NM, Dorlet P, Moody PCE, Mitcheson JS, Raven EL. Discovery of a heme-binding domain in a neuronal voltage-gated potassium channel. J Biol Chem 2020; 295:13277-13286. [PMID: 32723862 DOI: 10.1074/jbc.ra120.014150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.
Collapse
Affiliation(s)
- Mark J Burton
- Department of Chemistry, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | | | - Morgan Thomas
- Department of Chemistry, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Nicola Portolano
- Department of Chemistry, University of Leicester, Leicester, United Kingdom; Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| | - Jaswir Basran
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Samuel L Freeman
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Hanna Kwon
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Andrew R Bottrill
- Protein Nucleic Acid Chemistry Laboratory, University of Leicester, Leicester, United Kingdom
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Rebekah Jukes-Jones
- Medical Research Council Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| | - Tatyana Chernova
- Medical Research Council Toxicology Unit, University of Cambridge, Leicester, United Kingdom
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Noel W Davies
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Nina M Storey
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Pierre Dorlet
- CNRS, Aix Marseille Université, Laboratoire de Bioenergetique et d'Ingenierie des Protéines, Marseille, France
| | - Peter C E Moody
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - John S Mitcheson
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
3
|
Abstract
Neisseria gonorrhoeae infection is a major public health problem worldwide. The increasing incidence of gonorrhea coupled with global spread of multidrug-resistant isolates of gonococci has ushered in an era of potentially untreatable infection. Gonococcal disease elicits limited immunity, and individuals are susceptible to repeated infections. In this chapter, we describe gonococcal disease and epidemiology and the structure and function of major surface components involved in pathogenesis. We also discuss the mechanisms that gonococci use to evade host immune responses and the immune responses following immunization with selected bacterial components that may overcome evasion. Understanding the biology of the gonococcus may aid in preventing the spread of gonorrhea and also facilitate the development of gonococcal vaccines and treatments.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Comer JM, Zhang L. Experimental Methods for Studying Cellular Heme Signaling. Cells 2018; 7:cells7060047. [PMID: 29795036 PMCID: PMC6025097 DOI: 10.3390/cells7060047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023] Open
Abstract
The study of heme is important to our understanding of cellular bioenergetics, especially in cancer cells. The function of heme as a prosthetic group in proteins such as cytochromes is now well-documented. Less is known, however, about its role as a regulator of metabolic and energetic pathways. This is due in part to some inherent difficulties in studying heme. Due to its slightly amphiphilic nature, heme is a "sticky" molecule which can easily bind non-specifically to proteins. In addition, heme tends to dimerize, oxidize, and aggregate in purely aqueous solutions; therefore, there are constraints on buffer composition and concentrations. Despite these difficulties, our knowledge of heme's regulatory role continues to grow. This review sums up the latest methods used to study reversible heme binding. Heme-regulated proteins will also be reviewed, as well as a system for imaging the cellular localization of heme.
Collapse
Affiliation(s)
- Jonathan M Comer
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
5
|
Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME JOURNAL 2017; 11:1232-1244. [PMID: 28234349 PMCID: PMC5437933 DOI: 10.1038/ismej.2016.201] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 12/25/2022]
Abstract
The genus Bartonella comprises facultative intracellular bacteria with a unique lifestyle. After transmission by blood-sucking arthropods they colonize the erythrocytes of mammalian hosts causing acute and chronic infectious diseases. Although the pathogen–host interaction is well understood, little is known about the evolutionary origin of the infection strategy manifested by Bartonella species. Here we analyzed six genomes of Bartonella apis, a honey bee gut symbiont that to date represents the closest relative of pathogenic Bartonella species. Comparative genomics revealed that B. apis encodes a large set of vertically inherited genes for amino acid and cofactor biosynthesis and nitrogen metabolism. Most pathogenic bartonellae have lost these ancestral functions, but acquired specific virulence factors and expanded a vertically inherited gene family for harvesting cofactors from the blood. However, the deeply rooted pathogen Bartonella tamiae has retained many of the ancestral genome characteristics reflecting an evolutionary intermediate state toward a host-restricted intraerythrocytic lifestyle. Our findings suggest that the ancestor of the pathogen Bartonella was a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream. This study highlights the importance of comparative genomics among pathogens and non-pathogenic relatives to understand disease emergence within an evolutionary-ecological framework.
Collapse
|
6
|
Lin MH, Chang YC, Hsiao CD, Huang SH, Wang MS, Ko YC, Yang CW, Sun YJ. LipL41, a hemin binding protein from Leptospira santarosai serovar Shermani. PLoS One 2013; 8:e83246. [PMID: 24349474 PMCID: PMC3861479 DOI: 10.1371/journal.pone.0083246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/31/2013] [Indexed: 12/24/2022] Open
Abstract
Leptospirosis is one of the most widespread zoonotic diseases in the world. It is caused by the pathogen Leptospira that results in multiple-organ failure, in particular of the kidney. Outer membrane lipoprotein is the suspected virulence factor of Leptospira. In Leptospira spp LipL41 is one major lipoprotein and is highly conserved. Previous study suggests that LipL41 bears hemin-binding ability and might play a possible role in iron regulation and storage. However, the characterization of hemin-binding ability of LipL41 is still unclear. Here the hemin-binding ability of LipL41 was examined, yielding a Kd = 0.59 ± 0.14 μM. Two possible heme regulatory motifs (HRMs), C[P/S], were found in LipL41 at 140Cys-Ser and 220Cys-Pro. The mutation study indicates that Cys140 and Cys220 might be cooperatively involved in hemin binding. A supramolecular assembly of LipL41 was determined by transmission electron microscopy. The LipL41 oligomer consists of 36 molecules and folds as a double-layered particle. At the C-terminus of LipL41, there are two tetratricopeptide repeats (TPRs), which might be involved in the protein-protein interaction of the supramolecular assembly.
Collapse
Affiliation(s)
- Ming-Hsing Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | - Shih-Hsun Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Shi Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ching Ko
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Guo Y, Guo G, Mao X, Zhang W, Xiao J, Tong W, Liu T, Xiao B, Liu X, Feng Y, Zou Q. Functional identification of HugZ, a heme oxygenase from Helicobacter pylori. BMC Microbiol 2008; 8:226. [PMID: 19091096 PMCID: PMC2644699 DOI: 10.1186/1471-2180-8-226] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/17/2008] [Indexed: 11/17/2022] Open
Abstract
Background Iron is recognized as an important trace element, essential for most organisms including pathogenic bacteria. HugZ, a protein related to heme iron utilization, is involved in bacterial acquisition of iron from the host. We previously observed that a hugZ homologue is correlated with the adaptive colonization of Helicobacter pylori (H. pylori), a major gastro-enteric pathogen. However, its exact physiological role remains unclear. Results A gene homologous to hugZ, designated hp0318, identified in H. pylori ATCC 26695, exhibits 66% similarity to cj1613c of Campylobacter jejuni NCTC 11168. Soluble 6 × His fused-HugZ protein was expressed in vitro. Hemin-agrose affinity analysis indicated that the recombinant HugZ protein can bind to hemin. Absorption spectroscopy at 411 nm further revealed a heme:HugZ binding ratio of 1:1. Enzymatic assays showed that purified recombinant HugZ protein can degrade hemin into biliverdin and carbon monoxide in the presence of either ascorbic acid or NADPH and cytochrome P450 reductase. The biochemical and enzymatic characteristics agreed closely with those of Campylobacter jejuni Cj1613c protein, implying that hp0318 is a functional member of the HugZ family. A hugZ deletion mutant was obtained by homologous recombination. This mutant strain showed poor growth when hemoglobin was provided as the source of iron, partly because of its failure to utilize hemoglobin efficiently. Real-time quantitative PCR also confirmed that the expression of hugZ was regulated by iron levels. Conclusion These findings provide biochemical and genetic evidence that hugZ (hp0318) encodes a heme oxygenase involved in iron release/uptake in H. pylori.
Collapse
Affiliation(s)
- Ying Guo
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Asuthkar S, Velineni S, Stadlmann J, Altmann F, Sritharan M. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai. Infect Immun 2007; 75:4582-91. [PMID: 17576761 PMCID: PMC1951163 DOI: 10.1128/iai.00324-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.
Collapse
Affiliation(s)
- Swapna Asuthkar
- School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | | | | | | | | |
Collapse
|
9
|
Ahn SH, Han JH, Lee JH, Park KJ, Kong IS. Identification of an iron-regulated hemin-binding outer membrane protein, HupO, in Vibrio fluvialis: effects on hemolytic activity and the oxidative stress response. Infect Immun 2005; 73:722-9. [PMID: 15664910 PMCID: PMC546946 DOI: 10.1128/iai.73.2.722-729.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pathogenic bacteria, iron acquisition is important for colonization and proliferation in the host under iron-limited conditions. The ability of Vibrio spp. to acquire iron is often critical to their virulence, causing gastroenteritis or excessive watery diarrhea in humans. In the study described here, we cloned the 2,100-bp heme utilization protein gene hupO in Vibrio fluvialis. HupO had high homology to iron-regulated outer membrane receptor proteins in Vibrio sp. and contained motifs that are common to bacterial heme receptors, including a consensus TonB box, a FRAP domain, and an NPNL domain. To characterize the hemin-binding activity of HupO, we purified the recombinant HupO protein (rHupO) from Escherichia coli by using an overexpression system. HupO was found to bind to hemin but not to hemoglobin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting demonstrated that the 77-kDa outer membrane protein HupO of V. fluvialis was induced under iron-restricted conditions. We constructed a hupO mutant, HP1, to investigate the biochemical function of HupO in V. fluvialis. The hemolytic activity of HP1 was reduced compared to that of wild-type cells and, when exposed to hydrogen peroxide, significantly lower numbers of HP1 survived than was the case in the wild type. These results suggest that HupO is associated with virulence expression in V. fluvialis through stimulation of hemolysin production and resistance to oxidative stress. In experimentally infected mice, the 50% lethal dose value of the wild-type was lower than that of the mutant, HP1.
Collapse
Affiliation(s)
- Sun-Hee Ahn
- Department of Biotechnology and Bioengineering, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Hirayama M, Kobiyama A, Kinoshita S, Watabe S. The occurrence of two types of hemopexin-like protein in medaka and differences in their affinity to heme. ACTA ACUST UNITED AC 2004; 207:1387-98. [PMID: 15010490 DOI: 10.1242/jeb.00897] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Full-length cDNA clones encoding two types of hemopexin-like protein, mWap65-1 and mWap65-2, were isolated from the HNI inbred line of medaka Oryzias latipes. The deduced amino acid sequence of mWap65-2 resembled mammalian hemopexins more closely than that of mWap65-1. Histidine residues required for the high affinity of hemopexins for hemes were conserved in mWap65-2, but not in mWap65-1. Surprisingly, mWap65-1, but not mWap65-2, showed heme-binding ability as revealed by hemin-agarose affinity chromatography, even though mWap65-1 lacked the essential histidine residues. Furthermore, RT-PCR analysis of different tissues demonstrated that the transcripts of mWap65-2 were restricted to liver, whereas those of mWap65-1 were found in various tissues including liver, eye, heart and brain. Quantitative RT-PCR revealed that transcripts of mWap65-2 were expressed earlier than those of mWap65-1 during ontogeny. However, the accumulated mRNA levels of both mWap65-1 and mWap65-2 did not differ significantly in fish acclimated to either 10 degrees C or 30 degrees C for 5 weeks. These characteristics suggest that the two proteins have different physiological functions and that mWap65-2 is not a hemopexin.
Collapse
Affiliation(s)
- Makoto Hirayama
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
11
|
Srikumar R, Mikael LG, Pawelek PD, Khamessan A, Gibbs BF, Jacques M, Coulton JW. Molecular cloning of haemoglobin-binding protein HgbA in the outer membrane of Actinobacillus pleuropneumoniae. Microbiology (Reading) 2004; 150:1723-1734. [PMID: 15184559 DOI: 10.1099/mic.0.27046-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
From the porcine pathogenActinobacillus pleuropneumoniaecultivated in iron-deficient or haem-deficient media, haemoglobin (Hb)-agarose affinity purification was exploited to isolate an outer-membrane protein of ∼105 kDa, designated HgbA. Internal peptide sequences of purified HgbA were used to design oligonucleotide primers for PCR amplification, yielding amplicons that showed partial sequences with homology tohgbAofPasteurella multocida. Upon screening two genomic libraries ofA. pleuropneumoniaeserotype 1 strain 4074, positive clones were assembled into an ORF of 2838 bp. HgbA (946 aa) includes a signal peptide of 23 aa and the deduced HgbA sequence (104 890 Da) also demonstrated a possible Ton box. The promoter region ofhgbAfromA. pleuropneumoniaeserotype 1 showed consensus for −35 and −10 sequences and a putative Fur-binding site. RT-PCR confirmed thathgbAofA. pleuropneumoniaeis upregulated in response to diminished levels of iron in the culture medium. While an internally deletedhgbAmutant was unable to use pig Hb as sole source of iron for growth, flow cytometry confirmed its Hb binding; the internally deleted sequences may not be required for Hb binding, but appear necessary for the iron supply from Hb. HgbA is required for growth ofA. pleuropneumoniaein the presence of Hb as sole iron source.
Collapse
Affiliation(s)
- Ramakrishnan Srikumar
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4
| | - Leonie G Mikael
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada J2S 7C6
| | - Peter D Pawelek
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4
| | - Ali Khamessan
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4
| | | | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada J2S 7C6
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada H3A 2B4
| |
Collapse
|
12
|
Zimmermann R, Kempf VAJ, Schiltz E, Oberle K, Sander A. Hemin binding, functional expression, and complementation analysis of Pap 31 from Bartonella henselae. J Bacteriol 2003; 185:1739-44. [PMID: 12591895 PMCID: PMC148071 DOI: 10.1128/jb.185.5.1739-1744.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth of Bartonella henselae is strongly heme dependent, and B. henselae is unable to synthesize heme itself. At least five outer membrane-associated proteins from B. henselae bind hemin, including the 31-kDa protein designated Pap31. The gene of this protein was heterologously expressed in Escherichia coli M15(pREP4) and detected with monoclonal antibodies in the outer membrane fraction. Complementation of the hemA-deficient mutant E. coli K-12 EB53 (aroB tsx malT hemA) with pap31 demonstrated that this protein is involved in heme acquisition and may be an important virulence factor in the pathogenesis of B. henselae.
Collapse
Affiliation(s)
- Rainer Zimmermann
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Xu X, Kolodrubetz D. Construction and analysis of hemin binding protein mutants in the oral pathogen Treponema denticola. Res Microbiol 2002; 153:569-77. [PMID: 12455704 DOI: 10.1016/s0923-2508(02)01370-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Treponema denticola, a periodontal pathogen, can use hemin as its sole iron source. The organism synthesizes two low-iron-induced outer-membrane hemin-binding proteins, HbpA and HbpB. To characterize genetically the function of these two novel proteins, standard recombinant DNA procedures and electroporation were used to construct T. denticola strains in which the genomic copies of either hbpA or both hbpA and hbpB were interrupted with an erythromycin resistance cassette. Northern blot and RT-PCR analyses verified that the normal hbpA transcripts were missing in both mutants. The hbpA mutation also had a polar effect on the transcription of hbpB and thus neither mutant strain transcribes the downstream hbpB gene. The parental and hbp mutant strains had similar growth properties in normal media, but the mutants reached a lower cell density than parental cells in iron-restricted media. The results indicate that HbpA and/or HbpB are required for efficient iron utilization but that there is an additional system that can help T. denticola acquire iron. The growth defect of the mutants was totally restored by lactoferrin but only partially restored by adding exogenous hemin or inorganic iron. Thus, hbpA and/or hbpB specifically facilitate hemin and iron utilization under low iron conditions and are presumably important for T. denticola virulence in the host environment.
Collapse
MESH Headings
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Heme-Binding Proteins
- Hemeproteins/genetics
- Hemeproteins/metabolism
- Hemin/metabolism
- Iron/metabolism
- Mutagenesis, Insertional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Treponema/genetics
- Treponema/growth & development
- Treponema/metabolism
Collapse
|
14
|
Xu X, Holt SC, Kolodrubetz D. Cloning and expression of two novel hemin binding protein genes from Treponema denticola. Infect Immun 2001; 69:4465-72. [PMID: 11401987 PMCID: PMC98520 DOI: 10.1128/iai.69.7.4465-4472.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treponema denticola does not appear to produce siderophores, so it must acquire iron by other pathways. Indeed, T. denticola has been shown to have an iron-regulated 44-kDa outer membrane protein (HbpA) with hemin binding ability. To characterize the HbpA protein, its gene was cloned from genomic DNA libraries of T. denticola. Sequence analysis of the hbpA open reading frame indicated that it encoded a 42.8-kDa protein with a 23-amino-acid signal peptide. HbpA has no significant homology to any proteins in the databases. Southern blot analysis demonstrated that hbpA is present in several T. denticola ATCC strains and clinical isolates, but not in Treponema pectinovorum, Treponema socranskii, or Escherichia coli. HbpA, expressed as a recombinant protein in E. coli and purified by antibody affinity chromatography, has hemin binding activity as determined by lithium dodecyl sulfate-polyacrylamide gel electrophoresis with tetramethylbenzidine staining. Northern blot analysis showed that there were two hbpA-containing transcripts, of approximately 1.3 and 2.6 kb, and that the RNA levels were low-iron induced. Interestingly, the 2.6-kb mRNA also encoded a second protein with significant homology to hbpA. This downstream gene, called hbpB, was cloned and sequenced and its product was expressed as a fusion protein in E. coli. The hbpB gene product is 49% identical to HbpA and binds hemin. Thus, T. denticola has two novel hemin binding proteins which may be part of a previously unrecognized iron acquisition pathway.
Collapse
Affiliation(s)
- X Xu
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | |
Collapse
|
15
|
Dashper SG, Hendtlass A, Slakeski N, Jackson C, Cross KJ, Brownfield L, Hamilton R, Barr I, Reynolds EC. Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis. J Bacteriol 2000; 182:6456-62. [PMID: 11053391 PMCID: PMC94793 DOI: 10.1128/jb.182.22.6456-6462.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a gram-negative, anaerobic coccobacillus that has been implicated as a major etiological agent in the development of chronic periodontitis. In this paper, we report the characterization of a protein, IhtB (iron heme transport; formerly designated Pga30), that is an outer membrane hemin-binding protein potentially involved in iron assimilation by P. gingivalis. IhtB was localized to the cell surface of P. gingivalis by Western blot analysis of a Sarkosyl-insoluble outer membrane preparation and by immunocytochemical staining of whole cells using IhtB peptide-specific antisera. The protein, released from the cell surface, was shown to bind to hemin using hemin-agarose. The growth of heme-limited, but not heme-replete, P. gingivalis cells was inhibited by preincubation with IhtB peptide-specific antisera. The ihtB gene was located between an open reading frame encoding a putative TonB-linked outer membrane receptor and three open reading frames that have sequence similarity to ATP binding cassette transport system operons in other bacteria. Analysis of the deduced amino acid sequence of IhtB showed significant similarity to the Salmonella typhimurium protein CbiK, a cobalt chelatase that is structurally related to the ATP-independent family of ferrochelatases. Molecular modeling indicated that the IhtB amino acid sequence could be threaded onto the CbiK fold with the IhtB structural model containing the active-site residues critical for chelatase activity. These results suggest that IhtB is a peripheral outer membrane chelatase that may remove iron from heme prior to uptake by P. gingivalis.
Collapse
Affiliation(s)
- S G Dashper
- School of Dental Science, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sander A, Kretzer S, Bredt W, Oberle K, Bereswill S. Hemin-dependent growth and hemin binding of Bartonella henselae. FEMS Microbiol Lett 2000; 189:55-9. [PMID: 10913865 DOI: 10.1111/j.1574-6968.2000.tb09205.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bartonella henselae causes cat-scratch disease and bacillary angiomatosis peliosis. The bacteria reside in erythrocytes of asymptomatic cats, which represent the natural reservoir for this pathogen. B. henselae is usually grown on blood-enriched media. Growth experiments on Brucella medium without blood demonstrated that heme compounds are essential for the growth of B. henselae and can completely substitute the addition of blood components. The heme precursor protoporphyrin IX alone, or in combination with FeCl(2) or FeCl(3), as well as transferrin or lactoferrin did not support growth, indicating that B. henselae cannot synthesize heme itself. Hemin supported growth even when free iron was chelated, indicating that hemin is also used as an iron source. Binding assays showed that hemin starvation increased the binding capacity of B. henselae for hemin, providing evidence that the bacteria carry a specific hemin uptake system, which might be regulated by hemin.
Collapse
Affiliation(s)
- A Sander
- Abteilung Mikrobiologie und Hygiene, Institut für Medizinische Mikrobiologie und Hygiene, Klinikum der Universität Freiburg, Hermann-Herder-Str. 11, D-79104, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Drazek ES, Hammack CA, Schmitt MP. Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol Microbiol 2000; 36:68-84. [PMID: 10760164 DOI: 10.1046/j.1365-2958.2000.01818.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Corynebacterium diphtheriae and Corynebacterium ulcerans use haemin and haemoglobin as essential sources of iron during growth in iron-depleted medium. C. diphtheriae and C. ulcerans mutants defective in haemin iron utilization were isolated and characterized. Four clones from a C. diphtheriae genomic library complemented several of the Corynebacteria haemin utilization mutants. The complementing plasmids shared an approximately 3 kb region, and the nucleotide sequence of one of the plasmids revealed five open reading frames that appeared to be organized in a single operon. The first three genes, which we have termed hmuT, hmuU and hmuV, shared striking homology with genes that are known to be required for haemin transport in Gram-negative bacteria and are proposed to be part of an ABC (ATP-binding cassette) transport system. The hmuT gene encodes a 37 kDa lipoprotein that is associated with the cytoplasmic membrane when expressed in Escherichi coli and C. diphtheriae. HmuT binds in vitro to haemin- and haemoglobin-agarose, suggesting that it is capable of binding both haemin and haemoglobin and may function as the haemin receptor in C. diphtheriae. This study reports the first genetic characterization of a transport system that is involved in the utilization of haemin and haemoglobin as iron sources by a Gram-positive bacterium.
Collapse
Affiliation(s)
- E S Drazek
- Laboratory of Bacterial Toxins, Division of Bacterial Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
18
|
Ren Z, Jin H, Morton DJ, Stull TL. hgpB, a gene encoding a second Haemophilus influenzae hemoglobin- and hemoglobin-haptoglobin-binding protein. Infect Immun 1998; 66:4733-41. [PMID: 9746572 PMCID: PMC108583 DOI: 10.1128/iai.66.10.4733-4741.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1998] [Accepted: 07/17/1998] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae requires heme for growth and can utilize both hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified a hemoglobin- and hemoglobin-haptoglobin-binding protein, HgpA, in H. influenzae HI689. Mutation of hgpA did not affect binding or utilization of either heme source. The hgpA mutant exhibited loss of a 120-kDa protein and increased expression of a 115-kDa protein. These data suggested that at least one other gene product is involved in binding of these heme sources by H. influenzae. A 3.2-kbp PCR product derived from HI689 was cloned. The nucleotide sequence indicated a separate, distinct gene with high homology to hgpA, which would encode a 115-kDa protein. Primers were designed for directional cloning of the structural gene in the correct reading frame. Sonicates of induced Escherichia coli harboring the cloned open reading frame bound both hemoglobin and hemoglobin-haptoglobin. An insertion/deletion mutant of H. influenzae at the newly identified locus, designated hgpB, was constructed. The 115-kDa protein was not detected in the mutant after affinity purification using biotinylated hemoglobin. An hgpA hgpB double-mutant strain exhibited a reduced ability to utilize hemoglobin-haptoglobin, although it was unaltered in the ability to utilize hemoglobin. Affinity isolation of hemoglobin-binding proteins from the double mutant resulted in isolation of an approximately 120-kDa protein. Internal peptide sequencing revealed this protein to be a third distinct protein, highly homologous to HgpA and HgpB. In summary a second hemoglobin- and hemoglobin-haptoglobin-binding protein of H. influenzae has been identified and characterized, and the presence of an additional protein of similar function has been revealed.
Collapse
Affiliation(s)
- Z Ren
- Departments of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
19
|
Thomas CE, Olsen B, Elkins C. Cloning and characterization of tdhA, a locus encoding a TonB-dependent heme receptor from Haemophilus ducreyi. Infect Immun 1998; 66:4254-62. [PMID: 9712775 PMCID: PMC108513 DOI: 10.1128/iai.66.9.4254-4262.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 06/24/1998] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi is unable to synthesize heme and must acquire it from its only known host, humans. We cloned and sequenced a gene encoding an outer membrane receptor for heme. It was designated tdhA (for TonB-dependent heme receptor A) since it was related by sequence homology to the family of TonB-dependent receptors. TdhA was strikingly similar to open reading frame HI0113 from the genome of Haemophilus influenzae Rd and also shared homology with five other heme receptors, including HxuC, HemR, HmuR, ChuA, and ShuA, from gram-negative bacteria. An Escherichia coli hemA tonB mutant strongly expressing H. ducreyi tdhA grew on low levels of heme as a source of heme only when an intact H. ducreyi Ton system plasmid was present, formally demonstrating functional TonB dependence. tdhA was expressed poorly in vitro by H. ducreyi and only under conditions of heme limitation. A survey of H. ducreyi revealed that all tested strains but one synthesized small amounts of TdhA in vitro under heme-limiting conditions. Surprisingly, an isogenic mutant of tdhA as well as its parent, 35000, both required the same high levels of heme for growth (50 microgram/ml [77 microM] on agar medium). This result, together with previous findings, suggests that in vitro, the uptake of heme by H. ducreyi is mediated by a TonB- and TdhA-independent mechanism, possibly diffusion.
Collapse
Affiliation(s)
- C E Thomas
- Departments of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
20
|
Cope LD, Thomas SE, Hrkal Z, Hansen EJ. Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae. Infect Immun 1998; 66:4511-6. [PMID: 9712810 PMCID: PMC108548 DOI: 10.1128/iai.66.9.4511-4516.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Utilization of heme-hemopexin as a source of heme by Haemophilus influenzae type b is dependent on expression by this bacterium of the 100-kDa HxuA protein, which is both present on the bacterial cell surface and released into the culture supernatant (L. D. Cope, R. Yogev, U. Muller-Eberhard, and E. J. Hansen, J. Bacteriol. 177:2644-2653, 1995). Radioimmunoprecipitation analysis showed that the soluble HxuA protein present in H. influenzae type b culture supernatant bound heme-hemopexin complexes in solution. An isogenic H. influenzae type b hxuA mutant was unable to utilize soluble heme-hemopexin complexes for growth in vitro unless soluble HxuA protein was provided exogenously. Soluble HxuA protein secreted by a nontypeable H. influenzae strain also allowed growth of this H. influenzae type b hxuA mutant. These results indicated that the heme present in heme-hemopexin complexes is rendered accessible to H. influenzae when these complexes are bound by the soluble HxuA protein.
Collapse
Affiliation(s)
- L D Cope
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048, USA
| | | | | | | |
Collapse
|
21
|
Whitby PW, Sim KE, Morton DJ, Patel JA, Stull TL. Transcription of genes encoding iron and heme acquisition proteins of Haemophilus influenzae during acute otitis media. Infect Immun 1997; 65:4696-700. [PMID: 9353052 PMCID: PMC175673 DOI: 10.1128/iai.65.11.4696-4700.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Unencapsulated Haemophilus influenzae is the second most common etiologic agent of otitis media in children. H. influenzae requires heme for aerobic growth in vitro and is able to utilize hemoglobin and complexes of heme-hemopexin, heme-albumin, and hemoglobin-haptoglobin and ferritransferrin as sources of iron and heme in vitro. Several of the acquisition mechanisms have been characterized and been shown to be heme repressible in vitro. However, little is known about the expression of heme and/or iron acquisition mechanisms during infections in the middle ear. This study was performed to determine if the genes encoding heme and iron acquisition proteins are transcribed during in vivo growth and to compare these findings with those for samples grown in vitro. Reverse transcriptase PCR (RT-PCR) was used to analyze total RNA fractions derived from in vitro- and in vivo-grown H. influenzae. Genes encoding the transferrin-binding proteins TbpA and TbpB, the 100-kDa hemopexin-binding protein HxuA, and the hemoglobin-binding protein HgpA were transcribed during otitis media. Twelve middle ear fluid samples were analyzed by blind RT-PCR to determine the transcriptional status of these genes in H. influenzae during otitis media. Five isolates had transcripts corresponding to tbpA, tbpB, and hxuA. The presence of hgpA transcripts was variable, depending on the presence of hgpA in the genome of the H. influenzae isolate. Samples without H. influenzae gene transcripts contained other etiologic agents commonly causing otitis media. These data demonstrate that H. influenzae iron and/or heme acquisition genes are transcribed during otitis media and suggest that the microenvironment during acute otitis media starves H. influenzae of heme.
Collapse
Affiliation(s)
- P W Whitby
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Streptococcus pneumoniae is a causative agent of bacterial pneumonia, otitis media, meningitis, and bacteremia. It causes considerable morbidity and mortality throughout the world, especially among children, the elderly, and immunocompromised individuals. We have demonstrated previously that the growth of S. pneumoniae is limited under iron-depleted conditions and can be restored by the addition of either hemin or hemoglobin. In the present study, we showed that S. pneumoniae had the ability to bind hemin and that the level of hemin binding activity was not affected by supplementation of the growth medium with iron. Approximately 70 to 80% of the hemin binding activity was mediated by proteinase-resistant components, and the remainder was mediated by proteins. Hemin binding proteins were located in both soluble extract and envelope fractions of pneumococcal cells. By batch affinity chromatography, a major hemin binding polypeptide with an apparent molecular mass of 43 kDa was identified in the cell lysate of S. pneumoniae. Polyclonal antibodies against this polypeptide were raised. By immunoblot analysis, this hemin binding polypeptide was localized in the envelope and did not exhibit any variation in molecular weight among all serotypes tested. The subcellular distribution of hemin binding activity may have functional implications.
Collapse
Affiliation(s)
- S S Tai
- Department of Microbiology, College of Medicine, Howard University, Washington, DC 20059, USA
| | | | | |
Collapse
|
23
|
Maciver I, Latimer JL, Liem HH, Muller-Eberhard U, Hrkal Z, Hansen EJ. Identification of an outer membrane protein involved in utilization of hemoglobin-haptoglobin complexes by nontypeable Haemophilus influenzae. Infect Immun 1996; 64:3703-12. [PMID: 8751920 PMCID: PMC174284 DOI: 10.1128/iai.64.9.3703-3712.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A recombinant plasmid containing a 6.5-kb fragment of nontypeable Haemophilus influenzae (NTHI) chromosomal DNA was shown to confer a hemoglobin-haptoglobin-binding phenotype on Escherichia coli. Use of a mini-Tn10kan transposon for random insertion mutagenesis of this recombinant plasmid allowed localization of the NTHI DNA responsible for this hemoglobin-haptoglobin-binding phenotype to a 3.5-kb PstI-XhoI fragment within the 6.5-kb NTHI DNA insert. When this mutagenized NTHI DNA fragment was used to transform the wild-type NTHI strain, the resultant kanamycin-resistant mutant exhibited significantly decreased abilities to bind hemoglobin-haptoglobin and utilize it as a source of heme for aerobic growth in vitro. This mutant also lacked expression of a 115-kDa outer membrane protein that was present in the wild-type parent strain. Transformation of this mutant with wild-type NTHI chromosomal DNA restored the abilities to bind and utilize hemoglobin-haptoglobin and to express the 115-kDa outer membrane protein. Nucleotide sequence analysis of the relevant NTHI DNA revealed the presence of a gene, designated hhuA, that encoded a predicted 117,145-Da protein. The HhuA protein exhibited features typical of a TonB-dependent outer membrane receptor and had significant identity with the hemoglobin receptors of both Haemophilus ducreyi and Neisseria meningitidis.
Collapse
Affiliation(s)
- I Maciver
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048, USA
| | | | | | | | | | | |
Collapse
|
24
|
Fouz B, Mazoy R, Lemos ML, del Olmo MJ, Amaro C. Utilization of hemin and hemoglobin by Vibrio vulnificus biotype 2. Appl Environ Microbiol 1996; 62:2806-10. [PMID: 8702273 PMCID: PMC168066 DOI: 10.1128/aem.62.8.2806-2810.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The eel pathogen Vibrio vulnificus biotype 2 is able to use hemoglobin (Hb) and hemin (Hm) to reverse iron limitation. In this stud, the adjuvant effect of both compounds on eel pathogenicity has been evaluated and confirmed. Further, we have studied the heme-iron acquisition mechanism displayed by this bacterium. Whole cells were capable of binding Hb and Hm, independently of (i) iron levels in growth medium and (ii) the presence of polysaccharide capsules on bacterial surface. The Hb- and Hm-binding capacity was retained by the outer membrane protein (OMP) fraction and was abolished after proteolytic digestion of OMP samples. Western blotting (immunoblotting) of denatured OMPs revealed that two major protein bands of 36 and 32 kDa were involved in both Hm and Hb binding. The expression of these proteins was not affected by iron levels. In addition, V. vulnificus biotype 2 produced extracellular proteases, not regulated by iron, that were active against native Hb. In conclusion, the overall data suggest that the eel pathogen V. vulnificus biotype 2 can obtain iron by means of a mechanism which involves a direct interaction between the heme moiety and constitutive OMPs.
Collapse
Affiliation(s)
- B Fouz
- Departamento de Microbiología, Facultad de Biología, Universidad de Valencia, Spain
| | | | | | | | | |
Collapse
|
25
|
Jin H, Ren Z, Pozsgay JM, Elkins C, Whitby PW, Morton DJ, Stull TL. Cloning of a DNA fragment encoding a heme-repressible hemoglobin-binding outer membrane protein from Haemophilus influenzae. Infect Immun 1996; 64:3134-41. [PMID: 8757844 PMCID: PMC174198 DOI: 10.1128/iai.64.8.3134-3141.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Haemophilus influenzae is able to use hemoglobin as a sole source of heme, and heme-repressible hemoglobin binding to the cell surface has been demonstrated. Using an affinity purification methodology, a hemoglobin-binding protein of approximately 120 kDa was isolated from H. influenzae type b strain HI689 grown in heme-restricted but not in heme-replete conditions. The isolated protein was subjected to N-terminal amino acid sequencing, and the derived amino acid sequence was used to design corresponding oligonucleotides. The oligonucleotides were used to probe a Southern blot of EcoRI-digested HI689 genomic DNA. A hybridizing band of approximately 4.2 kb was successfully cloned into pUC19. Using a 1.9-kb internal BglII fragment of the 4.2-kb clone as a probe, hybridization was seen in both typeable and nontypeable H. influenzae but not in other bacterial species tested. Following partial nucleotide sequencing of the 4.2-kb insert, a putative open reading frame was subcloned into an expression vector. The host Escherichia coli strain in which the cloned fragment was expressed bound biotinylated human hemoglobin, whereas binding of hemoglobin was not detected in E. coli with the vector alone. In conclusion, we hypothesize that the DNA fragment encoding an approximately 120-kDa heme-repressible hemoglobin-binding protein mediates one step in the acquisition of hemoglobin by H. influenzae in vivo.
Collapse
Affiliation(s)
- H Jin
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Mazoy R, Vázquez F, Lemos ML. Isolation of heme-binding proteins from Vibrio anguillarum using affinity chromatography. FEMS Microbiol Lett 1996; 141:19-23. [PMID: 8764506 DOI: 10.1111/j.1574-6968.1996.tb08357.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using affinity chromatography techniques, several hemin- and hemoglobin-binding proteins of 97, 56 and 39 kDa were isolated from cell envelopes of Vibrio anguillarum strain H775-3 (serotype O1) and of 56, 46 and 37 kDa from strain RV22 (serotype O2). All these proteins were isolated under iron-rich as well as iron-poor conditions. Proteins of 39 kDa in H775-3 and of 37 kDa in RV22 isolated by hemin affinity could also bind biotinylated hemoglobin after being transferred to nitrocellulose, which suggests that they could be the common receptors for the heme group in V. anguillarum.
Collapse
Affiliation(s)
- R Mazoy
- Departamento de Microbiología y Parasitología, Facultad de Ciencias, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | |
Collapse
|
27
|
Abstract
Heme uptake is a common means of iron and porphyrin acquisition by many pathogenic bacteria. The genus Haemophilus includes several important pathogenic bacterial species that characteristically require hemin-, protoporphyrin-, or heme-substituted proteins as essential growth factors under aerobic conditions. However, the mechanism of heme transport is not understood for Haemophilus. We have cloned a DNA fragment from H. influenzae that allows an Escherichia coli hemA mutant to employ exogenous hemin or protoporphyrin IX as sole sources of porphyrin. DNA sequencing of the cloned DNA fragment suggested that a previously characterized gene (hel) encoding an antigenic, outer membrane lipoprotein e(P4) was responsible for the complementation activity. Construction of hel insertion mutations in strain H. influenzae Rd demonstrated that hel is essential for growth under aerobic conditions but not under anaerobic conditions. The aerobic growth defect of hel mutants could be reversed by providing exogenous hemin in the presence of outer membrane. The analysis of hybrids between e(P4) and beta-lactamase demonstrated that a domain of e(P4) near its NH2' terminus was required for its function in hemin use. Within this domain is a short amino acid sequence that displays similarity to H. influenzae hemin binding protein HbpA, hemin-binding motifs present in eukaryotic transcription activator heme-activated protein, and the heme containing proteins hemoglobin (alpha-chain) and cytochrome C3, suggesting that this region may be involved in hemin binding and/or transport.
Collapse
Affiliation(s)
- J Reidl
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
28
|
Abstract
The ability to utilize hemin and hemin-containing compounds for nutritional iron (Fe) uptake has been documented for several pathogenic bacteria. Neisseria gonorrhoeae can utilize free hemin as a source of Fe for growth; however, little is known concerning the mechanisms involved in hemin transport. In this study we have characterized the binding and accumulation of hemin by N. gonorrhoeae and defined the specificity of the gonococcal hemin receptor. N. gonorrhoeae F62 was grown in a chemically defined medium containing the iron chelator Desferal, and hemin transport was initiated by the addition of [59Fe]hemin (4.0 or 8.0 microM; specific activity, 7.0 Ci/mol). 59Fe uptake from radiolabeled hemin by N. gonorrhoeae was energy dependent, and 59Fe was shown to accumulate in the cell at a constant rate during logarithmic growth. However, we observed a decrease in the uptake of 59Fe from radiolabeled hemin when inorganic iron was present in the growth medium. Binding of 59Fe from radiolabeled hemin was inhibited by the addition of either cold hemin, hematoporphyrin, or hemoglobin, but not by ferric citrate. Although [14C]hemin was found to support the growth of N. gonorrhoeae, we did not detect the uptake of 14C from radiolabeled hemin. Extraction of the gonococcal periplasmic ferric binding protein (Fbp) from cultures grown with [59Fe]hemin indicated that a majority of the 59Fe was associated with the Fbp. Taken together, the results presented here indicate that hemin binds to a gonococcal outer membrane receptor through the protoporphyrin portion of the molecule and that following binding, iron is removed and transported into the cell, where it is associated with the gonococcal periplasmic ferric binding protein, Fbp.
Collapse
Affiliation(s)
- P J Desai
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | |
Collapse
|
29
|
Murphy GL, Whitworth LC, Clinkenbeard KD, Clinkenbeard PA. Hemolytic activity of the Pasteurella haemolytica leukotoxin. Infect Immun 1995; 63:3209-12. [PMID: 7622250 PMCID: PMC173439 DOI: 10.1128/iai.63.8.3209-3212.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A Pasteurella haemolytica mutant incapable of producing leukotoxin was created by allelic replacement. Concentrated culture supernatants from wild-type P. haemolytica, but not from the mutant, contained the 102-kDa leukotoxin protein and lysed bovine lymphoma cells and sheep erythrocytes. Wild-type P. haemolytica demonstrated the typical beta-hemolytic phenotype on sheep and rabbit blood agar, whereas the mutant did not.
Collapse
Affiliation(s)
- G L Murphy
- Department of Veterinary Pathology, College of Veterinary Medicine, Oklahoma State University, Stillwater 74078, USA
| | | | | | | |
Collapse
|
30
|
Wong JC, Patel R, Kendall D, Whitby PW, Smith A, Holland J, Williams P. Affinity, conservation, and surface exposure of hemopexin-binding proteins in Haemophilus influenzae. Infect Immun 1995; 63:2327-33. [PMID: 7768617 PMCID: PMC173305 DOI: 10.1128/iai.63.6.2327-2333.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Haemophilus influenzae can acquire heme from hemopexin for use as a source of both essential porphyrin and iron. In classical ligand-binding studies, we observed time-dependent, saturable, and displaceable binding of human 125I-labelled hemopexin to intact cells of H. influenzae type b (Hib) strain 760705 grown in an iron-restricted medium. From these experiments, which demonstrate that hemopexin associates with a single class of binding site, the affinities (Kds) and receptor numbers were calculated for heme-hemopexin (Kd, 205 nM; 3,200 receptors per cell) and apohemopexin (Kd, 392 nM; 4,400 receptors per cell). Thus, Hib expresses a specific hemopexin receptor which shows some preference for the heme-protein complex. Affinity chromatography on hemopexin-Sepharose 4B of detergent-solubilized membranes from Hib strain 760705 results in the copurification of three proteins with molecular masses of 57, 38, and 29 kDa. Trypsinization of whole cells of Hib 760705 abolishes hemopexin binding and correlates with the disappearance of the 57-kDa hemopexin-binding protein and appearance of a 52-kDa species which does not bind either hemopexin in ligand blot assays or a monoclonal antibody (MAbT11-30) raised against the 57-kDa protein. From immunoblotting assays and NH2-terminal amino acid sequence analysis, the 38-kDa protein isolated following hemopexin affinity chromatography was identified as the porin protein P2. These data, taken together with the receptor-binding studies which support a single class of hemopexin-binding site, suggest that P2 and the 29-kDa protein function as accessory proteins to the 57-kDa hemopexin-binding protein to facilitate the uptake of heme from receptor-bound hemopexin. To determine whether hemopexin binding and the 57-kDa protein are conserved in Haemophilus strains, whole-cell dot blots and immunoblots of the outer membrane proteins prepared from strains belonging to each of 21 different Hib outer membrane protein subtypes, six nontypeable strains, and five Haemophilus parainfluenzae strains were probed with either hemopexin or MAbT11-30. Only the H. parainfluenzae strains which lack the 57-kDa protein do not bind hemopexin. Since H. influenzae has also been shown to produce a soluble 100-kDa hemopexin-binding protein, cell-free culture supernatants were also examined for the presence of this protein. Apart from Hib 760705 and H. parainfluenzae, the 100-kDa hemopexin-binding protein was detected in all the other Haemophilus strains. The abilities of Hib 760705 to both bind and acquire heme from hemopexin without expressing a 100-kDa soluble hemopexin-binding protein show that in strain 760705, this 100-kDa protein is not essential for the utilization of heme from hemopexin.
Collapse
Affiliation(s)
- J C Wong
- Department of Pharmaceutical Sciences, University of Nottingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Mills M, Payne SM. Genetics and regulation of heme iron transport in Shigella dysenteriae and detection of an analogous system in Escherichia coli O157:H7. J Bacteriol 1995; 177:3004-9. [PMID: 7768795 PMCID: PMC176986 DOI: 10.1128/jb.177.11.3004-3009.1995] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Shigella species can use heme as the sole source of iron. In this work, the heme utilization locus of Shigella dysenteriae was cloned and characterized. A cosmid bank of S. dysenteriae serotype 1 DNA was constructed in an Escherichia coli siderophore synthesis mutant incapable of heme transport. A recombinant clone, pSHU12, carrying the heme utilization system of S. dysenteriae was isolated by screening on iron-poor medium supplemented with hemin. Transposon insertional mutagenesis and subcloning identified the region of DNA in pSHU12 responsible for the phenotype of heme utilization. Minicell analysis indicated that a 70-kDa protein encoded by this region was sufficient to allow heme utilization in E. coli. Synthesis of this protein, designated Shu (Shigella heme uptake), was induced by iron limitation. The 70-kDa protein is located in the outer membrane and binds heme, suggesting it is the S. dysenteriae heme receptor. Heme iron uptake was found to be TonB dependent in E. coli. Transformation of an E. coli hemA mutant with the heme utilization subclone, pSHU262, showed that heme could serve as a source of porphyrin as well as iron, indicating that the entire heme molecule is transported into the bacterial cell. DNA sequences homologous to shu were detected in strains of S. dysenteriae serotype 1 and E. coli O157:H7.
Collapse
Affiliation(s)
- M Mills
- Department of Microbiology, University of Texas at Austin 78712, USA
| | | |
Collapse
|
32
|
Cope LD, Yogev R, Muller-Eberhard U, Hansen EJ. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b. J Bacteriol 1995; 177:2644-53. [PMID: 7751272 PMCID: PMC176933 DOI: 10.1128/jb.177.10.2644-2653.1995] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The utilization of heme bound to the serum glycoprotein hemopexin by Haemophilus influenzae type b (Hib) strain DL42 requires the presence of the 100-kDa heme:hemopexin-binding protein encoded by the hxuA gene (M. S. Hanson, S. E. Pelzel, J. Latimer, U. Muller-Eberhard, and E. J. Hansen, Proc. Natl. Acad. Sci. USA 89:1973-1977, 1992). Nucleotide sequence analysis of a 5-kb region immediately upstream from the hxuA gene revealed the presence of two genes, designated hxuC and hxuB, which encoded outer membrane proteins. The 78-kDa HxuC protein had similarity to TonB-dependent outer membrane proteins of other organisms, whereas the 60-kDa HxuB molecule most closely resembled the ShlB protein of Serratia marcescens. A set of three isogenic Hib mutants with cat cartridges inserted individually into their hxuA, hxuB, and hxuC genes was constructed. None of these mutants could utilize heme:hemopexin. The hxuC mutant was also unable to utilize low levels of free heme, whereas both the hxuA and hxuB mutants could utilize free heme. When the wild-type hxuC gene was present in trans, the hxuC mutant regained its ability to utilize low levels of free heme but still could not utilize heme:hemopexin. The hxuA mutant could utilize heme:hemopexin when a functional hxuA gene from a nontypeable H. influenzae strain was present in trans. Complementation analysis using this cloned nontypeable H. influenzae hxuA gene also indicated that the HxuB protein likely functions in the release of soluble HxuA from the Hib cell. These studies indicate that at least two and possible three gene products are required for utilization of heme bound to hemopexin by Hib strain DL42.
Collapse
Affiliation(s)
- L D Cope
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
33
|
Yamamoto S, Hara Y, Tomochika K, Shinoda S. Utilization of hemin and hemoglobin as iron sources by Vibrio parahaemolyticus and identification of an iron-repressible hemin-binding protein. FEMS Microbiol Lett 1995; 128:195-200. [PMID: 7750738 DOI: 10.1111/j.1574-6968.1995.tb07522.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Several clinical isolates of Vibrio parahaemolyticus were examined for their ability to utilize either hemin or hemoglobin as a sole source of iron. Both compounds appeared to be equally good iron sources. Maximum growth was obtained at 5 microM hemin or 1.25 microM hemoglobin under the conditions tested. Using a hemin-agarose batch affinity method, the hemin-binding protein was isolated from crude total membranes of a hemin-utilizing strain, WP1, grown under iron-deficient but not under iron-sufficient conditions. This protein was identical to the 83 kDa outer membrane protein which was expressed in response to iron limitation. The protein was susceptible to proteinase K cleavage in whole cells, indicating its exposure at the cell surface. Hemin and hemoglobin, but not protoporphyrin IX, inhibited binding of the protein to hemin-agarose.
Collapse
Affiliation(s)
- S Yamamoto
- Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | |
Collapse
|
34
|
D'Silva CG, Archibald FS, Niven DF. Comparative study of iron acquisition by biotype 1 and biotype 2 strains of Actinobacillus pleuropneumoniae. Vet Microbiol 1995; 44:11-23. [PMID: 7667902 DOI: 10.1016/0378-1135(94)00109-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Four strains of the swine pathogen, Actinobacillus pleuropneumoniae, namely, the type strain (ATCC 27088; biotype 1), the 'reference' strain of biotype 2 (Bertschinger 2008/76), and two additional biotype 1 strains, strain BC181, which is less virulent than the type strain, and strain K17, which was isolated from a lamb, were investigated with respect to iron acquisition. All strains produced iron-repressible outer membrane proteins. However, only the type and biotype 2 strains could acquire iron from porcine transferrin and no organism could utilize human, bovine or ovine transferrin, or ovine or porcine lactoferrin; haemoglobin supported good growth of all strains except strain K17. In all cases, iron acquisition from transferrin and haemoglobin required direct contact between the organisms and the proteins indicating the existence of specific receptors. An affinity isolation technique, using biotinylated porcine transferrin plus streptavidin-agarose, allowed the isolation of the following polypeptides from total membranes of organisms grown under iron-restricted conditions: 99 kDa and 64 kDa from ATCC 27088; 93 kDa from Bertschinger 2008/76; 95 kDa (trace amounts) and 60 kDa from BC181; none from K17. These results indicate that the 93-99 kDa polypeptides are involved in the acquisition of iron from porcine transferrin and that the inability of strain K17 to use transferrin as an iron source is due, probably, to the lack of, or a defect in, an analogous component.
Collapse
Affiliation(s)
- C G D'Silva
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Qué., Canada
| | | | | |
Collapse
|
35
|
Elkins C. Identification and purification of a conserved heme-regulated hemoglobin-binding outer membrane protein from Haemophilus ducreyi. Infect Immun 1995; 63:1241-5. [PMID: 7890379 PMCID: PMC173141 DOI: 10.1128/iai.63.4.1241-1245.1995] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A hemoglobin-binding protein (HgbA) from Haemophilus ducreyi was identified and purified. The 100-kDa HgbA was detected in all strains of H. ducreyi tested, and a somewhat larger hemoglobin-binding protein was found in one strain of Haemophilus influenzae. HgbA was purified and the amino acid sequence of the N terminus of HgbA revealed no significant homologies with known proteins. Two different antisera to HgbA from H. ducreyi 35000 recognized HgbA proteins from all tested H. ducreyi strains; they did not recognize proteins from the H. influenzae strain. Expression of HgbA was regulated by the level of heme but not by iron present in the medium. Animal species of hemoglobin competed with iodinated human hemoglobin for binding to whole cells of H. ducreyi and supported the growth of H. ducreyi. The lack of immunological cross-reactivity and the differences in hemoglobin specificities between the H. ducreyi and the H. influenzae hemoglobin-binding proteins suggest that they are unrelated.
Collapse
Affiliation(s)
- C Elkins
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
36
|
Gray-Owen SD, Loosmore S, Schryvers AB. Identification and characterization of genes encoding the human transferrin-binding proteins from Haemophilus influenzae. Infect Immun 1995; 63:1201-10. [PMID: 7890373 PMCID: PMC173135 DOI: 10.1128/iai.63.4.1201-1210.1995] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Haemophilus influenzae, a strict human pathogen, acquires iron in vivo through the direct binding and removal of iron from human transferrin by an as yet uncharacterized process at the bacterial cell surface. In this study, the tbpA and tbpB genes of H. influenzae, encoding the transferrin-binding proteins Tbp1 and Tbp2, respectively, were cloned and sequenced. Alignments of the H. influenzae Tbp1 and Tbp2 protein sequences with those of related proteins from heterologous species were analyzed. On the basis of similarities between these and previously characterized proteins, Tbp1 appears to be a member of the TonB-dependent family of outer membrane proteins while Tbp2 is lipid modified by signal peptidase II. Isogenic mutants deficient in expression of Tbp1 or Tbp2 or both proteins were prepared by insertion of the Tn903 kanamycin resistance cassette into cloned sequences and reintroduction of the interrupted sequences into the wild-type chromosome. Binding assays with the mutants showed that a significant reduction in transferrin-binding ability resulted from the loss of either of the Tbps and a complete loss of binding was evident when neither protein was expressed. Loss of either Tbp2 or both proteins correlated with an inability to grow on media supplemented with transferrin-bound iron as the sole source of iron, whereas the Tbp1+ Tbp2- mutant was able to grow only at high transferrin concentrations.
Collapse
Affiliation(s)
- S D Gray-Owen
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
37
|
Jarosik GP, Maciver I, Hansen EJ. Utilization of transferrin-bound iron by Haemophilus influenzae requires an intact tonB gene. Infect Immun 1995; 63:710-3. [PMID: 7822047 PMCID: PMC173057 DOI: 10.1128/iai.63.2.710-713.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Haemophilus influenzae can utilize iron-loaded human transferrin as an iron source for growth in vitro. H. influenzae tonB mutants, containing a chloramphenicol acetyltransferase gene within their tonB genes, could bind iron-charged human transferrin to their cell surfaces, but they were unable to utilize this serum glycoprotein as the sole source of iron for growth in vitro. In contrast, these tonB mutants were able to utilize an iron chelate (ferric ammonium citrate) for growth. Transformation of a tonB mutant with a plasmid encoding a wild-type H. influenzae tonB gene restored the ability of a tonB mutant to utilize iron-charged human transferrin. These results indicate that the uptake of iron from human transferrin by H. influenzae is a TonB-dependent process.
Collapse
Affiliation(s)
- G P Jarosik
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048
| | | | | |
Collapse
|
38
|
Sanders JD, Cope LD, Hansen EJ. Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun 1994; 62:4515-25. [PMID: 7927717 PMCID: PMC303138 DOI: 10.1128/iai.62.10.4515-4525.1994] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Haemophilus influenzae has an absolute requirement for heme for aerobic growth. This organism can satisfy this requirement by synthesizing heme from iron and protoporphyrin IX (PPIX). H. influenzae type b (Hib) strain DL42 was found to be unable to form single colonies when grown on a medium containing free iron and PPIX in place of heme. In contrast, the nontypeable H. influenzae (NTHI) strain TN106 grew readily on the same medium. A genomic library from NTHI strain TN106 was used to transform Hib strain DL42, and recombinants were selected on a medium containing iron and PPIX in place of heme. A recombinant plasmid with an 11.5-kb NTHI DNA insert was shown to confer on Hib strain DL42 the ability to grow on iron and PPIX. Nucleotide sequence analysis revealed that this NTHI DNA insert contained three genes, designated hitA, hitB, and hitC, which encoded products similar to the SfuABC proteins of Serratia marcescens, which have been shown to constitute a periplasmic binding protein-dependent iron transport system in this enteric organism. The NTHI HitA protein also was 69% identical to the ferric-binding protein of Neisseria gonorrhoeae. Inactivation of the cloned NTHI hitC gene by insertion of an antibiotic resistance cartridge eliminated the ability of the recombinant plasmid to complement the growth deficiency of Hib DL42. Construction of an isogenic NTHI TN106 mutant lacking a functional hitC gene revealed that this mutation prevented this strain from growing on a medium containing iron and PPIX in place of heme. This NTHI hitC mutant was also unable to utilize either iron bound to transferrin or iron chelates. These results suggest that the products encoded by the hitABC genes are essential for the utilization of iron by NTHI.
Collapse
Affiliation(s)
- J D Sanders
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048
| | | | | |
Collapse
|
39
|
Cope LD, Thomas SE, Latimer JL, Slaughter CA, Müller-Eberhard U, Hansen EJ. The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol 1994; 13:863-73. [PMID: 7815944 DOI: 10.1111/j.1365-2958.1994.tb00478.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All Haemophilus influenzae strains have an absolute requirement for exogenously supplied haem for aerobic growth. A majority of strains of H. influenzae type b (Hib) produce a 100 kDa protein which binds haem: haemopexin complexes. This 100 kDa haem:haemopexin binding protein, designated HxuA, was originally detected on the Hib cell surface. Monoclonal antibody (mAb)-based analyses revealed that the HxuA protein was also present in soluble form in Hib culture supernatants. This soluble HxuA protein exhibited haem:haemopexin-binding activity in a direct binding assay. Nucleotide sequence analysis of the hxuA gene from Hib strain DL42, together with N-terminal amino acid analysis of HxuA protein purified from Hib culture supernatant, revealed that this protein was synthesized as a 101 kDa precursor with a leader peptide that was removed to yield a 99 kDa protein. Southern blot analysis of chromosomal DNA from four Hib and four non-typeable H. influenzae (NTHI) strains detected the presence of a single band in each strain that hybridized a Hib hxuA gene probe. Subsequent analysis of these NTHI strains showed that all four strains released into culture supernatant a haem:haemopexin-binding protein that migrated in SDS-PAGE at a rate similar or identical to that of the Hib HxuA protein. A Hib hxuA mutant was used to screen an NTHI genomic DNA library and an NTHI gene was cloned that complemented the mutation in this Hib strain. Nucleotide sequence analysis of this NTHI gene revealed that it encoded a protein with 87% identity to the Hib HxuA protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L D Cope
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | |
Collapse
|
40
|
Stojiljkovic I, Hantke K. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol 1994; 13:719-32. [PMID: 7997183 DOI: 10.1111/j.1365-2958.1994.tb00465.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Yersinia enterocolitica O:8 periplasmic binding-protein-dependent transport (PBT) system for haemin was cloned and characterized. It consisted of four proteins: the periplasmic haemin-binding protein HemT, the haemin permease protein HemU, the ATP-binding hydrophilic protein HemV and the putative haemin-degrading protein HemS. Y. enterocolitica strains mutated in hemU or hemV genes were unable to use haemin as an iron source whereas those mutated in the hemT gene were able to use haemin as an iron source. As Escherichia coli strains expressing only the haemin outer membrane receptor protein HemR from Y. enterocolitica were capable of using haemin as an iron source the existence of an E. coli K-12 haemin-specific PBT system is postulated. The first gene in the Y. enterocolitica haemin-specific PBT system encoded a protein, HemS, which is probably involved in the degradation of haemin in the cytoplasm. The presence of the hemS gene was necessary to prevent haemin toxicity in E. coli strains that accumulate large amounts of haemin in the cytoplasm. We propose a model of haemin utilization in Y. enterocolitica in which HemT, HemU and HemV proteins transport haemin into the cytoplasm where it is degraded by HemS thereby liberating the iron.
Collapse
|
41
|
Jarosik GP, Sanders JD, Cope LD, Muller-Eberhard U, Hansen EJ. A functional tonB gene is required for both utilization of heme and virulence expression by Haemophilus influenzae type b. Infect Immun 1994; 62:2470-7. [PMID: 8188372 PMCID: PMC186533 DOI: 10.1128/iai.62.6.2470-2477.1994] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Haemophilus influenzae is nearly unique among facultatively anaerobic bacteria in its absolute requirement for exogenously supplied heme for aerobic growth. In this study, a mutant analysis strategy was used to facilitate identification of H. influenzae cell envelope components involved in the uptake of heme. Chemical mutagenesis was employed to produce a mutant of a nontypeable H. influenzae strain unable to utilize either protein-bound forms of heme or low levels of free heme. This mutant was transformed with a plasmid shuttle vector-based genomic library constructed from the same wild-type nontypeable H. influenzae strain, and a growth selection technique was used to obtain a recombinant clone that could utilize heme. Analysis of the DNA insert in the recombinant plasmid revealed the presence of several open reading frames, one of which encoded a 28-kDa protein with significant similarity to the TonB protein of Escherichia coli. This H. influenzae gene product was able to complement a tonB mutation in E. coli, allowing the E. coli tonB mutant to form single colonies on minimal medium containing vitamin B12. When this H. influenzae gene was inactivated by insertional mutagenesis techniques and introduced into the chromosome of wild-type strains of H. influenzae type b, the resultant transformants lost their abilities to utilize heme and produce invasive disease in an animal model. Genetic restoration of the ability to express this TonB homolog resulted in the simultaneous acquisition of both heme utilization ability and virulence. These results indicate that the H. influenzae TonB protein is required not only for heme utilization by this pathogen in vitro, but also for virulence of H. influenzae type b in an animal model.
Collapse
Affiliation(s)
- G P Jarosik
- Department of Microbiology, University of Texas Southwestern Medical Center at Dallas 75235
| | | | | | | | | |
Collapse
|
42
|
Martel N, Lee BC. Acquisition of heme iron by Neisseria meningitidis does not involve meningococcal transferrin-binding proteins. Infect Immun 1994; 62:700-3. [PMID: 8300227 PMCID: PMC186161 DOI: 10.1128/iai.62.2.700-703.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Similarities in size between hemin-binding protein 1 (HmBP1) and transferrin-binding protein 1 (TBP1) of Neisseria meningitidis suggest that these proteins are functionally homologous. However, a meningococcal mutant lacking the transferrin-binding proteins retained the capacity to acquire iron from heme and hemoglobin. In immunoblots, hyperimmune polyclonal antiserum against TBP1 did not react with HmBP1.
Collapse
Affiliation(s)
- N Martel
- Department of Microbiology and Infectious Diseases, University of Calgary, Alberta, Canada
| | | |
Collapse
|
43
|
Wong JC, Holland J, Parsons T, Smith A, Williams P. Identification and characterization of an iron-regulated hemopexin receptor in Haemophilus influenzae type b. Infect Immun 1994; 62:48-59. [PMID: 8262649 PMCID: PMC186066 DOI: 10.1128/iai.62.1.48-59.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Heme can serve Haemophilus influenzae as a source of both essential porphyrin and iron. In extracellular mammalian body fluids neither free heme nor free iron is available, since they are tightly bound to hemopexin and transferrin, respectively. Since H. influenzae grows in the presence of iron-transferrin and heme-hemopexin and is known to express a saturable receptor for transferrin, we investigated the process by which this pathogen acquired heme from hemopexin for use as an iron source. The ability of human and rabbit hemopexin to donate heme as a source of iron to H. influenzae type b strains was demonstrated by plate bioassays. With a dot enzyme assay with biotinylated hemopexin as ligand, H. influenzae bound heme-hemopexin and apo-hemopexin following growth in iron-restricted, but not in iron-sufficient, medium. Competitive binding studies with heme-hemopexin and apo-hemopexin demonstrated saturability of binding. Neither heme, protoporphyrin IX, hemoglobin, nor transferrin blocked the binding of hemopexin to whole cells, demonstrating the specificity of binding. Treatment of whole H. influenzae cells with trypsin abolished binding. Taken together, these observations suggest that H. influenzae type b expresses an outer membrane protein(s) which acts as a receptor for hemopexin and which is regulated by the availability of iron in the growth medium. In iron-restricted media, H. influenzae 706705 and DL42 did not express the 100-kDa hemopexin-binding protein previously reported (M.S. Hanson, S.E. Pelzel, J. Latimer, U. Muller-Eberhard, and E.J. Hansen, Proc. Natl. Acad. Sci. USA 89:1973-1977, 1992). The putative iron-regulated hemopexin receptor was solubilized from cell envelopes of H. influenzae 706705, DL42, and Eagan with the detergent CHAPS (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate) and isolated by affinity chromatography on heme-hemopexin-Sepharose 4B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins bound to the affinity resin revealed three proteins of 29, 38, and 57 kDa, of which the 57- and 29-kDa proteins bound hemopexin after Western blotting (immunoblotting). A monoclonal antibody to the 57-kDa hemopexin-binding protein of 706705 recognized a 57-kDa protein on Western blots of the cell envelope proteins of 706705, DL42, and Eagan; no reaction was observed with the 100-kDa hemopexin-binding protein of DL42. These data suggest that some H. influenzae strains possess at least two hemopexin receptors, the expression of which is determined by the prevailing growth environment.
Collapse
Affiliation(s)
- J C Wong
- Department of Pharmaceutical Sciences, University of Nottingham, University Park, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Bramanti TE, Holt SC. Hemin uptake in Porphyromonas gingivalis: Omp26 is a hemin-binding surface protein. J Bacteriol 1993; 175:7413-20. [PMID: 8226688 PMCID: PMC206886 DOI: 10.1128/jb.175.22.7413-7420.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A 26-kDa outer membrane protein (Omp26) has been proposed to play a role in hemin acquisition by Porphyromonas gingivalis (T. E. Bramanti and S. C. Holt, J. Bacteriol. 174:5827-5839, 1992). We studied [55Fe]hemin uptake in P. gingivalis grown under conditions of hemin starvation (Omp26 expressed on the outer membrane surface) and hemin excess (Omp26 not expressed on surface). [55Fe]hemin uptake occurred rapidly in hemin-starved cells which incorporated up to 70% of total [55Fe]hemin within 3 min. P. gingivalis grown under hemin-starved conditions or treated with the iron chelator 2,2'-bipyridyl to induce an iron stress took up six times more [55Fe]hemin than hemin-excess-grown cells. Polyclonal monospecific anti-Omp26 antibody added to hemin-starved cells inhibited [55Fe]hemin uptake by more than 50%, whereas preimmune serum had no effect. [55Fe]hemin uptake in hemin-starved P. gingivalis was inhibited (36 to 67%) in the presence of equimolar amounts of unlabeled hemin, protoporphyrin IX, zinz protoporphyrin, and Congo red dye but was not inhibited in the presence of non-hemin-containing iron sources. Heat shock treatment (45 degrees C) of hemin-excess-grown P. gingivalis (which cases translocation of Omp26 to the surface) increased [55Fe]hemin uptake by threefold after 3 min in comparison with cells grown at 37 degrees C. However, no [55Fe] hemin uptake beyond 3 min was observed in either hemin-excess-grown or hemin-starved cells exposed to heat shock. In experiments using heterobifunctional cross-linker analysis, hemin and selected porphyrins were cross-linked to Omp26 in hemin-starved P. gingivalis, but no cross-linking was seen with hemin-excess-grown cells. However, cross-linking of hemin to Omp26 was observed after heat shock treatment of hemin-excess-grown cells. Finally, anti-Omp26 antibody inhibited cross-linked of hemin to Omp26. These findings indicate that hemin binding and transport into P.gingivalis cell mediated by Omp26.
Collapse
Affiliation(s)
- T E Bramanti
- Department of Periodontics, University of Texas Health Science Center at San Antonio 78284-7894
| | | |
Collapse
|
45
|
Abstract
Most of the iron in a mammalian body is complexed with various proteins. Moreover, in response to infection, iron availability is reduced in both extracellular and intracellular compartments. Bacteria need iron for growth and successful bacterial pathogens have therefore evolved to compete successfully for iron in the highly iron-stressed environment of the host's tissues and body fluids. Several strategies have been identified among pathogenic bacteria, including reduction of ferric to ferrous iron, occupation of intracellular niches, utilisation of host iron compounds, and production of siderophores. While direct evidence that high affinity mechanisms for iron acquisition function as bacterial virulence determinants has been provided in only a small number of cases, it is likely that many if not all such systems play a central role in the pathogenesis of infection.
Collapse
|
46
|
Morton DJ, Musser JM, Stull TL. Expression of the Haemophilus influenzae transferrin receptor is repressible by hemin but not elemental iron alone. Infect Immun 1993; 61:4033-7. [PMID: 8406790 PMCID: PMC281120 DOI: 10.1128/iai.61.10.4033-4037.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The absolute requirement for elemental iron and the porphyrin nucleus for growth of Haemophilus influenzae led us to investigate the role of iron and hemin in regulation of expression of the H. influenzae transferrin receptor. H. influenzae type b strain H1689 was grown in brain heart infusion broth supplemented with beta-NAD and either 10 or 0.1 microgram of hemin ml-1. Transferrin-binding ability was determined with a dot blot assay using human transferrin-horseradish peroxidase conjugate. Cells grown in media with 0.1 microgram of hemin ml-1 bound transferrin, but organisms grown in media with 10 micrograms ml-1 did not. In hemin-restricted media, transferrin binding occurred despite addition of up to 10 mM ferric nitrate, ferric citrate, or ferric PPi, whereas addition of 10 micrograms of hemoglobin ml-1 repressed expression. The breadth of species distribution of this mode of regulation was determined with strains previously characterized by multilocus enzyme electrophoresis. When grown in hemin-restricted media, 24 of 28 type b strains and 52 of 57 serologically nontypeable strains exhibited transferrin binding, although none did so in hemin- and iron-sufficient media. Strain H1689 and serologically nontypeable strain HI1423 grown in heat-inactivated pooled normal human serum, human cerebrospinal fluid, or human breast milk exhibited transferrin binding. Growth in these fluids with 10 micrograms of added hemin ml-1 abolished transferrin binding, whereas addition of 10 mM ferric nitrate did not. These data suggest that the transferrin receptor of H. influenzae is regulated by levels of hemin but not elemental iron alone and that this property is widely distributed among several major cloned families in the species.
Collapse
Affiliation(s)
- D J Morton
- Department of Pediatrics, Medical College of Pennsylvania, Philadelphia 19129
| | | | | |
Collapse
|
47
|
Henderson DP, Payne SM. Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin. Mol Microbiol 1993; 7:461-9. [PMID: 8384684 DOI: 10.1111/j.1365-2958.1993.tb01137.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vibrio cholerae can utilize haemin or haemoglobin as its sole source of iron. Four haem utilization mutants of a classical strain of V. cholerae were isolated. These mutations were complemented with pHUT1, a cosmid clone isolated from a library of wild-type CA401 DNA. Two independent Tn5 insertions into the cloned sequence disrupted function in all of the complemented mutants. Escherichia coli 1017 transformed with pHUT1 failed to utilize haemin as an iron source; a second plasmid containing a different cloned fragment of V. cholerae DNA (pHUT3) was required in addition to pHUT1 to reconstitute the system in E. coli. Minicell analysis and SDS-PAGE of protein fractions indicate that pHUT10 (a subclone of pHUT1) encodes a 26 kDa inner membrane protein, and pHUT3 encodes a 77 kDa outer membrane protein. Loss of either protein by Tn5 mutagenesis abolishes haem utilization in E. coli. An E. coli hemA mutant that cannot synthesize porphyrins was transformed with the recombinant plasmids to determine whether the plasmids encoded the ability to transport the porphyrin as well as the iron. The transformants grew aerobically in media containing haemin, whereas the parental strain was unable to grow under these conditions. This indicates that V. cholerae haem-iron utilization genes allow transport of the entire haem moiety into the cell.
Collapse
Affiliation(s)
- D P Henderson
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | |
Collapse
|
48
|
Affiliation(s)
- U Muller-Eberhard
- Department of Pediatrics/Hematology-Oncology, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|