1
|
Klimentova J, Pavkova I, Horcickova L, Bavlovic J, Kofronova O, Benada O, Stulik J. Francisella tularensis subsp. holarctica Releases Differentially Loaded Outer Membrane Vesicles Under Various Stress Conditions. Front Microbiol 2019; 10:2304. [PMID: 31649645 PMCID: PMC6795709 DOI: 10.3389/fmicb.2019.02304] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular bacterium, causing a severe disease called tularemia. It secretes unusually shaped nanotubular outer membrane vesicles (OMV) loaded with a number of virulence factors and immunoreactive proteins. In the present study, the vesicles were purified from a clinical isolate of subsp. holarctica strain FSC200. We here provide a comprehensive proteomic characterization of OMV using a novel approach in which a comparison of OMV and membrane fraction is performed in order to find proteins selectively enriched in OMV vs. membrane. Only these proteins were further considered to be really involved in the OMV function and/or their exceptional structure. OMV were also isolated from bacteria cultured under various cultivation conditions simulating the diverse environments of F. tularensis life cycle. These included conditions mimicking the milieu inside the mammalian host during inflammation: oxidative stress, low pH, and high temperature (42°C); and in contrast, low temperature (25°C). We observed several-fold increase in vesiculation rate and significant protein cargo changes for high temperature and low pH. Further proteomic characterization of stress-derived OMV gave us an insight how the bacterium responds to the hostile environment of a mammalian host through the release of differentially loaded OMV. Among the proteins preferentially and selectively packed into OMV during stressful cultivations, the previously described virulence factors connected to the unique intracellular trafficking of Francisella were detected. Considerable changes were also observed in a number of proteins involved in the biosynthesis and metabolism of the bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids. Data are available via ProteomeXchange with identifier PXD013074.
Collapse
Affiliation(s)
- Jana Klimentova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Lenka Horcickova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Jan Bavlovic
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Olga Kofronova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| |
Collapse
|
2
|
An O-Antigen Glycoconjugate Vaccine Produced Using Protein Glycan Coupling Technology Is Protective in an Inhalational Rat Model of Tularemia. J Immunol Res 2018; 2018:8087916. [PMID: 30622981 PMCID: PMC6304830 DOI: 10.1155/2018/8087916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
There is a requirement for an efficacious vaccine to protect people against infection from Francisella tularensis, the etiological agent of tularemia. The lipopolysaccharide (LPS) of F. tularensis is suboptimally protective against a parenteral lethal challenge in mice. To develop a more efficacious subunit vaccine, we have used a novel biosynthetic technique of protein glycan coupling technology (PGCT) that exploits bacterial N-linked glycosylation to recombinantly conjugate F. tularensis O-antigen glycans to the immunogenic carrier protein Pseudomonas aeruginosa exoprotein A (ExoA). Previously, we demonstrated that an ExoA glycoconjugate with two glycosylation sequons was capable of providing significant protection to mice against a challenge with a low-virulence strain of F. tularensis. Here, we have generated a more heavily glycosylated conjugate vaccine and evaluated its efficacy in a Fischer 344 rat model of tularemia. We demonstrate that this glycoconjugate vaccine protected rats against disease and the lethality of an inhalational challenge with F. tularensis Schu S4. Our data highlights the potential of this biosynthetic approach for the creation of next-generation tularemia subunit vaccines.
Collapse
|
3
|
Whelan AO, Flick-Smith HC, Homan J, Shen ZT, Carpenter Z, Khoshkenar P, Abraham A, Walker NJ, Levitz SM, Ostroff GR, Oyston PCF. Protection induced by a Francisella tularensis subunit vaccine delivered by glucan particles. PLoS One 2018; 13:e0200213. [PMID: 30296254 PMCID: PMC6175290 DOI: 10.1371/journal.pone.0200213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 01/21/2023] Open
Abstract
Francisella tularensis is an intracellular pathogen causing the disease tularemia, and an organism of concern to biodefence. There is no licensed vaccine available. Subunit approaches have failed to induce protection, which requires both humoral and cellular immune memory responses, and have been hampered by a lack of understanding as to which antigens are immunoprotective. We undertook a preliminary in silico analysis to identify candidate protein antigens. These antigens were then recombinantly expressed and encapsulated into glucan particles (GPs), purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Immunological profiling in the mouse was used to down-selection to seven lead antigens: FTT1043 (Mip), IglC, FTT0814, FTT0438, FTT0071 (GltA), FTT0289, FTT0890 (PilA) prior to transitioning their evaluation to a Fischer 344 rat model for efficacy evaluation. F344 rats were vaccinated with the GP protein antigens co-delivered with GP-loaded with Francisella LPS. Measurement of cell mediated immune responses and computational epitope analysis allowed down-selection to three promising candidates: FTT0438, FTT1043 and FTT0814. Of these, a GP vaccine delivering Francisella LPS and the FTT0814 protein was able to induce protection in rats against an aerosol challenge of F. tularensis SchuS4, and reduced organ colonisation and clinical signs below that which immunisation with a GP-LPS alone vaccine provided. This is the first report of a protein supplementing protection induced by LPS in a Francisella vaccine. This paves the way for developing an effective, safe subunit vaccine for the prevention of inhalational tularemia, and validates the GP platform for vaccine delivery where complex immune responses are required for prevention of infections by intracellular pathogens.
Collapse
Affiliation(s)
- Adam O. Whelan
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | | | - Jane Homan
- ioGenetics LLC, Madison, WI, United States of America
| | - Zu T. Shen
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zoe Carpenter
- CBR Division, Dstl Porton Down, Salisbury, United Kingdom
| | - Payam Khoshkenar
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ambily Abraham
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Stuart M. Levitz
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gary R. Ostroff
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
4
|
Jia Q, Horwitz MA. Live Attenuated Tularemia Vaccines for Protection Against Respiratory Challenge With Virulent F. tularensis subsp. tularensis. Front Cell Infect Microbiol 2018; 8:154. [PMID: 29868510 PMCID: PMC5963219 DOI: 10.3389/fcimb.2018.00154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a Tier I bioterrorism agent. In the 1900s, several vaccines were developed against tularemia including the killed "Foshay" vaccine, subunit vaccines comprising F. tularensis protein(s) or lipoproteins(s) in an adjuvant formulation, and the F. tularensis Live Vaccine Strain (LVS); none were licensed in the U.S.A. or European Union. The LVS vaccine retains toxicity in humans and animals-especially mice-but has demonstrated efficacy in humans, and thus serves as the current gold standard for vaccine efficacy studies. The U.S.A. 2001 anthrax bioterrorism attack spawned renewed interest in vaccines against potential biowarfare agents including F. tularensis. Since live attenuated-but not killed or subunit-vaccines have shown promising efficacy and since vaccine efficacy against respiratory challenge with less virulent subspecies holarctica or F. novicida, or against non-respiratory challenge with virulent subsp. tularensis (Type A) does not reliably predict vaccine efficacy against respiratory challenge with virulent subsp. tularensis, the route of transmission and species of greatest concern in a bioterrorist attack, in this review, we focus on live attenuated tularemia vaccine candidates tested against respiratory challenge with virulent Type A strains, including homologous vaccines derived from mutants of subsp. holarctica, F. novicida, and subsp. tularensis, and heterologous vaccines developed using viral or bacterial vectors to express F. tularensis immunoprotective antigens. We compare the virulence and efficacy of these vaccine candidates with that of LVS and discuss factors that can significantly impact the development and evaluation of live attenuated tularemia vaccines. Several vaccines meet what we would consider the minimum criteria for vaccines to go forward into clinical development-safety greater than LVS and efficacy at least as great as LVS, and of these, several meet the higher standard of having efficacy ≥LVS in the demanding mouse model of tularemia. These latter include LVS with deletions in purMCD, sodBFt , capB or wzy; LVS ΔcapB that also overexpresses Type VI Secretion System (T6SS) proteins; FSC200 with a deletion in clpB; the single deletional purMCD mutant of F. tularensis SCHU S4, and a heterologous prime-boost vaccine comprising LVS ΔcapB and Listeria monocytogenes expressing T6SS proteins.
Collapse
Affiliation(s)
- Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00574-16. [PMID: 28077440 DOI: 10.1128/cvi.00574-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.
Collapse
|
6
|
Abstract
Francisella tularensis is the causative agent of the potentially lethal disease tularemia. Due to a low infectious dose and ease of airborne transmission, Francisella is classified as a category A biological agent. Despite the possible risk to public health, there is no safe and fully licensed vaccine. A potential vaccine candidate, an attenuated live vaccine strain, does not fulfil the criteria for general use. In this review, we will summarize existing and new candidates for live attenuated and subunit vaccines.
Collapse
|
7
|
Dwivedi P, Alam SI, Kumar O, Kumar RB. Lipoproteins from Clostridium perfringens and their protective efficacy in mouse model. INFECTION GENETICS AND EVOLUTION 2015; 34:434-43. [DOI: 10.1016/j.meegid.2015.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/10/2023]
|
8
|
Kubelkova K, Macela A. Putting the Jigsaw Together - A Brief Insight Into the Tularemia. Open Life Sci 2015. [DOI: 10.1515/biol-2015-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractTularemia is a debilitating febrile and potentially fatal zoonotic disease of humans and other vertebrates caused by the Gram-negative bacterium Francisella tularensis. The natural reservoirs are small rodents, hares, and possibly amoebas in water. The etiological agent, Francisella tularensis, is a non-spore forming, encapsulated, facultative intracellular bacterium, a member of the γ-Proteobacteria class of Gram-negative bacteria. Francisella tularensis is capable of invading and replicating within phagocytic as well as non-phagocytic cells and modulate inflammatory response. Infection by the pulmonary, dermal, or oral routes, respectively, results in pneumonic, ulceroglandular, or oropharyngeal tularemia. The highest mortality rates are associated with the pneumonic form of this disease. All members of Francisella tularensis species cause more or less severe disease Due to their abilities to be transmitted to humans via multiple routes and to be disseminated via biological aerosol that can cause the disease after inhalation of even an extremely low infectious dose, Francisella tularensis has been classified as a Category A bioterrorism agent. The current standard of care for tularemia is treatment with antibiotics, as this therapy is highly effective if used soon after infection, although it is not, however, absolutely effective in all cases.
Collapse
|
9
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
10
|
Live attenuated tularemia vaccines: recent developments and future goals. Vaccine 2013; 31:3485-91. [PMID: 23764535 DOI: 10.1016/j.vaccine.2013.05.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/20/2013] [Accepted: 05/24/2013] [Indexed: 12/24/2022]
Abstract
In the aftermath of the 2001 anthrax attacks in the U.S., numerous efforts were made to increase the level of preparedness against a biological attack both in the US and worldwide. As a result, there has been an increase in research interest in the development of vaccines and other countermeasures against a number of agents with the potential to be used as biological weapons. One such agent, Francisella tularensis, has been the subject of a surge in the level of research being performed, leading to a substantial increase in knowledge of the pathogenic mechanisms of the organism and the induced immune responses. This information has facilitated the development of multiple new Francisella vaccine candidates. Herein we review the latest live attenuated F. tularensis vaccine efforts. Historically, live attenuated vaccines have demonstrated the greatest degree of success in protection against tularemia and the greatest promise in recent efforts to develop of a fully protective vaccine. This review summarizes recent live attenuated Francisella vaccine candidates and the lessons learned from those studies, with the goal of collating known characteristics associated with successful attenuation, immunogenicity, and protection.
Collapse
|
11
|
Linkage between Anaplasma marginale outer membrane proteins enhances immunogenicity but is not required for protection from challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:651-6. [PMID: 23446216 DOI: 10.1128/cvi.00600-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective, they are difficult and expensive to isolate and standardize and thus are often impractical for development and implementation in vaccination programs. In contrast, individual proteins, which are easily adapted for use in subunit vaccines, tend to be poorly protective. Consequently, identification of the specific characteristics of outer membrane-based immunogens, in terms of the antigen contents and contexts that are required for protective immunity, represents a major gap in the knowledge needed for bacterial vaccine development. Using as a model Anaplasma marginale, a persistent tick-borne bacterial pathogen of cattle, we tested two sets of immunogens to determine whether membrane context affected immunogenicity and the capacity to induce protection. The first immunogen was composed of a complex of outer membrane proteins linked by covalent bonds and known to be protective. The second immunogen was derived directly from the first one, but the proteins were individualized rather than linked. The antibody response induced by the linked immunogen was much greater than that induced by the unlinked immunogen. However, both immunogens induced protective immunity and an anamnestic response. These findings suggest that individual proteins or combinations of proteins can be successfully tested for the ability to induce protective immunity with less regard for overall membrane context. Once protective antigens are identified, immunogenicity could be enhanced by cross-linking to allow a reduced immunogen dose or fewer booster vaccinations.
Collapse
|
12
|
Ashtekar AR, Katz J, Xu Q, Michalek SM. A mucosal subunit vaccine protects against lethal respiratory infection with Francisella tularensis LVS. PLoS One 2012; 7:e50460. [PMID: 23209745 PMCID: PMC3508931 DOI: 10.1371/journal.pone.0050460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis (FT) is a highly virulent pathogen for humans and other mammals. Severe morbidity and mortality is associated with respiratory FT infection and there are concerns about intentional dissemination of this organism. Therefore, FT has been designated a category A biothreat agent and there is a growing interest in the development of a protective vaccine. In the present study, we determine the protective potential of a subunit vaccine comprised of the FT heat shock protein DnaK and surface lipoprotein Tul4 against respiratory infection with the live vaccine strain (LVS) of FT in mice. First, we establish an optimal intranasal immunization regimen in C57BL/6 mice using recombinant DnaK or Tul4 together with the adjuvant GPI-0100. The individual immunization regimens induced robust salivary IgA, and vaginal and bronchoalveolar IgA and IgG antigen-specific antibodies. Serum IgG1 and IgG2c antibody responses were also induced, indicative of a mixed type 2 and type 1 response, respectively. Next, we show that immunization with DnaK and Tul4 induces mucosal and systemic antibody responses that are comparable to that seen following immunization with each antigen alone. This immunization regimen also induced IFN-γ, IL-10 and IL-17A production by splenic CD4(+) T cells in an antigen-specific manner. Importantly, over 80% of the mice immunized with DnaK and Tul4, but not with each antigen alone, were protected against a lethal respiratory challenge with FT LVS. Protection correlated with reduced bacterial burden in the lung, liver and spleen of mice. This study demonstrates the potential of DnaK and Tul4 as protective antigens and lends support to the notion of combining distinct, immunodominant antigens into an effective multivalent tularemia vaccine.
Collapse
Affiliation(s)
- Amit R. Ashtekar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qingan Xu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
13
|
Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:359-64. [PMID: 22278325 DOI: 10.1128/cvi.05384-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.
Collapse
|
14
|
Kilmury SLN, Twine SM. The francisella tularensis proteome and its recognition by antibodies. Front Microbiol 2011; 1:143. [PMID: 21687770 PMCID: PMC3109489 DOI: 10.3389/fmicb.2010.00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/18/2010] [Indexed: 01/31/2023] Open
Abstract
Francisella tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. The extreme virulence of the pathogen in humans, combined with the low infectious dose and the ease of dissemination by aerosol have led to concerns about its abuse as a bioweapon. Until recently, nothing was known about the virulence mechanisms and even now, there is still a relatively poor understanding of pathogen virulence. Completion of increasing numbers of Francisella genome sequences, combined with comparative genomics and proteomics studies, are contributing to the knowledge in this area. Tularemia may be treated with antibiotics, but there is currently no licensed vaccine. An attenuated strain, the Live Vaccine Strain (LVS) has been used to vaccinate military and at risk laboratory personnel, but safety concerns mean that it is unlikely to be licensed by the FDA for general use. Little is known about the protective immunity induced by vaccination with LVS, in humans or animal models. Immunoproteomics studies with sera from infected humans or vaccinated mouse strains, are being used in gel-based or proteome microarray approaches to give insight into the humoral immune response. In addition, these data have the potential to be exploited in the identification of new diagnostic or protective antigens, the design of next generation live vaccine strains, and the development of subunit vaccines. Herein, we briefly review the current knowledge from Francisella comparative proteomics studies and then focus upon the findings from immunoproteomics approaches.
Collapse
Affiliation(s)
- Sara L. N. Kilmury
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| | - Susan M. Twine
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| |
Collapse
|
15
|
Anderson RV, Crane DD, Bosio CM. Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine 2010; 28:6562-72. [PMID: 20688042 PMCID: PMC2939155 DOI: 10.1016/j.vaccine.2010.07.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/28/2022]
Abstract
Protection against the intracellular bacterium Francisella tularensis within weeks of vaccination is thought to involve both cellular and humoral immune responses. However, the relative roles for cellular and humoral immunity in long lived protection against virulent F. tularensis are not well established. Here, we dissected the correlates of immunity to pulmonary infection with virulent F. tularensis strain SchuS4 in mice challenged 30 and 90 days after subcutaneous vaccination with LVS. Regardless of the time of challenge, LVS vaccination protected approximately 90% of SchuS4 infected animals. Surprisingly, control of bacterial replication in the lung during the first 7 days of infection was not required for survival of SchuS4 infection in vaccinated mice. Control and survival of virulent F. tularensis strain SchuS4 infection within 30 days of vaccination was associated with high titers of SchuS4 agglutinating antibodies, and IFN-γ production by multiple cell types in both the lung and spleen. In contrast, survival of SchuS4 infection 90 days after vaccination was correlated only with IFN-γ producing splenocytes and activated T cells in the spleen. Together these data demonstrate that functional agglutinating antibodies and strong mucosal immunity are correlated with early control of pulmonary infections with virulent F. tularensis. However, early mucosal immunity may not be required to survive F. tularensis infection. Instead, survival of SchuS4 infection at extended time points after immunization was only associated with production of IFN-γ and activation of T cells in peripheral organs.
Collapse
Affiliation(s)
- Rebecca V. Anderson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Deborah D. Crane
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| |
Collapse
|
16
|
A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect Immun 2010; 78:4341-55. [PMID: 20643859 DOI: 10.1128/iai.00192-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is in the top category (category A) of potential agents of bioterrorism. The F. tularensis live vaccine strain (LVS) is the only vaccine currently available to protect against tularemia; however, this unlicensed vaccine is relatively toxic and provides incomplete protection against aerosolized F. tularensis, the most dangerous mode of transmission. Hence, a safer and more potent vaccine is needed. As a first step toward addressing this need, we have constructed and characterized an attenuated version of LVS, LVS ΔcapB, both as a safer vaccine and as a vector for the expression of recombinant F. tularensis proteins. LVS ΔcapB, with a targeted deletion in a putative capsule synthesis gene (capB), is antibiotic resistance marker free. LVS ΔcapB retains the immunoprotective O antigen, is serum resistant, and is outgrown by parental LVS in human macrophage-like THP-1 cells in a competition assay. LVS ΔcapB is significantly attenuated in mice; the 50% lethal dose (LD(50)) intranasally (i.n.) is >10,000-fold that of LVS. Providing CapB in trans to LVS ΔcapB partially restores its virulence in mice. Mice immunized with LVS ΔcapB i.n. or intradermally (i.d.) developed humoral and cellular immune responses comparable to those of mice immunized with LVS, and when challenged 4 or 8 weeks later with a lethal dose of LVS i.n., they were 100% protected from illness and death and had significantly lower levels (3 to 5 logs) of LVS in the lung, liver, and spleen than sham-immunized mice. Most importantly, mice immunized with LVS ΔcapB i.n. or i.d. and then challenged 6 weeks later by aerosol with 10× the LD(50) of the highly virulent type A F. tularensis strain SchuS4 were significantly protected (100% survival after i.n. immunization). These results show that LVS ΔcapB is significantly safer than LVS and yet provides potent protective immunity against virulent F. tularensis SchuS4 challenge.
Collapse
|
17
|
Oyston PCF, Griffiths R. Francisella virulence: significant advances, ongoing challenges and unmet needs. Expert Rev Vaccines 2010; 8:1575-85. [PMID: 19863250 DOI: 10.1586/erv.09.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Francisella tularensis, the causative agent of tularemia, is an organism of concern as a potential biowarfare agent. Progress towards understanding the molecular basis of pathogenicity has been hampered by a lack of tools with which to manipulate the pathogen. However, the availability of genome sequence data for a range of strains and the development of a range of plasmids and mutagenesis protocols for use in Francisella has resulted in a huge advance in understanding. No licensed vaccine is yet available. Various approaches towards a new vaccine are being evaluated, but novel adjuvants and delivery systems are needed to induce the complex response required for immunity. Better animal models to more accurately represent human responses to infection are also required.
Collapse
|
18
|
Parra MC, Shaffer SA, Hajjar AM, Gallis BM, Hager A, Goodlett DR, Guina T, Miller S, Collins CM. Identification, cloning, expression, and purification of Francisella lpp3: an immunogenic lipoprotein. Microbiol Res 2009; 165:531-45. [PMID: 20006480 DOI: 10.1016/j.micres.2009.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/27/2009] [Accepted: 11/07/2009] [Indexed: 12/17/2022]
Abstract
The severe and fatal human disease, tularemia, results from infection with the Gram-negative pathogen Francisella tularensis. Identification of surface outer membrane proteins, specifically lipoproteins, has been of interest for vaccine development and understanding the initiation of disease. We sought to identify Francisella live vaccine strain lipoproteins that could be a component of a subunit vaccine and have adjuvant properties as TLR2 agonists. We have identified a membrane lipoprotein of Francisella LVS isolated by sarkosyl extraction and gel filtration chromatography that is recognized by sera from LVS-vaccinated individuals and tularemia patients, indicating its potential diagnostic value. Sequencing of the protein by mass spectrometry indicated that it encodes the FTL_0645 open reading frame of F. holarctica LVS, which is 100% identical/homologous to FTT1416c of F. tularensis Schu S4. The predicted 137 amino acid lipoprotein encoded by FTL_0645 ORF, was expressed in Escherichia coli, purified, and demonstrated to be a lipoprotein. This recombinant lipoprotein, named Flpp3, was able to activate TLR2 and induce an immunogenic response in mice, suggesting that the E. coli-expressed Flpp3 is palmitoylated and closely resembles the native protein in structure and immunogenicity. Taken together, these data suggest that Flpp3 could be a candidate for inclusion in a F. tularensis vaccine.
Collapse
Affiliation(s)
- Maria C Parra
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Francisella tularensis is a Category A select agent for which vaccine and countermeasure development are a priority. In the past eight years, renewed interest in this pathogen has led to the generation of an enormous amount of new data on both the pathogen itself and its interaction with host cells. This information has fostered the development of various vaccine candidates including acellular subunit, killed whole cell and live attenuated. This review summarizes the progress and promise of these various candidates.
Collapse
Affiliation(s)
- Eileen M Barry
- University of Maryland School of Medicine, Center for Vaccine Development, Baltimore, MD, USA.
| | | | | |
Collapse
|
20
|
Pechous RD, McCarthy TR, Zahrt TC. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 2009; 73:684-711. [PMID: 19946137 PMCID: PMC2786580 DOI: 10.1128/mmbr.00028-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a facultative intracellular gram-negative pathogen and the etiological agent of the zoonotic disease tularemia. Recent advances in the field of Francisella genetics have led to a rapid increase in both the generation and subsequent characterization of mutant strains exhibiting altered growth and/or virulence characteristics within various model systems of infection. In this review, we summarize the major properties of several Francisella species, including F. tularensis and F. novicida, and provide an up-to-date synopsis of the genes necessary for pathogenesis by these organisms and the determinants that are currently being targeted for vaccine development.
Collapse
Affiliation(s)
- Roger D. Pechous
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Travis R. McCarthy
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Thomas C. Zahrt
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
21
|
Lu S, Wang S. Technical transformation of biodefense vaccines. Vaccine 2009; 27 Suppl 4:D8-D15. [PMID: 19837293 DOI: 10.1016/j.vaccine.2009.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 01/08/2023]
Abstract
Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines.
Collapse
Affiliation(s)
- Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
22
|
Abstract
Tularemia, caused by the Gram-negative bacterium Francisella tularensis, can be contracted by the bite of an arthropod vector or by inhalation. This disease occurs relatively infrequently but can be severe and even life-threatening if untreated. Until recently, there were few laboratories studying this organism; however, concerns over its potential use as a biological weapon have led to renewed attention to F. tularensis research, particularly in the area of vaccine development. Advances in the ability to genetically manipulate F. tularensis, along with knowledge gained from the creation and refinement of attenuated bacterial vaccines for other diseases, continue to foster significant progress in the development of live-attenuated bacterial vaccines, as well as defined antigen and subunit vaccines.
Collapse
Affiliation(s)
- Barbara J Mann
- Departments of Medicine & Microbiology, University of Virginia Health Systems, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
23
|
Valentino MD, Hensley LL, Skrombolas D, McPherson PL, Woolard MD, Kawula TH, Frelinger JA, Frelinger JG. Identification of a dominant CD4 T cell epitope in the membrane lipoprotein Tul4 from Francisella tularensis LVS. Mol Immunol 2009; 46:1830-8. [PMID: 19233475 DOI: 10.1016/j.molimm.2009.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 01/10/2023]
Abstract
Francisella tularensis is a gram-negative intracellular bacterium that is the causative agent of tularemia. Small mammals such as rodents and rabbits, as well as some biting arthropods, serve as the main vectors for environmental reservoirs of F. tularensis. The low infectious dose, ability to aerosolize the organism, and the possibility of generating antibiotic resistant strains make F. tularensis a prime organism for use in bioterrorism. As a result, some strains of F. tularensis have been placed on the CDC category A select agent list. T cell immune responses are thought to be a critical component in protective immunity to this organism. However, investigation into the immune responses to F. tularensis has been hampered by the lack of molecularly defined epitopes. Here we report the identification of a major CD4(+) T cell epitope in C57Bl/6 (B6) mice. The murine model of F. tularensis infection is relevant as mice are a natural host for F. tularensis LVS and exhibit many of the same features of tularemia seen in humans. Using T cell hybridomas derived from B6 mice that had either been inoculated with F. tularensis and allowed to clear the infection or which had been immunized by conventional means using purified recombinant protein in adjuvant, we have identified amino acids 86-99 of the lipoprotein Tul4 (RLQWQAPEGSKCHD) as an immunodominant CD4 T cell epitope in B6 mice. This epitope is a major component of both the acute and memory responses to F. tularensis infection and can constitute as much as 20% of the responding CD4 T cells in an acute infection. Reactive T cells can also effectively enter the long-term memory T cell pool. The identification of this epitope will greatly aid in monitoring the course of F. tularensis infection and will also aid in the development of effective vaccine strategies for F. tularensis.
Collapse
Affiliation(s)
- Michael D Valentino
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States. michael
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Valentino M, Frelinger J. An approach to the identification of T cell epitopes in the genomic era: application to Francisella tularensis. Immunol Res 2009; 45:218-28. [PMID: 19212707 DOI: 10.1007/s12026-009-8103-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The identification and characterization of epitopes is essential for modern immunologic studies. Here, we describe a novel methodology we have developed to identify T cell epitopes exploiting the phenomenon of cross presentation. Particulate antigens, in the form of beads, are very effective in delivering exogenous antigen to both the class I and class II pathways. We will review our efforts to screen entire genomes of pathogens for T cell epitopes taking advantage of the advances in genomics using Francisella tularensis as a model. By automating aspects of this technology we will be able to functionally screen the entire genome of F. tularensis for T cell epitopes. This technology should be applicable not only to F. tularensis, but also to many other pathogens as well.
Collapse
Affiliation(s)
- Michael Valentino
- Department of Microbiology and Immunology, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
25
|
Francisella tularensis infection-derived monoclonal antibodies provide detection, protection, and therapy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:414-22. [PMID: 19176692 DOI: 10.1128/cvi.00362-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Francisella tularensis is the causative agent of tularemia and a potential agent of biowarfare. As an easily transmissible infectious agent, rapid detection and treatment are necessary to provide a positive clinical outcome. As an agent of biowarfare, there is an additional need to prevent infection. We made monoclonal antibodies to the F. tularensis subsp. holarctica live vaccine strain (F. tularensis LVS) by infecting mice with a sublethal dose of bacteria and, following recovery, by boosting the mice with sonicated organisms. The response to the initial and primary infection was restricted to immunoglobulin M antibody directed solely against lipopolysaccharide (LPS). After boosting with sonicated organisms, the specificity repertoire broadened against protein antigens, including DnaK, LpnA, FopA, bacterioferritin, the 50S ribosomal protein L7/L12, and metabolic enzymes. These monoclonal antibodies detect F. tularensis LVS by routine immunoassays, including enzyme-linked immunosorbent assay, Western blot analysis, and immunofluorescence. The ability of the antibodies to protect mice from intradermal infection, both prophylactically and therapeutically, was examined. An antibody to LPS which provides complete protection from infection with F. tularensis LVS and partial protection from infection with F. tularensis subsp. tularensis strain SchuS4 was identified. There was no bacteremia and reduced organ burden within the first 24 h when mice were protected from F. tularensis LVS infection with the anti-LPS antibody. No antibody that provided complete protection when administered therapeutically was identified; however, passive transfer of antibodies against LPS, FopA, and LpnA resulted in 40 to 50% survival of mice infected with F. tularensis LVS.
Collapse
|
26
|
Jia Q, Lee BY, Clemens DL, Bowen RA, Horwitz MA. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis. Vaccine 2009; 27:1216-29. [PMID: 19126421 DOI: 10.1016/j.vaccine.2008.12.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
Abstract
Fransicella tularensis, the causative agent of tularemia, is in the top category (Category A) of potential agents of bioterrorism. To develop a safer vaccine against aerosolized F. tularensis, we have employed an attenuated Listeria monocytogenes, which shares with F. tularensis an intracellular and extraphagosomal lifestyle, as a delivery vehicle for F. tularensis antigens. We constructed recombinant L. monocytogenes (rLm) vaccines stably expressing seven F. tularensis proteins including IglC (rLm/iglC), and tested their immunogenicity and protective efficacy against lethal F. tularensis challenge in mice. Mice immunized intradermally with rLm/iglC developed significant cellular immune responses to F. tularensis IglC as evidenced by lymphocyte proliferation and CD4+ and CD8+ T-cell intracellular expression of interferon gamma. Moreover, mice immunized with rLm/iglC were protected against lethal challenge with F. tularensis LVS administered by the intranasal route, a route chosen to mimic airborne infection, and, most importantly, against aerosol challenge with the highly virulent Type A F. tularensis SchuS4 strain.
Collapse
Affiliation(s)
- Qingmei Jia
- Division of Infectious Diseases, Department of Medicine, 37-121 Center for Health Sciences, School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1688, United States
| | | | | | | | | |
Collapse
|
27
|
Sebastian S, Pinkham JT, Lynch JG, Ross RA, Reinap B, Blalock LT, Conlan JW, Kasper DL. Cellular and humoral immunity are synergistic in protection against types A and B Francisella tularensis. Vaccine 2008; 27:597-605. [PMID: 19022323 DOI: 10.1016/j.vaccine.2008.10.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Herein we report studies with a novel combination vaccine that, when administered to mice, conferred protection against highly virulent strains of Francisella tularensis by stimulating both arms of the immune system. Our earlier studies with Ft.LVS::wbtA, an O-polysaccharide (OPS)-negative mutant derived from the available live vaccine strain of F. tularensis (Ft.LVS), elucidated the role of antibodies to the OPS - a key virulence determinant - in protection against virulent type A organisms. However, when expressed on the organism, the OPS enhances virulence. In contrast, in purified form, the OPS is completely benign. We hypothesized that a novel combination vaccine containing both a component that induces humoral immunity and a component that induces cellular immunity to this intracellular microbe would have an enhanced protective capacity over either component alone and would be much safer than the LVS vaccine. Thus we developed a combination vaccine containing both OPS (supplied in an OPS-tetanus toxoid glycoconjugate) to induce a humoral antibody response and strain Ft.LVS::wbtA (which is markedly attenuated by its lack of OPS) to induce a cell-mediated protective response. This vaccine protected mice against otherwise-lethal intranasal and intradermal challenge with wild-type F. tularensis strains Schu S4 (type A) and FSC 108 (type B). These results represent a significant advance in our understanding of immunity to F. tularensis and provide important insight into the development of a safer vaccine effective against infections caused by clinical type A and B strains of F. tularensis.
Collapse
Affiliation(s)
- Shite Sebastian
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
A conserved and immunodominant lipoprotein of Francisella tularensis is proinflammatory but not essential for virulence. Microb Pathog 2008; 44:512-23. [PMID: 18304778 DOI: 10.1016/j.micpath.2008.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 11/22/2022]
Abstract
Francisella tularensis is a highly virulent bacterium that causes tularemia, a disease that is often fatal if untreated. A live vaccine strain (LVS) of this bacterium is attenuated for virulence in humans but produces lethal disease in mice. F. tularensis has been classified as a Category A agent of bioterrorism. Despite this categorization, little is known about the components of the organism that are responsible for causing disease in its hosts. Here, we report the deletion of a well-characterized lipoprotein of F. tularensis, designated LpnA (also known as Tul4), in the LVS. An LpnA deletion mutant was comparable to the wild-type strain in its ability to grow intracellularly and cause lethal disease in mice. Additionally, mice inoculated with a sublethal dose of the mutant strain were afforded the same protection against a subsequent lethal challenge with the LVS as were mice initially administered a sublethal dose of the wild-type bacterium. The LpnA-deficient strain showed an equivalent ability to promote secretion of chemokines by human monocyte-derived macrophages as its wild-type counterpart. However, recombinant LpnA potently stimulated primary cultures of human macrophages in a Toll-like receptor 2-dependent manner. Although human endothelial cells were also activated by recombinant LpnA, their response was relatively modest. LpnA is clearly unnecessary for multiple functions of the LVS, but its inflammatory capacity implicates it and other Francisella lipoproteins as potentially important to the pathogenesis of tularemia.
Collapse
|
29
|
Thakran S, Li H, Lavine CL, Miller MA, Bina JE, Bina XR, Re F. Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J Biol Chem 2007; 283:3751-60. [PMID: 18079113 DOI: 10.1074/jbc.m706854200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The innate immune response to Francisella tularensis is primarily mediated by TLR2, though the bacterial products that stimulate this receptor remain unknown. Here we report the identification of two Francisella lipoproteins, TUL4 and FTT1103, which activate TLR2. We demonstrate that TUL4 and FTT1103 stimulate chemokine production in human and mouse cells in a TLR2-dependent way. Using an assay that relies on chimeric TLR proteins, we show that TUL4 and FTT1103 stimulate exclusively the TLR2/TLR1 heterodimer. Our results also show that yet unidentified Francisella proteins, possibly unlipi-dated, have the ability to stimulate the TLR2/TLR6 heterodimer. Through domain-exchange analysis, we determined that an extended region that comprises LRR 9-17 in the extra-cellular portion of TLR1 mediates response to Francisella lipoproteins and triacylated lipopeptide. Substitution of the corresponding LRR of TLR6 with the LRR derived from TLR1 enables TLR6 to recognize TUL4, FTT1103, and triacylated lipopeptide. This study identifies for the first time specific Fran-cisella products capable of stimulating a proinflammatory response and the cellular receptors they trigger.
Collapse
Affiliation(s)
- Shalini Thakran
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Twine SM, Petit MD, Shen H, Mykytczuk NCS, Kelly JF, Conlan JW. Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem Biophys Res Commun 2006; 346:999-1008. [PMID: 16781667 DOI: 10.1016/j.bbrc.2006.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/02/2006] [Indexed: 11/26/2022]
Abstract
Francisella tularensis subspecies tularensis is one of the most virulent of bacterial pathogens for humans. Protective immunity against the pathogen can be induced in humans and some, but not all, mouse strains by vaccination with live, but not killed, vaccines. In mice, this protection is mediated predominantly by CD4+ and CD8+ T cells. This is thought to be the case too for humans. Nevertheless, it is possible that successful vaccination elicits antigen-specific antibodies that can serve as correlates of protection. To test this hypothesis we examined the repertoire of antibodies induced following successful immunization of BALB/c and CH3/HeN mice versus unsuccessful vaccination of C57BL/6 and DBA\2 mice with F. tularensis Live Vaccine Strain or following unsuccessful vaccination of BALB/c mice with highly related subspecies, F. novicida. The results showed that successful vaccination elicited antibodies to at least six proteins that were not recognized by antisera from vaccinated but unprotected mice.
Collapse
Affiliation(s)
- Susan M Twine
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | | | |
Collapse
|
31
|
Malik M, Bakshi CS, Sahay B, Shah A, Lotz SA, Sellati TJ. Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis. Infect Immun 2006; 74:3657-62. [PMID: 16714598 PMCID: PMC1479238 DOI: 10.1128/iai.02030-05] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptor 2 (TLR2) deficiency enhances murine susceptibility to infection by Francisella tularensis as indicated by accelerated mortality, higher bacterial burden, and greater histopathology. Analysis of pulmonary cytokine levels revealed that TLR2 deficiency results in significantly lower levels of tumor necrosis factor alpha and interleukin-6 but increased amounts of gamma interferon and monocyte chemoattractant protein 1. This pattern of cytokine production may contribute to the exaggerated pathogenesis seen in TLR2-/- mice. Collectively, these findings suggest that TLR2 plays an important role in tempering the host response to pneumonic tularemia.
Collapse
Affiliation(s)
- Meenakshi Malik
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, MC151, ME205B, Albany, NY 12208-3479, USA
| | | | | | | | | | | |
Collapse
|
32
|
Katz J, Zhang P, Martin M, Vogel SN, Michalek SM. Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect Immun 2006; 74:2809-16. [PMID: 16622218 PMCID: PMC1459727 DOI: 10.1128/iai.74.5.2809-2816.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 02/20/2006] [Indexed: 01/19/2023] Open
Abstract
Francisella tularensis, a gram-negative bacterium, is the etiologic agent of tularemia and has recently been classified as a category A bioterrorism agent. Infections with F. tularensis result in an inflammatory response that plays an important role in the pathogenesis of the disease; however, the cellular mechanisms mediating this response have not been completely elucidated. In the present study, we determined the role of Toll-like receptors (TLRs) in mediating inflammatory responses to F. tularensis LVS, and the role of NF-kappaB in regulating these responses. Stimulation of bone marrow-derived dendritic cells from C57BL/6 wild-type (wt) and TLR4-/- but not TLR2-/- mice, with live F. tularensis LVS elicited a dose-dependent increase in the production of tumor necrosis factor alpha. F. tularensis LVS also induced in a dose-dependent manner an up-regulation in the expression of the costimulatory molecules CD80 and CD86 and of CD40 and the major histocompatibility complex class II molecules on dendritic cells from wt and TLR4-/- but not TLR2-/- mice. TLR6, not TLR1, was shown to be involved in mediating the inflammatory response to F. tularensis LVS, indicating that the functional heterodimer is TLR2/TLR6. Stimulation of dendritic cells with F. tularensis resulted in the activation of NF-kappaB, which resulted in a differential effect on the production of pro- and anti-inflammatory cytokines. Taken together, our results demonstrate the role of TLR2/TLR6 in the host's inflammatory response to F. tularensis LVS in vitro and the regulatory function of NF-kappaB in modulating the inflammatory response.
Collapse
Affiliation(s)
- Jannet Katz
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
33
|
Collazo CM, Sher A, Meierovics AI, Elkins KL. Myeloid differentiation factor-88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intra-macrophage bacterial replication. Microbes Infect 2006; 8:779-90. [PMID: 16513388 DOI: 10.1016/j.micinf.2005.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/23/2005] [Accepted: 09/28/2005] [Indexed: 11/16/2022]
Abstract
The means by which Francisella tularensis, the causative agent of tularemia, are recognized by mammalian immune systems are poorly understood. Here we wished to explore the contribution of the MyD88/Toll-like receptor signaling pathway in initiating murine responses to F. tularensis Live Vaccine Strain (LVS). MyD88 knockout (KO) mice, but not TLR2-, TLR4- or TLR9-deficient mice, rapidly succumbed following in vivo bacterial infection via the intradermal route even with a very low dose of LVS (5 x 10(1)) that was 100,000-fold less than the LD(50) of normal wild-type (WT) mice. By day 5 after LVS infection, bacterial organ burdens were 5-6 logs higher in MyD88 knockout mice; further, unlike infected WT mice, levels of interferon-gamma in the sera of LVS-infected MyD88 KO were undetectable. An in vitro culture system was used to assess the ability of bone marrow macrophages derived from either KO or WT mice to support bacterial growth, or to control intracellular bacterial replication when co-cultured with immune lymphocytes. In this assay, bacterial replication was similar in macrophages derived from either WT or any of the TLR KO mice. Bacterial growth was controlled in co-cultures containing macrophages from MyD88 KO mice or TLR KO mice as well as in co-cultures containing immune WT splenic lymphocytes and WT macrophages. Further, MyD88-deficient LVS-immune splenocytes controlled intracellular growth comparably to those from normal mice. Thus MyD88 is essential for innate host resistance to LVS infection, but is not required for macrophage control of intracellular bacterial growth.
Collapse
Affiliation(s)
- Carmen M Collazo
- Laboratory of Mycobacterial Diseases and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
34
|
Pávková I, Hubálek M, Zechovská J, Lenco J, Stulík J. Francisella tularensis live vaccine strain: proteomic analysis of membrane proteins enriched fraction. Proteomics 2005; 5:2460-7. [PMID: 15937965 DOI: 10.1002/pmic.200401213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteome analysis of Gram-negative facultative intracellular pathogen Francisella tularensis (F. tularensis) live vaccine strain has been performed only on whole-cell extracts so far. This is the first study dealing with the analysis of the membrane subproteome of this microorganism. A fraction enriched in membrane proteins obtained by carbonate extraction was separated using two-dimensional electrophoresis and all visualized spots were identified by mass spectrometry. The reference map is the basis for further comparative analyses of virulent and non-virulent F. tularensis strains.
Collapse
Affiliation(s)
- Ivona Pávková
- Proteome Center for the Study of Intracellular Parasitism of Bacteria, Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
35
|
Oyston PCF, Quarry JE. Tularemia vaccine: past, present and future. Antonie van Leeuwenhoek 2005; 87:277-81. [PMID: 15928980 DOI: 10.1007/s10482-004-6251-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 11/15/2004] [Indexed: 11/28/2022]
Abstract
Francisella tularensis is a Gram negative intracellular pathogen that causes the highly debilitating or fatal disease tularemia. F. tularensis can infect a wide range of animals and can be transmitted to humans in a variety of ways, the most common being by the bite of an infected insect or arthropod vector. The attenuated F. tularensis live vaccine strain (LVS) has been used previously under investigational new drug status to vaccinate at-risk individuals. However the history of the strain and lack of knowledge regarding the basis of attenuation has so far prevented its licensing. Therefore the focus of current research is on producing a new vaccine against tularemia that would be suitable for licensing.
Collapse
Affiliation(s)
- Petra C F Oyston
- Defence Science and Technology Laboratories, Porton Down, Salisbury, Wiltshire, SP4 0JQ.
| | | |
Collapse
|
36
|
Isherwood KE, Titball RW, Davies DH, Felgner PL, Morrow WJW. Vaccination strategies for Francisella tularensis. Adv Drug Deliv Rev 2005; 57:1403-14. [PMID: 15919131 DOI: 10.1016/j.addr.2005.01.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Francisella tularensis is the etiologic agent of tularemia, a severe debilitating disease of humans and animals. The low infectious dose of F. tularensis in humans and the relative ease of culture are probably the properties which originally attracted interest in this bacterium as a bioweapon. Even today, F. tularensis is ranked as one of the pathogens most likely to be used as a biological warfare or bioterrorism agent. A live attenuated vaccine (LVS) has been available for over 50 years, but there are shortcomings associated with its use. This vaccine is not fully licensed and does not offer a high level of protection against respiratory challenge. Nevertheless, this vaccine does demonstrate the feasibility of vaccination against tularemia. Protection against tularemia is likely to be dependent on the induction of cellular and humoral immune responses. These types of responses are induced by the LVS vaccine and could also be induced by a rationally attenuated mutant of F. tularensis. Evoking this range of responses with a sub-unit vaccine may be more difficult to achieve, and will be dependent on the use of suitable vaccine delivery systems.
Collapse
Affiliation(s)
- Karen E Isherwood
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK
| | | | | | | | | |
Collapse
|
37
|
Telepnev M, Golovliov I, Sjöstedt A. Francisella tularensis LVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells. Microb Pathog 2005; 38:239-47. [PMID: 15925273 DOI: 10.1016/j.micpath.2005.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 12/20/2004] [Accepted: 02/18/2005] [Indexed: 11/28/2022]
Abstract
Monocytic cells constitute an important defense mechanism against invading pathogens by recognizing conserved pathogens components. The recognition leads to activation of intracellular pathways involving nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinases (MAPK), such as the c-Jun NH2-terminal kinase (JNK), and p38. We show that in vitro infection with Francisella tularensis results in activation of NF-kappaB, phosphorylation of p38 and c-Jun, and secretion of TNF-alpha in adherent mouse peritoneal cells, in the mouse macrophage-like cell line J774A.1, in the human macrophage cell line THP-1, and in human peripheral blood monocytic cells. This occurred after infection with the human live vaccine strain, F. tularensis LVS or a mutant strain denoted deltaiglC, which lacks expression of a 23-kDa protein, or after addition of killed F. tularensis LVS. Addition of purified F. tularensis LPS resulted in no discernible effects on the cells. When the effects were followed up to 5 h, activation persisted in cultures with killed bacteria or infected with the deltaiglC strain. In contrast, the signal transduction activation and secretion of TNF-alpha were down-regulated within the 5h period in mouse peritoneal cells, J774 cells or human peripheral blood mononuclear cells infected with F. tularensis LVS. Together, the results suggest that infection with live F. tularensis LVS bacteria leads to a rapid induction of a proinflammatory response in mouse and human cells but after internalization of bacteria, this response is completely or partly down-regulated in most cell types. This down-regulation does not occur when cells are infected with the mutant deltaiglC.
Collapse
Affiliation(s)
- Max Telepnev
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, SE-901 87, Sweden
| | | | | |
Collapse
|
38
|
Lindgren H, Stenmark S, Chen W, Tärnvik A, Sjöstedt A. Distinct roles of reactive nitrogen and oxygen species to control infection with the facultative intracellular bacterium Francisella tularensis. Infect Immun 2004; 72:7172-82. [PMID: 15557642 PMCID: PMC529105 DOI: 10.1128/iai.72.12.7172-7182.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are important mediators of the bactericidal host response. We investigated the contribution of these two mediators to the control of infection with the facultative intracellular bacterium Francisella tularensis. When intradermally infected with the live vaccine strain F. tularensis LVS, mice deficient in production of RNS (iNOS(-/-) mice) or in production of ROS by the phagocyte oxidase (p47(phox-/-) mice) showed compromised resistance to infection. The 50% lethal dose (LD(50)) for iNOS(-/-) mice was <20 CFU, and the LD(50) for p47(phox-/-) mice was 4,400 CFU, compared to an LD(50) of >500,000 CFU for wild-type mice. The iNOS(-/-) mice survived for 26.4 +/- 1.8 days, and the p47(phox-/-) mice survived for 10.1 +/- 1.3 days. During the course of infection, the serum levels of gamma interferon (IFN-gamma) and interleukin-6 were higher in iNOS(-/-) and p47(phox-/-) mice than in wild-type mice. Histological examination of livers of iNOS(-/-) mice revealed severe liver pathology. Splenocytes obtained 5 weeks after primary infection from antibiotic-treated iNOS(-/-) mice showed an in vitro recall response that was similar in magnitude and greater secretion of IFN-gamma compared to cells obtained from wild-type mice. In summary, mice lacking expression of RNS or ROS showed extreme susceptibility to infection with F. tularensis LVS. The roles of RNS and ROS seemed to be distinct since mice deficient in production of ROS showed dissemination of infection and died during the early phase of infection, whereas RNS deficiency led to severe liver pathology and a contracted course of infection.
Collapse
Affiliation(s)
- Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | |
Collapse
|
39
|
Oyston PCF, Sjostedt A, Titball RW. Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol 2004; 2:967-78. [PMID: 15550942 DOI: 10.1038/nrmicro1045] [Citation(s) in RCA: 389] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Francisella tularensis is a highly infectious aerosolizable intracellular pathogen that is capable of causing a debilitating or fatal disease with doses as low as 25 colony-forming units. There is no licensed vaccine available. Since the 1950s there has been concern that F. tularensis could be used as a biological threat agent, and it has received renewed attention recently owing to concerns about bioterrorism. The International Conference on Tularaemia in 2003 attracted more than 200 delegates, twice the number of participants as previous meetings. This is a reflection of the increased funding of research on this pathogen, particularly in the United States.
Collapse
|
40
|
Lauriano CM, Barker JR, Nano FE, Arulanandam BP, Klose KE. Allelic exchange inFrancisella tularensisusing PCR products. FEMS Microbiol Lett 2003; 229:195-202. [PMID: 14680699 DOI: 10.1016/s0378-1097(03)00820-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We describe here a technique for allelic exchange in Francisella tularensis subsp. novicida utilizing polymerase chain reaction (PCR) products. Linear PCR fragments containing gene deletions with an erythromycin resistance cassette insertion were transformed into F. tularensis. The subsequent ErmR progeny were found to have undergone allelic exchange at the correct location in the genome; the minimum flanking homology necessary was 500 bp. This technique was used to create mglA, iglC, bla, and tul4 mutants in F. tularensis subsp. novicida strains. The mglA and iglC mutants were defective for intramacrophage growth, and the tul4 mutant lacked detectable Tul4 by Western immunoblot, as expected. Interestingly, the bla mutant maintained resistance to ampicillin, indicating the presence of multiple ampicillin resistance genes in F. tularensis.
Collapse
Affiliation(s)
- Crystal M Lauriano
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
41
|
Greenfield RA, Bronze MS. Prevention and treatment of bacterial diseases caused by bacterial bioterrorism threat agents. Drug Discov Today 2003; 8:881-8. [PMID: 14554016 DOI: 10.1016/s1359-6446(03)02847-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is general consensus that the bacterial agents or products most likely to be used as weapons of mass destruction are Bacillus anthracis, Yersinia pestis, Francisella tularensis and the neurotoxin of Clostridium botulinum. Modern supportive and antimicrobial therapy for inhalational anthrax is associated with a 45% mortality rate, reinforcing the need for better adjunctive therapy and prevention strategies. Pneumonic plague is highly contagious, difficult to recognize and is frequently fatal. Therefore, the development of vaccines against this agent is crucial. Although tularemia is associated with low mortality, the highly infectious nature of aerosolized F. tularensis poses a substantive threat that is best met by vaccine development. Safer antitoxins and a vaccine are required to meet the threat of the use of botulinum toxin as a weapon of mass destruction. In this article, the current status of research in these areas is reviewed.
Collapse
Affiliation(s)
- Ronald A Greenfield
- The Infectious Diseases Section, Department of Medicine, University of Oklahoma Health Sciences Center, & The Oklahoma City Veterans Administration Medical Center, Oklahoma City, OK 73190, USA.
| | | |
Collapse
|
42
|
Forestal CA, Benach JL, Carbonara C, Italo JK, Lisinski TJ, Furie MB. Francisella tularensis selectively induces proinflammatory changes in endothelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2563-70. [PMID: 12928407 DOI: 10.4049/jimmunol.171.5.2563] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naturally acquired infections with Francisella tularensis, the bacterial agent of tularemia, occur infrequently in humans. However, the high infectivity and lethality of the organism in humans raise concerns that it might be exploited as a weapon of bioterrorism. Despite this potential for illicit use, the pathogenesis of tularemia is not well understood. To examine how F. tularensis interacts with cells of its mammalian hosts, we tested the ability of a live vaccine strain (LVS) to induce proinflammatory changes in cultured HUVEC. Living F. tularensis LVS induced HUVEC to express the adhesion molecules VCAM-1 and ICAM-1, but not E-selectin, and to secrete the chemokine CXCL8, but not CCL2. Stimulation of HUVEC by the living bacteria was partially suppressed by polymyxin B, an inhibitor of LPS, but did not require serum, suggesting that F. tularensis LVS does not stimulate endothelium through the serum-dependent pathway that is typically used by LPS from enteric bacteria. In contrast to the living organisms, suspensions of killed F. tularensis LVS acquired the ability to increase endothelial expression of both E-selectin and CCL2. Up-regulation of E-selectin and CCL2 by the killed bacteria was not inhibited by polymyxin B. Exposure of HUVEC to either live or killed F. tularensis LVS for 24 h promoted the transendothelial migration of subsequently added neutrophils. These data indicate that multiple components of F. tularensis LVS induce proinflammatory changes in endothelial cells in an atypical manner that may contribute to the exceptional infectivity and virulence of this pathogen.
Collapse
Affiliation(s)
- Colin A Forestal
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Francisella tularensis is an intracellular pathogen with a very low infectious dose for humans. Several forms of tularaemia occur, which range from a severely debilitating to a fatal disease. Diagnosis is difficult due to the generalised, nonspecific nature of symptoms and the difficulty in culturing the slow-growing and nutritionally fastidious pathogen. A live attenuated vaccine strain (LVS) has been used in humans as an investigational new drug and does appear to induce a protective response. However, the licensing of this vaccine has not yet been possible. For this reason, modern molecular biology approaches are being used in an attempt to devise replacement vaccines which may be more easily licensed. The approaches which are currently being considered include the production of subunit vaccines and the development of defined isogenic attenuated mutant strains of F. tularensis.
Collapse
Affiliation(s)
- R W Titball
- Microbiology, DSTL Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | |
Collapse
|
44
|
Hubálek M, Hernychová L, Havlasová J, Kasalová I, Neubauerová V, Stulík J, Macela A, Lundqvist M, Larsson P. Towards proteome database of Francisella tularensis. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 787:149-77. [PMID: 12659739 DOI: 10.1016/s1570-0232(02)00730-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The accessibility of the partial genome sequence of Francisella tularensis strain Schu 4 was the starting point for a comprehensive proteome analysis of the intracellular pathogen F. tularensis. The main goal of this study is identification of protein candidates of value for the development of diagnostics, therapeutics and vaccines. In this review, the current status of 2-DE F. tularensis database building, approaches used for identification of biologically important subsets of F. tularensis proteins, and functional and topological assignments of identified proteins using various prediction programs and database homology searches are presented.
Collapse
Affiliation(s)
- Martin Hubálek
- Proteome Center for the Study of Intracellular Parasitism of Bacteria, Purkyne Military Medical Academy, Trebesská 1575, 500 01 Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Vaccination programmes are very successful as a preventive strategy against many infectious diseases which have had a major impact on human morbidity and mortality. One of these diseases, smallpox, has been eliminated as a natural infection. The recent concern about biological attacks has turned attention to the use of an immunisation programme to prevent infection with what are considered the most significant potentially harmful biowarfare pathogens. This review puts into perspective the available information on current immunisation and newer vaccine options for anthrax, smallpox, tularaemia, plague and botulism.
Collapse
Affiliation(s)
- Larry I Lutwick
- Division of Infectious Diseases (IIIE), Veterans Affairs New York Harbor Healthcare System, 800 Poly Place, Brooklyn, New York 11209, USA.
| | | |
Collapse
|
46
|
Abstract
Francisella tularensis is the etiological agent of tularemia, a serious and occasionally fatal disease of humans and animals. In humans, ulceroglandular tularemia is the most common form of the disease and is usually a consequence of a bite from an arthropod vector which has previously fed on an infected animal. The pneumonic form of the disease occurs rarely but is the likely form of the disease should this bacterium be used as a bioterrorism agent. The diagnosis of disease is not straightforward. F. tularensis is difficult to culture, and the handling of this bacterium poses a significant risk of infection to laboratory personnel. Enzyme-linked immunosorbent assay- and PCR-based methods have been used to detect bacteria in clinical samples, but these methods have not been adequately evaluated for the diagnosis of pneumonic tularemia. Little is known about the virulence mechanisms of F. tularensis, though there is a large body of evidence indicating that it is an intracellular pathogen, surviving mainly in macrophages. An unlicensed live attenuated vaccine is available, which does appear to offer protection against ulceroglandular and pneumonic tularemia. Although an improved vaccine against tularemia is highly desirable, attempts to devise such a vaccine have been limited by the inability to construct defined allelic replacement mutants and by the lack of information on the mechanisms of virulence of F. tularensis. In the absence of a licensed vaccine, aminoglycoside antibiotics play a key role in the prevention and treatment of tularemia.
Collapse
Affiliation(s)
- Jill Ellis
- Defence Science and Technology Laboratory, CBS Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | | | | | | |
Collapse
|
47
|
Maeda Y, Makino M, Crick DC, Mahapatra S, Srisungnam S, Takii T, Kashiwabara Y, Brennan PJ. Novel 33-kilodalton lipoprotein from Mycobacterium leprae. Infect Immun 2002; 70:4106-11. [PMID: 12117918 PMCID: PMC128180 DOI: 10.1128/iai.70.8.4106-4111.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 04/04/2002] [Accepted: 05/01/2002] [Indexed: 11/20/2022] Open
Abstract
A novel Mycobacterium leprae lipoprotein LpK (accession no. ML0603) was identified from the genomic database. The 1,116-bp open reading frame encodes a 371-amino-acid precursor protein with an N-terminal signal sequence and a consensus motif for lipid conjugation. Expression of the protein, LpK, in Escherichia coli revealed a 33-kDa protein, and metabolic labeling experiments and globomycin treatment proved that the protein was lipidated. Fractionation of M. leprae demonstrated that this lipoprotein was a membrane protein of M. leprae. The purified lipoprotein was found to induce production of interleukin-12 in human peripheral blood monocytes. The studies imply that M. leprae LpK is involved in protective immunity against leprosy and may be a candidate for vaccine design.
Collapse
Affiliation(s)
- Yumi Maeda
- Department of Microbiology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Prior RG, Klasson L, Larsson P, Williams K, Lindler L, Sjöstedt A, Svensson T, Tamas I, Wren BW, Oyston PC, Andersson SG, Titball RW. Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4. J Appl Microbiol 2001; 91:614-20. [PMID: 11576297 DOI: 10.1046/j.1365-2672.2001.01499.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R G Prior
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wilts, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fulop M, Mastroeni P, Green M, Titball RW. Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine 2001; 19:4465-72. [PMID: 11483272 DOI: 10.1016/s0264-410x(01)00189-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice immunised with lipopolysaccharide (LPS) from Francisella tularensis were protected against challenge with the live vaccine strain (LVS). However, when similarly immunised mice were challenged using the fully virulent F. tularensis strain Schu4, only an increase in the time to death was observed. Passive transfer of serum from LPS-immunised mice to naive mice afforded protection against F. tularensis LVS. LPS-immunised mice depleted of either CD4+ or CD8+ T-cells survived a F. tularensis LVS challenge although the rate of clearance of bacteria from the spleen was significantly reduced in the CD8+ depleted group. LPS-immunised mice boosted with F. tularensis LVS were re-challenged with F. tularensis Schu4. This cohort was significantly protected (LD(50) increased from <1 to >1000 CFU). However, passive transfer of serum did not confer protection and mice depleted of CD4+ or CD8+ T-cells did not survive.
Collapse
Affiliation(s)
- M Fulop
- Defence Evaluation and Research Agency, CBD, Porton Down, Wiltshire SP4 0JQ, Salisbury, UK
| | | | | | | |
Collapse
|
50
|
Ericsson M, Kroca M, Johansson T, Sjöstedt A, Tärnvik A. Long-lasting recall response of CD4+ and CD8+ alphabeta T cells, but not gammadelta T cells, to heat shock proteins of francisella tularensis. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2001; 33:145-52. [PMID: 11233852 DOI: 10.1080/003655401750065562] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Decades after recovery from tularemia, circulating alphabeta T cells are known to still recognize a variety of membrane proteins of Francisella tularensis. We studied the T cell response to 3 cytoplasmic heat shock proteins of the organism: DnaK, chaperone-60 (Cpn-60) and Cpn-10. Determination of subpopulations of responding T cells was of special interest as it has been suggested that homologs of these conserved proteins may be recognized by human gammadelta T cells. Compared with reference subjects with no history of tularemia or tularemia vaccination, subjects who had been infected with tularemia 10-30 y earlier showed a significantly (p = 0.01) higher proliferative T cell response to all 3 heat shock proteins. In general, the magnitude of responses of CD4 T cells was higher than that of CD8 T cells. By flow cytometry, blast cells were shown to express the alphabeta T cell receptor. Under conditions that allowed vigorous expansion of gammadelta T cells in response to a phosphorylated non-peptide antigen, no expansion of gammadelta T cells occurred in response to DnaK or Cpn60 of F. tularensis. In conclusion, a long-lasting recall response to heat shock proteins of F. tularensis was demonstrated in alphabeta T cells but not in gammadelta T cells. The results support the assumption that human alphabeta T cells recognize bacterial proteins irrespective of the nature or localization of the proteins in the bacterial cell and thereby contribute to the maintenance of a long-lasting broad T cell response based on a wide variety of specificities.
Collapse
Affiliation(s)
- M Ericsson
- Department of Clinical Microbiology, Infectious Diseases and Bacteriology, Umeå University, Sweden
| | | | | | | | | |
Collapse
|