1
|
Kang MK, Bevington J, Tullman-Ercek D. Evaluation of the Salmonella type 3 secretion system (T3SS) as part of a protein production platform for space biology applications. Front Bioeng Biotechnol 2025; 13:1567596. [PMID: 40242353 PMCID: PMC12000002 DOI: 10.3389/fbioe.2025.1567596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
As interest in space exploration and in situ resource utilization grows, the potential to leverage synthetic biology and engineered microorganisms has garnered significant attention. Microorganisms provide a robust and efficient biological chassis to demonstrate the human blueprint for advancing space biology. However, progress toward these applications is hindered by the limited access to space-like environments and a lack of knowledge about how unique environmental factors affect relevant microbial systems. To address these issues, we evaluated the Salmonella Pathogenicity Island 1 (SPI-1) type Ⅲ secretion system (T3SS) as a protein production platform for space applications. Using a NASA-designed microgravity-simulating bioreactor system, we investigated the effects of simulated microgravity on cell growth, stress response, and protein secretion via SPI-1 T3SS. Our results demonstrated increased stress responses in cells grown under simulated microgravity. However, the SPI-1 T3SS maintained its ability to secrete proteins directly into the extracellular space in a single step under simulated microgravity, simplifying downstream purification processes. These findings suggest that the SPI-1 T3SS is a viable candidate for future space biology applications.
Collapse
Affiliation(s)
- Min-Kyoung Kang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Anti-aging Bio Cell factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju, Republic of Korea
| | - James Bevington
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Interplanetary Exploration Institute Ltd., Sydney, Australia
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
2
|
Construction of a constitutively active type III secretion system for heterologous protein secretion. Appl Microbiol Biotechnol 2023; 107:1785-1800. [PMID: 36786917 DOI: 10.1007/s00253-023-12411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Proteins comprise a multibillion-dollar industry in enzymes and therapeutics, but bacterial protein production can be costly and inefficient. Proteins of interest (POIs) must be extracted from lysed cells and inclusion bodies, purified, and resolubilized, which adds significant time and cost to the protein-manufacturing process. The Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS) has been engineered to address these problems by secreting soluble, active proteins directly into the culture media, reducing the number of purification steps. However, the current best practices method of T3SS pathway activation is not ideal for industrial scaleup. Previously, the T3SS was activated by plasmid-based overexpression of the T3SS transcriptional regulator, hilA, which requires the addition of a small molecule inducer (IPTG) to the culture media. IPTG adds significant cost to production and plasmid-based expression is subject to instability in large-scale fermentation. Here, we modulate the upstream transcriptional regulator, hilD, to activate the T3SS via three distinct methods. In doing so, we develop a toolbox of T3SS activation methods and construct constitutively active T3SS strains capable of secreting a range of heterologous proteins at titers comparable to plasmid-based hilA overexpression. We also explore how each activation method in our toolbox impacts the SPI-1 regulatory cascade and discover an epistatic relationship between T3SS regulators, hilE and the hilD 3' untranslated region (hilD 3'UTR). Together, these findings further our goal of making an industrially competitive protein production strain that reduces the challenges associated with plasmid induction and maintenance. KEY POINTS: • Characterized 3 new type III secretion system (T3SS) activation methods for heterologous protein secretion, including 2 constitutive activation methods. • Eliminated the need for a second plasmid and a small molecule inducer to activate the system, making it more suitable for industrial production. • Discovered new regulatory insights into the SPI-1 T3SS, including an epistatic relationship between regulators hilE and the hilD 3' untranslated region.
Collapse
|
3
|
Behera P, Kumar Singh K, Kumar Saini D, De M. Rapid Discrimination of Bacterial Drug Resistivity by Array‐Based Cross‐Validation Using 2D MoS
2. Chemistry 2022; 28:e202201386. [DOI: 10.1002/chem.202201386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry Indian Institute of Science 560012 Bangalore India
| | - Krishna Kumar Singh
- Molecular Reproduction, Development and Genetics Indian Institute of Science 560012 Bangalore India
- Department of Cardiology, School of Medicine Johns Hopkins University 21205 Baltimore MD USA
| | - Deepak Kumar Saini
- Molecular Reproduction, Development and Genetics Indian Institute of Science 560012 Bangalore India
| | - Mrinmoy De
- Department of Organic Chemistry Indian Institute of Science 560012 Bangalore India
| |
Collapse
|
4
|
High Osmotic Stress Increases OmpK36 Expression through the Regulation of KbvR to Decrease the Antimicrobial Resistance of Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0050722. [PMID: 35658577 PMCID: PMC9241633 DOI: 10.1128/spectrum.00507-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a pathogen known for its high frequency of antimicrobial resistance. Responses to various environmental stresses during its life can influence the resistance to antibiotics. Here, we demonstrate the role and mechanism of KbvR regulator in the response to environmental osmotic stress and in the effect of osmotic stress on antimicrobial resistance. The kbvR mutant strain exhibited increasing tolerance to high osmotic stress and certain antibiotics, including β-lactams. The expression levels of KbvR and outer membrane porin OmpK36 were upregulated in response to high osmotic stress in the wild type (WT), and the deletion of kbvR decreased the expression level of ompK36. The membrane permeability of the kbvR mutant strain was decreased, which was partly restored through the upregulated expression of OmpK36. The DNA affinity purification sequencing (DAP-seq) and microscale thermophoresis (MST) assay disclosed the binding of KbvR to the promoter of the ompK36 gene, indicating that KbvR directly and positively regulated the expression of OmpK36. The high osmotic stress increased the susceptibility to β-lactams and the expression of ompK36 in the WT strain. However, the increased ompK36 expression and the susceptibility to β-lactams in the kbvR mutant strain under high osmotic stress were lower than those of WT. In conclusion, our study has identified that high osmotic stress in the environment influenced the resistance of K. pneumoniae to antibiotics and that the regulation of KbvR with OmpR on the expression of OmpK36 was involved in countering high osmotic stress to change the antimicrobial resistance. IMPORTANCEKlebsiella pneumoniae is considered a global threat because of the rising prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. The sensing and adaption abilities of bacteria to the environmental osmotic stress can change the expression of their outer membrane porins, membrane permeability, and resistance to antibiotics. This study reports that KbvR is a newly found regulator that can be upregulated under high osmotic stress and directly regulate the expression of OmpK36 to change the resistance of K. pneumoniae to β-lactam antibiotics. The results demonstrate how adaptation to high osmotic stress changes the sensitivity of K. pneumoniae to antibiotics. The mechanism can be used to sensitize bacteria to antibiotics and highlight new potential strategies for exploiting shared constraints in governing adaptation to diverse environmental challenges.
Collapse
|
5
|
Rapid antimicrobial susceptibility profiling using impedance spectroscopy. Biosens Bioelectron 2022; 200:113876. [PMID: 34974262 DOI: 10.1016/j.bios.2021.113876] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022]
Abstract
The present antibiotic susceptibility testing (AST) techniques based on bacterial culture, gene amplification and mass spectrometry are highly time consuming, labour intensive or expensive. Impedance spectroscopy is an emerging tool for rapid bacterial analysis as it is label-free, real-time, affordable and high-throughput. The over-reliance of this technique on complex chip designs and cell enrichment strategies has, however, slowed its foray into clinical AST. We demonstrate a label-free approach in which a low conductivity zwitterionic buffer is used for boosting impedance sensitivity in simple interdigitated electrodes (IDEs) allowing rapid AST in just 20 min without any liquid flow, biofunctionalization or cell enrichment steps. The detection principle relies on measuring changes in solution resistance due to antibiotic-induced bacterial cell death or growth. While the death-based approach is faster (20 min), it's restricted to surface-acting bactericidal antibiotics. The cell growth approach is longer (60-80 min) but more versatile as it applies to all drug types. Results for antibiotic sensitivity analysis and minimum inhibitory concentration (MIC) determination are illustrated for Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus against a wide class of antibiotics (penicillins, cephalosporins, polymyxins, carbapenems etc.).
Collapse
|
6
|
Burdette LA, Wong HT, Tullman-Ercek D. An optimized growth medium for increased recombinant protein secretion titer via the type III secretion system. Microb Cell Fact 2021; 20:44. [PMID: 33588857 PMCID: PMC7885374 DOI: 10.1186/s12934-021-01536-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Protein secretion in bacteria is an attractive strategy for heterologous protein production because it retains the high titers and tractability of bacterial hosts while simplifying downstream processing. Traditional intracellular production strategies require cell lysis and separation of the protein product from the chemically similar cellular contents, often a multi-step process that can include an expensive refolding step. The type III secretion system of Salmonella enterica Typhimurium transports proteins from the cytoplasm to the extracellular environment in a single step and is thus a promising solution for protein secretion in bacteria. Product titer is sensitive to extracellular environmental conditions, however, and T3SS regulation is integrated with essential cellular functions. Instead of attempting to untangle a complex web of regulatory input, we took an "outside-in" approach to elucidate the effect of growth medium components on secretion titer. RESULTS We dissected the individual and combined effects of carbon sources, buffers, and salts in a rich nutrient base on secretion titer. Carbon sources alone decreased secretion titer, secretion titer increased with salt concentration, and the combination of a carbon source, buffer, and high salt concentration had a synergistic effect on secretion titer. Transcriptional activity measured by flow cytometry showed that medium composition affected secretion system activity, and prolonged secretion system activation correlated strongly with increased secretion titer. We found that an optimal combination of glycerol, phosphate, and sodium chloride provided at least a fourfold increase in secretion titer for a variety of proteins. Further, the increase in secretion titer provided by the optimized medium was additive with strain enhancements. CONCLUSIONS We leveraged the sensitivity of the type III secretion system to the extracellular environment to increase heterologous protein secretion titer. Our results suggest that maximizing secretion titer via the type III secretion system is not as simple as maximizing secreted protein expression-one must also optimize secretion system activity. This work advances the type III secretion system as a platform for heterologous protein secretion in bacteria and will form a basis for future engineering efforts.
Collapse
Affiliation(s)
- Lisa Ann Burdette
- Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley, USA
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Han Teng Wong
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, USA
- Present Address: Institute of Molecular and Cell Biology, 61 Biopolis Way, Singapore, 138673 Singapore
| | - Danielle Tullman-Ercek
- Present Address: Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| |
Collapse
|
7
|
An ordinal logistic regression approach to predict the variability on biofilm formation stages by five Salmonella enterica strains on polypropylene and glass surfaces as affected by pH, temperature and NaCl. Food Microbiol 2019; 83:95-103. [PMID: 31202424 DOI: 10.1016/j.fm.2019.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
This study assessed the adhesion and formation of biofilm by five Salmonella enterica strains (S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) on polypropylene (PP) and glass (G) surfaces as affected by pH (4-7), NaCl concentration (0-10% w/v) and temperature (8-35 °C). Sessile counts <3 log CFU/cm2 were considered lack of adhesion (category 1), while counts ≥ 3 and < 5 log CFU/cm2 corresponded to adhesion (category 2) and counts ≥ 5 log CFU/cm2 corresponded biofilm formation (category 3). The obtained results categorized in these three responses were used to develop ordinal regression models to predict the probability of biofilm stages on PP- and G-surfaces. The experimental outcomes for lack of adhesion were >90% on PP- and G-surfaces. Generally, adhesion outcomes corresponded to approximately 36% of the total, whereas biofilm outcomes were close to 65% in both PP- and G-surfaces. The biofilm stages varied among the strains studied and with the material surface under the same experimental conditions. According to the generated ordinal models, the probability of adhesion and biofilm formation on PP-surface by the five S. enterica strains tested decreased at pH 4 or 5 in NaCl concentrations >4% and at a temperature <20 °C. On G-surface, the probability of adhesion increased pH 6 or 7, in the absence of NaCl and temperatures <20 °C, while, the probability of biofilm formation increased in the same pH, NaCl concentration up to 4% and temperatures ≥20 °C. This is the first study assessing the biofilm formation through categorical, ordinal responses and it shows that ordinal regression models can be useful to predict biofilm stages of S. enterica as a function of pH, NaCl, and temperature or their interactions.
Collapse
|
8
|
Mutz YDS, Rosario DKA, Paschoalin VMF, Conte-Junior CA. Salmonella enterica: A hidden risk for dry-cured meat consumption? Crit Rev Food Sci Nutr 2019; 60:976-990. [DOI: 10.1080/10408398.2018.1555132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yhan da Silva Mutz
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | - Denes Kaic Alves Rosario
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
- Department of Food Technology, Federal Fluminense University, Vital Brazil Filho, Niterói, RJ, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Kim K, Golubeva YA, Vanderpool CK, Slauch JM. Oxygen-dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium. Mol Microbiol 2018; 111:570-587. [PMID: 30484918 DOI: 10.1111/mmi.14174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC-like regulators, HilD, HilC and RtsA, form a feed-forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5' UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low-aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen.
Collapse
Affiliation(s)
- Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Yekaterina A Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
10
|
Reciprocal Regulation of OmpR and Hfq and Their Regulatory Actions on the Vi Polysaccharide Capsular Antigen in Salmonella enterica Serovar Typhi. Curr Microbiol 2018; 75:773-778. [DOI: 10.1007/s00284-018-1447-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
|
11
|
Xiong K, Zhu C, Chen Z, Zheng C, Tan Y, Rao X, Cong Y. Vi Capsular Polysaccharide Produced by Recombinant Salmonella enterica Serovar Paratyphi A Confers Immunoprotection against Infection by Salmonella enterica Serovar Typhi. Front Cell Infect Microbiol 2017; 7:135. [PMID: 28484685 PMCID: PMC5401900 DOI: 10.3389/fcimb.2017.00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/31/2017] [Indexed: 11/28/2022] Open
Abstract
Enteric fever is predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A, and accounts for an annual global incidence of 26.9 millions. In recent years, the rate of S. Paratyphi A infection has progressively increased. Currently licensed vaccines for typhoid fever, live Ty21a vaccine, Vi subunit vaccine, and Vi-conjugate vaccine, confer inadequate cross immunoprotection against enteric fever caused by S. Paratyphi A. Therefore, development of bivalent vaccines against enteric fever is urgently required. The immunogenic Vi capsular polysaccharide is characteristically produced in S. Typhi, but it is absent in S. Paratyphi A. We propose that engineering synthesis of Vi in S. Paratyphi A live-attenuated vaccine may expand its protection range to cover S. Typhi. In this study, we cloned the viaB locus, which contains 10 genes responsible for Vi biosynthesis, and integrated into the chromosome of S. Paratyphi A CMCC 50093. Two virulence loci, htrA and phoPQ, were subsequently deleted to achieve a Vi-producing attenuated vaccine candidate. Our data showed that, despite more than 200 passages, the viaB locus was stably maintained in the chromosome of S. Paratyphi A and produced the Vi polysaccharide. Nasal immunization of the vaccine candidate stimulated high levels of Vi-specific and S. Paratyphi A-specific antibodies in mice sera as well as total sIgA in intestinal contents, and showed significant protection against wild-type challenge of S. Paratyphi A or S. Typhi. Our study show that the Vi-producing attenuated S. Paratyphi A is a promising bivalent vaccine candidate for the prevention of enteric fever.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Microbiology, Third Military Medical UniversityChongqing, China
| | - Chunyue Zhu
- Outpatient Department of 95851 Unit of PLANanjing, China
| | - Zhijin Chen
- Department of Microbiology, Third Military Medical UniversityChongqing, China
| | - Chunping Zheng
- Department of Microbiology, Third Military Medical UniversityChongqing, China
| | - Yong Tan
- Department of Microbiology, Third Military Medical UniversityChongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical UniversityChongqing, China
| | - Yanguang Cong
- Department of Microbiology, Third Military Medical UniversityChongqing, China
| |
Collapse
|
12
|
Chakroun I, Cordero H, Mahdhi A, Morcillo P, Fedhila K, Cuesta A, Bakhrouf A, Mahdouani K, Esteban MÁ. Adhesion, invasion, cytotoxic effect and cytokine production in response to atypical Salmonella Typhimurium infection. Microb Pathog 2017; 106:40-49. [DOI: 10.1016/j.micpath.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022]
|
13
|
Hu X, Chen Z, Xiong K, Wang J, Rao X, Cong Y. Vi capsular polysaccharide: Synthesis, virulence, and application. Crit Rev Microbiol 2016; 43:440-452. [PMID: 27869515 DOI: 10.1080/1040841x.2016.1249335] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Vi capsular polysaccharide, a linear homopolymer of α-1,4-linked N-acetylgalactosaminuronate, is characteristically produced by Salmonella enterica serovar Typhi. The Vi capsule covers the surface of the producing bacteria and serves as an virulence factor via inhibition of complement-mediated killing and promoting resistance against phagocytosis. Furthermore, Vi also represents a predominant protective antigen and plays a key role in the development of vaccines against typhoid fever. Herein, we reviewed the latest advances associated with the Vi polysaccharide, from its synthesis and transport within bacterial cells, mechanisms involved in virulence, immunological characteristics, and applications in vaccine, as well as its purification and detection methods.
Collapse
Affiliation(s)
- Xiaomei Hu
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Zhijin Chen
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Kun Xiong
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Jing Wang
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Xiancai Rao
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Yanguang Cong
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| |
Collapse
|
14
|
Use of Transcriptional Control to Increase Secretion of Heterologous Proteins in T3S Systems. Methods Mol Biol 2016. [PMID: 27837482 DOI: 10.1007/978-1-4939-6649-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Heterologous proteins can be produced in a bacterial host and purified from the cellular constituents. Secretion of the protein of interest to the extracellular space simplifies the purification process and is thought to alleviate toxicity problems associated with intracellular accumulation of the protein of interest. In this protocol, we describe a strategy to engineer protein secretion in a bacterial culture using transcriptional control. The transcription factor HilA is inducibly produced to control production of the secretion machine, and in turn signals the production and secretion of a protein of interest. This allows for high titer of secreted protein in optimized culturing conditions and the effect is observed with all proteins tested.
Collapse
|
15
|
Differences in Host Cell Invasion and Salmonella Pathogenicity Island 1 Expression between Salmonella enterica Serovar Paratyphi A and Nontyphoidal S. Typhimurium. Infect Immun 2016; 84:1150-1165. [PMID: 26857569 DOI: 10.1128/iai.01461-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
Active invasion into nonphagocytic host cells is central to Salmonella enterica pathogenicity and dependent on multiple genes within Salmonella pathogenicity island 1 (SPI-1). Here, we explored the invasion phenotype and the expression of SPI-1 in the typhoidal serovarS Paratyphi A compared to that of the nontyphoidal serovarS Typhimurium. We demonstrate that while S. Typhimurium is equally invasive under both aerobic and microaerobic conditions, S. Paratyphi A invades only following growth under microaerobic conditions. Transcriptome sequencing (RNA-Seq), reverse transcription-PCR (RT-PCR), Western blot, and secretome analyses established that S. Paratyphi A expresses much lower levels of SPI-1 genes and secretes lesser amounts of SPI-1 effector proteins than S. Typhimurium, especially under aerobic growth. Bypassing the native SPI-1 regulation by inducible expression of the SPI-1 activator, HilA, considerably elevated SPI-1 gene expression, host cell invasion, disruption of epithelial integrity, and induction of proinflammatory cytokine secretion by S. Paratyphi A but not by S. Typhimurium, suggesting that SPI-1 expression is naturally downregulated inS Paratyphi A. Using streptomycin-treated mice, we were able to establish substantial intestinal colonization byS Paratyphi A and showed moderately higher pathology and intestinal inflammation in mice infected with S. Paratyphi A overexpressing hilA Collectively, our results reveal unexpected differences in SPI-1 expression between S. Paratyphi A andS Typhimurium, indicate that S. Paratyphi A host cell invasion is suppressed under aerobic conditions, and suggest that lower invasion in aerobic sites and suppressed expression of immunogenic SPI-1 components contributes to the restrained inflammatory infection elicited by S. Paratyphi A.
Collapse
|
16
|
Liaquat S, Sarwar Y, Ali A, Haque A. Comparative growth analysis of capsulated (Vi+) and acapsulated (Vi-) Salmonella typhi isolates in human blood. EXCLI JOURNAL 2015; 14:213-9. [PMID: 26417360 PMCID: PMC4553862 DOI: 10.17179/excli2014-674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022]
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is a human restricted pathogen. It biosynthesizes a virulence capsular polysaccharide named as Vi antigen. S. Typhi regulates expression of genes involved in the biosynthesis of Vi antigen in response to osmolarity. Beside Vi-positive isolates, Vi-negative (acapsulated) isolates are also pathogenic. However, Vi-positive isolates are more prevalent. The present study was planned to investigate comparative growth of Vi-positive and Vi-negative S. Typhi isolates in an ex vivo human whole blood model. Four isolates of each type were tested for growth in human whole blood and in an enrichment medium (Tryptic soy broth-TSB) as a control. It was found that capsulated (Vi-positive) strains formed smooth circular colonies and grew with shorter lag and generation time than Vi-negative isolates. Overall growth pattern of S. Typhi isolates both in vitro and ex vivo conditions showed that Vi-positive isolates grew at a faster rate. Especially in human blood, the lag time of acapsulated isolates was almost doubled as compared to capsulated S. Typhi isolates. It was also observed that Vi-negative isolates reduced in number up to 81 % during the first 12 hours of incubation in human whole blood. Interestingly, both types of isolates had similar growth curve in TSB indicating that Vi capsule is dispensable for bacterial growth in vitro. This study shows for the first time that absence of capsular antigen retards the growth of Vi-negative isolates on initial contact with human blood, but with passage of time they adjust themselves according to the new environment.
Collapse
Affiliation(s)
- Sadia Liaquat
- Enteric Pathogen Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan affiliated with Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan ; Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Yasra Sarwar
- Enteric Pathogen Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan affiliated with Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Aamir Ali
- Enteric Pathogen Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan affiliated with Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Abdul Haque
- Dean, Faculty of Health Sciences, University of Faisalabad, Pakistan
| |
Collapse
|
17
|
Abstract
Salmonella are gram-negative bacilli within the family Enterobacteriaceae. They are the cause of significant morbidity and mortality worldwide. Animals (pets) are an important reservoir for nontyphoidal Salmonella, whereas humans are the only natural host and reservoir for Salmonella Typhi. Salmonella infections are a major cause of gastroenteritis worldwide. They account for an estimated 2.8 billion cases of diarrheal disease each year. The transmission of Salmonella is frequently associated with the consumption of contaminated water and food of animal origin, and it is facilitated by conditions of poor hygiene. Nontyphoidal Salmonella infections have a worldwide distribution, whereas most typhoidal Salmonella infections in the United States are acquired abroad. In the United States, Salmonella is a common agent for food-borne–associated infections. Several outbreaks have been identified and are most commonly associated with agricultural products. Nontyphoidal Salmonella infection is usually characterized by a self-limited gastroenteritis in immunocompetent hosts in industrialized countries, but it may also cause invasive disease in vulnerable individuals (eg, children less than 1 year of age, immunocompromised). Antibiotic treatment is not recommended for treatment of mild to moderate gastroenteritis by nontyphoidal Salmonella in immunocompetent adults or children more than 1 year of age. Antibiotic treatment is recommended for nontyphoidal Salmonella infections in infants less than 3 months of age, because they are at higher risk for bacteremia and extraintestinal complications. Typhoid (enteric) fever and its potential complications have a significant impact on children, especially those who live in developing countries. Antibiotic treatment of typhoid fever has become challenging because of the emergence of Salmonella Typhi strains that are resistant to classically used first-line agents: ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol. The choice of antibiotics for the management of typhoid fever should be guided by the local resistance pattern. Recommendations include using an extended spectrum cephalosporin, azithromycin, or a fluoroquinolone. Fecal carriage of Salmonella is an important factor in the spread of the organism to healthy individuals. The most important measures to prevent the spread and outbreaks of Salmonella infections and typhoid fever are adequate sanitation protocols for food processing and handling as well as hand hygiene. In the United States, 2 vaccines are commercially available against Salmonella Typhi. The WHO recommends the use of these vaccines in endemic areas and for outbreak control.
Collapse
|
18
|
Elhadad D, McClelland M, Rahav G, Gal-Mor O. Feverlike Temperature is a Virulence Regulatory Cue Controlling the Motility and Host Cell Entry of Typhoidal Salmonella. J Infect Dis 2015; 212:147-56. [PMID: 25492917 PMCID: PMC4542590 DOI: 10.1093/infdis/jiu663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/11/2014] [Indexed: 12/11/2022] Open
Abstract
Human infection with typhoidal Salmonella serovars causes a febrile systemic disease, termed enteric fever. Here we establish that in response to a temperature equivalent to fever (39 °C-42 °C) Salmonella enterica serovars Typhi, Paratyphi A, and Sendai significantly attenuate their motility, epithelial cell invasion, and uptake by macrophages. Under these feverlike conditions, the residual epithelial cell invasion of S. Paratyphi A occurs in a type III secretion system (T3SS) 1-independent manner and results in restrained disruption of epithelium integrity. The impaired motility and invasion are associated with down-regulation of T3SS-1 genes and class II and III (but not I) of the flagella-chemotaxis regulon. In contrast, we demonstrate up-regulation of particular Salmonella pathogenicity island 2 genes (especially spiC) and increased intraepithelial growth in a T3SS-2-dependent manner. These results indicate that elevated physiological temperature is a novel cue controlling virulence phenotypes in typhoidal serovars, which is likely to play a role in the distinct clinical manifestations elicited by typhoidal and nontyphoidal salmonellae.
Collapse
Affiliation(s)
- Dana Elhadad
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- The Department of Clinical Microbiology and Immunology
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- The Department of Clinical Microbiology and Immunology
- Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
19
|
Pathogenicity and phenotypic analysis of sopB, sopD and pipD virulence factors in Salmonella enterica serovar typhimurium and Salmonella enterica serovar Agona. Antonie Van Leeuwenhoek 2014; 107:23-37. [DOI: 10.1007/s10482-014-0300-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/04/2014] [Indexed: 11/26/2022]
|
20
|
Pandey SK, Vinayaka AC, Rishi DB, Rishi P, Suri CR. Immuno-fluorescence based Vi capsular polysaccharide detection for specific recognition of Salmonella enterica serovar Typhi in clinical samples. Anal Chim Acta 2014; 841:51-7. [DOI: 10.1016/j.aca.2014.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/21/2014] [Accepted: 05/30/2014] [Indexed: 11/28/2022]
|
21
|
Wangdi T, Lee CY, Spees AM, Yu C, Kingsbury DD, Winter SE, Hastey CJ, Wilson RP, Heinrich V, Bäumler AJ. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis. PLoS Pathog 2014; 10:e1004306. [PMID: 25101794 PMCID: PMC4125291 DOI: 10.1371/journal.ppat.1004306] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.
Collapse
Affiliation(s)
- Tamding Wangdi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - Alanna M. Spees
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Chenzhou Yu
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - Dawn D. Kingsbury
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Christine J. Hastey
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - R. Paul Wilson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Using transcriptional control to increase titers of secreted heterologous proteins by the type III secretion system. Appl Environ Microbiol 2014; 80:5927-34. [PMID: 25038096 DOI: 10.1128/aem.01330-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) encoded at the Salmonella pathogenicity island 1 (SPI-1) locus secretes protein directly from the cytosol to the culture media in a concerted, one-step process, bypassing the periplasm. While this approach is attractive for heterologous protein production, product titers are too low for many applications. In addition, the expression of the SPI-1 gene cluster is subject to native regulation, which requires culturing conditions that are not ideal for high-density growth. We used transcriptional control to increase the amount of protein that is secreted into the extracellular space by the T3SS of Salmonella enterica. The controlled expression of the gene encoding SPI-1 transcription factor HilA circumvents the requirement of endogenous induction conditions and allows for synthetic induction of the secretion system. This strategy increases the number of cells that express SPI-1 genes, as measured by promoter activity. In addition, protein secretion titer is sensitive to the time of addition and the concentration of inducer for the protein to be secreted and SPI-1 gene cluster. Overexpression of hilA increases secreted protein titer by >10-fold and enables recovery of up to 28±9 mg/liter of secreted protein from an 8-h culture. We also demonstrate that the protein beta-lactamase is able to adopt an active conformation after secretion, and the increase in secreted titer from hilA overexpression also correlates to increased enzyme activity in the culture supernatant.
Collapse
|
23
|
Villarreal JM, Becerra-Lobato N, Rebollar-Flores JE, Medina-Aparicio L, Carbajal-Gómez E, Zavala-García ML, Vázquez A, Gutiérrez-Ríos RM, Olvera L, Encarnación S, Martínez-Batallar AG, Calva E, Hernández-Lucas I. The Salmonella enterica serovar Typhi ltrR-ompR-ompC-ompF genes are involved in resistance to the bile salt sodium deoxycholate and in bacterial transformation. Mol Microbiol 2014; 92:1005-24. [PMID: 24720747 DOI: 10.1111/mmi.12610] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 01/25/2023]
Abstract
A characterization of the LtrR regulator, an S. Typhi protein belonging to the LysR family is presented. Proteomics, outer membrane protein profiles and transcriptional analyses demonstrated that LtrR is required for the synthesis of OmpR, OmpC and OmpF. DNA-protein interaction analysis showed that LtrR binds to the regulatory region of ompR and then OmpR interacts with the ompC and ompF promoters inducing porin synthesis. LtrR-dependent and independent ompR promoters were identified, and both promoters are involved in the synthesis of OmpR for OmpC and OmpF production. To define the functional role of the ltrR-ompR-ompC-ompF genetic network, mutants in each gene were obtained. We found that ltrR, ompR, ompC and ompF were involved in the control of bacterial transformation, while the two regulators and ompC are necessary for the optimal growth of S. Typhi in the presence of one of the major bile salts found in the gut, sodium deoxycholate. The data presented establish the pivotal role of LtrR in the regulatory network of porin synthesis and reveal new genetic strategies of survival and cellular adaptation to the environment used by Salmonella.
Collapse
Affiliation(s)
- J M Villarreal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Effect of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. BIOMED RESEARCH INTERNATIONAL 2013; 2013:274096. [PMID: 23936782 PMCID: PMC3722778 DOI: 10.1155/2013/274096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/06/2013] [Indexed: 01/31/2023]
Abstract
This study evaluated the effects of NaCl on heat resistance, antibiotic susceptibility, and Caco-2 cell invasion of Salmonella. Salmonella typhimurium NCCP10812 and Salmonella enteritidis NCCP12243 were exposed to 0, 2, and 4% NaCl and to sequential increase of NaCl concentrations from 0 to 4% NaCl for 24 h at 35°C. The strains were then investigated for heat resistance (60°C), antibiotic susceptibility to eight antibiotics, and Caco-2 cell invasion efficiency. S. typhimurium NCCP10812 showed increased thermal resistance (P < 0.05) after exposure to single NaCl concentrations. A sequential increase of NaCl concentration decreased (P < 0.05) the antibiotic sensitivities of S. typhimurium NCCP10812 to chloramphenicol, gentamicin, and oxytetracycline. NaCl exposure also increased (P < 0.05) Caco-2 cell invasion efficiency of S. enteritidis NCCP12243. These results indicate that NaCl in food may cause increased thermal resistance, cell invasion efficiency, and antibiotic resistance of Salmonella.
Collapse
|
25
|
GidA Expression in Salmonella is Modulated Under Certain Environmental Conditions. Curr Microbiol 2013; 67:279-85. [DOI: 10.1007/s00284-013-0361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/26/2013] [Indexed: 01/03/2023]
|
26
|
Chen JW, Scaria J, Mao C, Sobral B, Zhang S, Lawley T, Chang YF. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. J Proteome Res 2013; 12:1151-61. [PMID: 23298230 DOI: 10.1021/pr3007528] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clostridium difficile in recent years has undergone rapid evolution and has emerged as a serious human pathogen. Proteomic approaches can improve the understanding of the diversity of this important pathogen, especially in comparing the adaptive ability of different C. difficile strains. In this study, TMT labeling and nanoLC-MS/MS driven proteomics were used to investigate the responses of four C. difficile strains to nutrient shift and osmotic shock. We detected 126 and 67 differentially expressed proteins in at least one strain under nutrition shift and osmotic shock, respectively. During nutrient shift, several components of the phosphotransferase system (PTS) were found to be differentially expressed, which indicated that the carbon catabolite repression (CCR) was relieved to allow the expression of enzymes and transporters responsible for the utilization of alternate carbon sources. Some classical osmotic shock associated proteins, such as GroEL, RecA, CspG, and CspF, and other stress proteins such as PurG and SerA were detected during osmotic shock. Furthermore, the recently emerged strains were found to contain a more robust gene network in response to both stress conditions. This work represents the first comparative proteomic analysis of historic and recently emerged hypervirulent C. difficile strains, complementing the previously published proteomics studies utilizing only one reference strain.
Collapse
Affiliation(s)
- Jenn-Wei Chen
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Vi antigen of Salmonella enetrica serovar Typhi — biosynthesis, regulation and its use as vaccine candidate. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0082-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.
Collapse
|
28
|
Lagha R, Ben Abdallah F, Ellafi A, Békir K, Bakhrouf A. Biofilm Formation, Cell Surface Hydrophobicity, and Fatty Acids Analysis of StarvedSalmonella entericaSerovar Typhimurium in Seawater. Foodborne Pathog Dis 2012; 9:786-91. [DOI: 10.1089/fpd.2012.1129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rihab Lagha
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir, Tunisia
| | - Fethi Ben Abdallah
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir, Tunisia
| | - Ali Ellafi
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir, Tunisia
| | - Karima Békir
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir, Tunisia
| | - Amina Bakhrouf
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir, Tunisia
| |
Collapse
|
29
|
Abstract
The host restricts dissemination of invasive enteric pathogens, such as non-typhoidal Salmonella serovars, by mounting acute inflammatory responses characterized by the recruitment of neutrophils. However, some enteric pathogens, such as Salmonella enterica serovar Typhi (S. typhi), can bypass these defenses and cause an invasive bloodstream infection known as typhoid fever. Recent studies on virulence mechanisms of S. typhi suggest that tight regulation of virulence gene expression during the transition from the intestinal lumen into the intestinal mucosa enables this pathogen to evade detection by the innate immune system, thereby penetrating defenses that prevent bacterial dissemination. This example illustrates how the outcome of host pathogen interaction at the intestinal mucosal interface can alter the clinical presentation and dictate the disease outcome.
Collapse
Affiliation(s)
- Tamding Wangdi
- Department of Medical Microbiology and Immunology; School of Medicine; University of California at Davis; Davis, CA USA
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology; School of Medicine; University of California at Davis; Davis, CA USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology; School of Medicine; University of California at Davis; Davis, CA USA
| |
Collapse
|
30
|
Pandey SK, Suri CR, Chaudhry M, Tiwari RP, Rishi P. A gold nanoparticles based immuno-bioprobe for detection of Vi capsular polysaccharide of Salmonella enterica serovar Typhi. MOLECULAR BIOSYSTEMS 2012; 8:1853-60. [DOI: 10.1039/c2mb25048a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Gong H, Vu GP, Bai Y, Chan E, Wu R, Yang E, Liu F, Lu S. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 2011; 7:e1002120. [PMID: 21949647 PMCID: PMC3174252 DOI: 10.1371/journal.ppat.1002120] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/29/2011] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo. Regulated expression of virulence factors is essential for infection by human pathogens such as Salmonella. Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, and many sRNAs in Salmonella are encoded by genes located at Salmonella pathogenicity islands commonly found in pathogenic strains. In this study, we demonstrated that a pathogenicity island-encoded sRNA directly targets the expression of both a global regulator of virulence genes as well as a specific virulence factor critical for Salmonella pathogenesis. The sRNA is important for Salmonella invasion of epithelial cells, replication inside macrophages, and virulence/colonization in mice, representing the first example of a pathogenicity island-encoded sRNA that is directly involved in Salmonella pathogenesis in vivo. Our study suggests that sRNA may function as a distinct class of virulence factors that significantly contribute to bacterial infection in vivo. Furthermore, our results raise the possibility of developing new strategies against bacterial infection by preventing the expression of regulatory sRNAs.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Epithelial Cells/microbiology
- Epithelial Cells/pathology
- Female
- Gastrointestinal Tract/cytology
- Gastrointestinal Tract/microbiology
- Gene Expression Regulation, Bacterial
- Genomic Islands
- Ileum/cytology
- Macrophages/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Salmonella Infections, Animal/microbiology
- Salmonella Infections, Animal/pathology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/metabolism
- Salmonella typhimurium/pathogenicity
- Sequence Alignment
- Sequence Analysis
- Spleen/cytology
- Virulence Factors/biosynthesis
- Virulence Factors/genetics
Collapse
Affiliation(s)
- Hao Gong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Yong Bai
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Elton Chan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Ruobin Wu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Edward Yang
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Fenyong Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (SL)
| | - Sangwei Lu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (SL)
| |
Collapse
|
32
|
Widmaier DM, Voigt CA. Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb Cell Fact 2010; 9:78. [PMID: 20973967 PMCID: PMC2987917 DOI: 10.1186/1475-2859-9-78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/25/2010] [Indexed: 01/28/2023] Open
Abstract
Background The type III secretion system (T3SS) is a molecular machine in gram negative bacteria that exports proteins through both membranes to the extracellular environment. It has been previously demonstrated that the T3SS encoded in Salmonella Pathogenicity Island 1 (SPI-1) can be harnessed to export recombinant proteins. Here, we demonstrate the secretion of a variety of unfolded spider silk proteins and use these data to quantify the constraints of this system with respect to the export of recombinant protein. Results To test how the timing and level of protein expression affects secretion, we designed a hybrid promoter that combines an IPTG-inducible system with a natural genetic circuit that controls effector expression in Salmonella (psicA). LacO operators are placed in various locations in the psicA promoter and the optimal induction occurs when a single operator is placed at the +5nt (234-fold) and a lower basal level of expression is achieved when a second operator is placed at -63nt to take advantage of DNA looping. Using this tool, we find that the secretion efficiency (protein secreted divided by total expressed) is constant as a function of total expressed. We also demonstrate that the secretion flux peaks at 8 hours. We then use whole gene DNA synthesis to construct codon optimized spider silk genes for full-length (3129 amino acids) Latrodectus hesperus dragline silk, Bombyx mori cocoon silk, and Nephila clavipes flagelliform silk and PCR is used to create eight truncations of these genes. These proteins are all unfolded polypeptides and they encompass a variety of length, charge, and amino acid compositions. We find those proteins fewer than 550 amino acids reliably secrete and the probability declines significantly after ~700 amino acids. There also is a charge optimum at -2.4, and secretion efficiency declines for very positively or negatively charged proteins. There is no significant correlation with hydrophobicity. Conclusions We show that the natural system encoded in SPI-1 only produces high titers of secreted protein for 4-8 hours when the natural psicA promoter is used to drive expression. Secretion efficiency can be high, but declines for charged or large sequences. A quantitative characterization of these constraints will facilitate the effective use and engineering of this system.
Collapse
|
33
|
Du H, Sheng X, Zhang H, Zou X, Ni B, Xu S, Zhu X, Xu H, Huang X. RpoE may promote flagellar gene expression in Salmonella enterica serovar typhi under hyperosmotic stress. Curr Microbiol 2010; 62:492-500. [PMID: 20717675 DOI: 10.1007/s00284-010-9734-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 07/23/2010] [Indexed: 01/07/2023]
Abstract
Salmonella enterica serovar Typhi z66 positive strain contains a fljBA-like operon on a linear plasmid. The operon contains the gene fljB:z66 which encodes the z66 antigen. RpoE is a sigma factor σ(E) that initiates transcription of a series of genes in Escherichia and Salmonella under environmental stresses. To investigate whether the gene fljB:z66 is regulated by RpoE (σ(E)), a rpoE deletion mutant of S. enterica serovar Typhi (ΔrpoE) was prepared in this study. The defective motility of the ΔrpoE was confirmed firstly. Transcriptional expression of flagellar genes was screened using a genomic DNA microarray. Some class-2 and most class-3 flagellar genes were downregulated in the ΔrpoE after 30 min of hyperosmotic stress. The expression of fliA and fljB:z66, a class-2 flagellar gene and a class-3 flagellar gene, obviously decreased; however, expression of the class-1 flagellar genes flhDC did not change obviously in the ΔrpoE compared to the wild-type strain in the same conditions. Results of quantitative real-time PCR (qRT-PCR) showed that the expression levels of fliA and fljB:z66 in the ΔrpoE after 30 min of hyperosmotic stress decreased about five and eightfold, respectively, compared to the wild-type strain. Similar results were observed at 120 min of hyperosmotic stress. Western blotting and qRT-PCR analysis showed that expression of fliA and fljB:z66 was significantly increased after supplemental expression of rpoE with a recombinant plasmid pBADrpoE in the ΔrpoE strain. These results demonstrated that RpoE promoted the expression of class-3 flagellar genes and it might be performed by initiating the expression of fliA in S. enterica serovar Typhi under hyperosmotic stress.
Collapse
Affiliation(s)
- Hong Du
- Department of Biochemistry and Molecular Biology, School of Medical Technology, Jiangsu University, Zhenjiang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nadia M, Abdelwaheb C, Ahmed L. Cohabitation within mice of Salmonella typhimurium seqA mutant increases its virulence. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-009-0141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
The Salmonella enterica serotype Typhi Vi capsular antigen is expressed after the bacterium enters the ileal mucosa. Infect Immun 2009; 78:527-35. [PMID: 19901065 DOI: 10.1128/iai.00972-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica serotype Typhi, the etiological agent of typhoid fever, produces the Vi capsular antigen, a virulence factor absent in Salmonella enterica serotype Typhimurium. Previous studies suggest that the capsule-encoding viaB locus reduces inflammatory responses in intestinal tissue; however, there are currently no data regarding the in vivo expression of this locus. Here we implemented direct and indirect methods to localize and detect Vi antigen expression within polarized intestinal epithelial cells and in the bovine ileal mucosa. We report that tviB, a gene necessary for Vi production in S. Typhi, was significantly upregulated during invasion of intestinal epithelial cells in vitro. During infection of bovine ligated loops, tviB was expressed at levels significantly higher in calf tissue than those in the inoculum. The presence of the Vi capsular antigen was detected in calf ileal tissue via fluorescence microscopy. Together, these results support the concept that expression of the Vi capsular antigen is induced when S. Typhi transits from the intestinal lumen into the ileal mucosa.
Collapse
|
36
|
Winter SE, Winter MG, Thiennimitr P, Gerriets VA, Nuccio SP, Rüssmann H, Bäumler AJ. The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol 2009; 74:175-193. [PMID: 19703107 PMCID: PMC2763492 DOI: 10.1111/j.1365-2958.2009.06859.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In response to osmolarity, Salmonella enterica serotype Typhi (S. Typhi) regulates genes required for Vi capsular antigen expression oppositely to those required for motility and invasion. Previous studies suggest that osmoregulation of motility, invasion and capsule expression is mediated through the RcsC/RcsD/RcsB phosphorelay system. Here we performed gene expression profiling and functional studies to determine the role of TviA, an auxiliary protein of the RcsB response regulator, in controlling virulence gene expression in S. Typhi. TviA repressed expression of genes encoding flagella and the invasion-associated type III secretion system (T3SS-1) through repression of the flagellar regulators flhDC and fliZ, resulting in reduced invasion, reduced motility and reduced expression of FliC. Both RcsB and TviA repressed expression of flhDC, but only TviA altered flhDC expression in response to osmolarity. Introduction of tviA into S. enterica serotype Typhimurium rendered flhDC transcription sensitive to changes in osmolarity. These data suggest that the auxiliary TviA protein integrates a new regulatory input into the RcsB regulon of S. Typhi, thereby altering expression of genes encoding flagella, the Vi antigen and T3SS-1 in response to osmolarity.
Collapse
Affiliation(s)
- Sebastian E. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA
| | - Parameth Thiennimitr
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Valerie A. Gerriets
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA
| | - Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA
| | - Holger Rüssmann
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Pettenkoferstrasse 9a, München, Germany
- HELIOS Klinikum Emil von Behring, Institut für Mikrobiologie, Immunologie und Laboratoriumsmedizin, Berlin, Germany
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA
| |
Collapse
|
37
|
Chen ZW, Hsuan SL, Liao JW, Chen TH, Wu CM, Lee WC, Lin CC, Liao CM, Yeh KS, Winton JR, Huang C, Chien MS. Mutations in the Salmonella enterica serovar Choleraesuis cAMP-receptor protein gene lead to functional defects in the SPI-1 Type III secretion system. Vet Res 2009; 41:5. [PMID: 19775595 PMCID: PMC2769549 DOI: 10.1051/vetres/2009053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/18/2009] [Indexed: 12/30/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis (Salmonella Choleraesuis) causes a lethal systemic infection (salmonellosis) in swine. Live attenuated Salmonella Choleraesuis vaccines are effective in preventing the disease, and isolates of Salmonella Choleraesuis with mutations in the cAMP-receptor protein (CRP) gene (Salmonella Choleraesuis ∆crp) are the most widely used, although the basis of the attenuation remains unclear. The objective of this study was to determine if the attenuated phenotype of Salmonella Choleraesuis ∆crp was due to alterations in susceptibility to gastrointestinal factors such as pH and bile salts, ability to colonize or invade the intestine, or cytotoxicity for macrophages. Compared with the parental strain, the survival rate of Salmonella Choleraesuis ∆crp at low pH or in the presence of bile salts was higher, while the ability of the mutant to invade intestinal epithelia was significantly decreased. In examining the role of CRP on the secretory function of the Salmonella pathogenicity island 1 (SPI-1) encoded type III secretion system (T3SS), it was shown that Salmonella Choleraesuis ∆crp was unable to secrete the SPI-1 T3SS effector proteins, SopB and SipB, which play a role in Salmonella intestinal invasiveness and macrophage cytotoxicity, respectively. In addition, caspase-1 dependent cytotoxicity for macrophages was significantly reduced in Salmonella Choleraesuis ∆crp. Collectively, this study demonstrates that the CRP affects the secretory function of SPI-1 T3SS and the resulting ability to invade the host intestinal epithelium, which is a critical element in the pathogenesis of Salmonella Choleraesuis.
Collapse
Affiliation(s)
- Zeng-Weng Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gong H, Vu GP, Bai Y, Yang E, Liu F, Lu S. Differential expression of Salmonella type III secretion system factors InvJ, PrgJ, SipC, SipD, SopA and SopB in cultures and in mice. MICROBIOLOGY-SGM 2009; 156:116-127. [PMID: 19762438 DOI: 10.1099/mic.0.032318-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The type III secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) is important for the invasion of epithelial cells during development of Salmonella-associated enterocolitis. It has been suggested that the level and timing of the expression of the SPI-1 T3SS proteins and effectors dictate the consequences of bacterial infection and pathogenesis. However, the expression of these proteins has not been extensively studied in vivo, especially during the later stages of salmonellosis when the infection is established. We have constructed recombinant Salmonella strains that contain a FLAG epitope inserted in-frame to genes invJ, prgJ, sipC, sipD, sopA and sopB, and investigated the expression of the tagged proteins both in vitro and in vivo during murine salmonellosis. Mice were inoculated intraperitoneally or intragastrically with the tagged Salmonella strains. At different time points post-infection, bacteria were recovered from various organs, and the expression of the tagged proteins was determined. Our results provide direct evidence that PrgJ and SipD are expressed in Salmonella colonizing the liver and ileum of infected animals at both the early and late stages of infection. Furthermore, our study has shown that the InvJ protein is expressed preferentially in Salmonella colonizing the ileum but not the liver, while SipC is expressed preferentially in Salmonella colonizing the liver but not the ileum. Thus, Salmonella appears to express different SPI-1 proteins and effectors when colonizing specific tissues. Our results suggest that differential expression of these proteins may be important for tissue-specific aspects of bacterial pathogenesis such as gastroenterititis in the ileum and systemic infection in the liver.
Collapse
Affiliation(s)
- Hao Gong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yong Bai
- Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Edward Yang
- Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA.,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA.,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 2009; 5:309. [PMID: 19756048 PMCID: PMC2758716 DOI: 10.1038/msb.2009.62] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/24/2009] [Indexed: 01/02/2023] Open
Abstract
The type III secretion system (T3SS) exports proteins from the cytoplasm, through both the inner and outer membranes, to the external environment. Here, a system is constructed to harness the T3SS encoded within Salmonella Pathogeneity Island 1 to export proteins of biotechnological interest. The system is composed of an operon containing the target protein fused to an N-terminal secretion tag and its cognate chaperone. Transcription is controlled by a genetic circuit that only turns on when the cell is actively secreting protein. The system is refined using a small human protein (DH domain) and demonstrated by exporting three silk monomers (ADF-1, -2, and -3), representative of different types of spider silk. Synthetic genes encoding silk monomers were designed to enhance genetic stability and codon usage, constructed by automated DNA synthesis, and cloned into the secretion control system. Secretion rates up to 1.8 mg l(-1) h(-1) are demonstrated with up to 14% of expressed protein secreted. This work introduces new parts to control protein secretion in Gram-negative bacteria, which will be broadly applicable to problems in biotechnology.
Collapse
Affiliation(s)
- Daniel M Widmaier
- Chemistry and Chemical Biology Graduate Program, University of California--San Francisco, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Cao B, Xi T, Zheng Y, Yang L, Zheng Q. Cupric ion release and cytotoxicity for Yuangong Cu-IUDs and the release behavior of indomethacin for medicated 220 Cu-IUD. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Characterization of the expression of Salmonella Type III secretion system factor PrgI, SipA, SipB, SopE2, SpaO, and SptP in cultures and in mice. BMC Microbiol 2009; 9:73. [PMID: 19371445 PMCID: PMC2678129 DOI: 10.1186/1471-2180-9-73] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/17/2009] [Indexed: 11/11/2022] Open
Abstract
Background The type III secretion systems (T3SSs) encoded by Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are important for invasion of epithelial cells during development of Salmonella-associated enterocolitis and for replication in macrophages during systemic infection, respectively. In vitro studies have previously revealed hierarchical transport of different SPI-1 factors and ordered synergistic/antagonistic relationships between these proteins during Salmonella entry. These results suggest that the level and timing of the expression of these proteins dictate the consequences of bacterial infection and pathogenesis. However, the expression of these proteins has not been extensively studied in vivo, especially during the later stages of salmonellosis when the infection is established. Results In this study, we have constructed bacterial strains that contain a FLAG epitope inserted in frame to SPI-1 genes prgI, sipA, sipB, sopE2, spaO, and sptP, and investigated the expression of the tagged proteins both in vitro and in vivo during murine salmonellosis. The tagged Salmonella strains were inoculated intraperitoneally or intragastrically into mice and recovered from various organs. Our results provide direct evidence that PrgI and SipB are expressed in Salmonella colonizing the spleen and cecum of the infected animals at early and late stages of infection. Furthermore, this study demonstrates that the SpaO protein is expressed preferably in Salmonella colonizing the cecum but not the spleen and that SptP is expressed preferably in Salmonella colonizing the spleen but not the cecum. Conclusion These results suggest that Salmonella may express different SPI-1 proteins when they colonize specific tissues and that differential expression of these proteins may be important for tissue-specific aspects of bacterial pathogenesis such as gastroenterititis in the cecum and systemic infection in the spleen.
Collapse
|
42
|
Ellafi A, Denden I, Abdallah FB, Souissi I, Bakhrouf A. Survival and adhesion ability of Shigella spp. strains after their incubation in seawater microcosms. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-9995-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Finnegan S, Gadda G. Substitution of an active site valine uncovers a kinetically slow equilibrium between competent and incompetent forms of choline oxidase. Biochemistry 2009; 47:13850-61. [PMID: 19053262 DOI: 10.1021/bi801424p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic oxidation of choline to glycine betaine is of interest because organisms accumulate glycine betaine intracellularly in response to stress conditions. This is relevant for the genetic engineering of crops with economic interest that do not naturally possess efficient pathways for the synthesis of glycine betaine and for the potential development of drugs that target the glycine betaine biosynthetic pathway in human pathogens. To date, the best characterized choline-oxidizing enzyme is the flavin-dependent choline oxidase from Arthrobacter globiformis, for which structural, mechanistic, and biochemical data are available. Here, we have replaced a hydrophobic residue (Val464) lining the active site cavity close to the N(5) atom of the flavin with threonine or alanine to investigate its role in the reaction of choline oxidation catalyzed by choline oxidase. The reductive half-reactions of the enzyme variants containing Thr464 or Ala464 were investigated using substrate and solvent kinetic isotope effects, solvent viscosity effects, and proton inventories. Replacement of Val464 with threonine or alanine uncovered a kinetically slow equilibrium between a catalytically incompetent form of enzyme and an active species that can efficiently oxidize choline. In both variants, the active form of enzyme shows a decreased rate of hydroxyl proton abstraction from the alcohol substrate, with minimal changes in the subsequent rate of hydride ion transfer to the flavin. This study therefore establishes that a hydrophobic residue not directly participating in catalysis plays important roles in the reaction of choline oxidation catalyzed by choline oxidase.
Collapse
Affiliation(s)
- Steffan Finnegan
- Departments of Chemistry and Biology, The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | |
Collapse
|
44
|
Santander J, Roland KL, Curtiss R. Regulation of Vi capsular polysaccharide synthesis in Salmonella enterica serotype Typhi. J Infect Dev Ctries 2008; 2:412-20. [PMID: 19745516 PMCID: PMC4100779 DOI: 10.3855/jidc.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Indexed: 12/22/2022] Open
Abstract
The synthesis of Vi polysaccharide, a major virulence determinant in Salmonella enterica serotype Typhi (S. Typhi), is under the control of two regulatory systems, ompR-envZ and rscB-rscC, which respond to changes in osmolarity. Some S. Typhi isolates exhibit over-expression of Vi polysaccharide, which masks clinical detection of LPS O-antigen. This variation in Vi polysaccharide and O-antigen display (VW variation) has been observed since the initial studies of S. Typhi. We have reported that the status of the rpoS gene is responsible for this phenomenon. We review the regulatory network of the Vi polysaccharide, linking osmolarity and RpoS expression. Also, we discuss how this may impact live attenuated Salmonella vaccine development.
Collapse
Affiliation(s)
- Javier Santander
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-5401, United States of America
| | | | | |
Collapse
|
45
|
Bishop A, House D, Perkins T, Baker S, Kingsley RA, Dougan G. Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion. MICROBIOLOGY-SGM 2008; 154:1914-1926. [PMID: 18599820 DOI: 10.1099/mic.0.2008/016998-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study we investigate the ability of Salmonella enterica serovar Typhi (S. Typhi) surface structures to influence invasion and adhesion in epithelial cell assay systems. In general, S. Typhi was found to be less adherent, invasive and cytotoxic than S. enterica serovar Typhimurium (S. Typhimurium). Culture conditions had little effect on adhesion of S. Typhi to cultured cells but had a marked influence on invasion. In contrast, bacterial growth conditions did not influence S. Typhi apical invasion of polarized cells. The levels of S. Typhi, but not S. Typhimurium, invasion were increased by application of bacteria to the basolateral surface of polarized cells. Expression of virulence (Vi) capsule by S. Typhi resulted in a modest reduction in adhesion, but profoundly reduced levels of invasion of non-polarized cells. However, Vi capsule expression had no affect on invasion of the apical or basolateral surfaces of polarized cells. Mutation of the staA, tcfA or pilS genes did not affect invasion or adhesion in either the presence or the absence of Vi capsule.
Collapse
Affiliation(s)
- Anne Bishop
- The Centre for Molecular Microbiology and Infection, Faculty of Life Sciences, Division of Molecular and Cell Biology, Imperial College London, London SW7 2AZ, UK
| | - Deborah House
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Timothy Perkins
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Stephen Baker
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Robert A Kingsley
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
46
|
KUNDINGER M, ZABALA-DÍAZ I, CHALOVA V, MOORE R, RICKE S. REAL-TIME POLYMERASE CHAIN REACTION QUANTIFICATION OFSALMONELLATYPHIMURIUMHILAEXPRESSION DURING AGITATION AND STATIC INCUBATION. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1745-4581.2008.00133.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Acid pre-adaptation enhances virulence of Salmonella enterica serovar Typhimurium dam mutant. ACTA ACUST UNITED AC 2008; 57:358-62. [PMID: 18456425 DOI: 10.1016/j.patbio.2008.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 02/28/2008] [Indexed: 11/21/2022]
Abstract
It is well established that success or failure of bacterial pathogens during infection relies upon its ability to overcome many lethal environments in the host such as acidity, osmolarity and bile salts. In the present study, we have studied the effects of acid adaptation on the virulence of Salmonella enterica serovar Typhimurium dam mutant. Our results indicated that LD(50) of adapted strains were lower than those of control strains. Also, the in vivo assays have shown that the development of a systemic infection is slower for control strains than for adapted strains. In addition, the number of acid-adapted mutants colonizing spleen and liver is higher than control strains. Adhesion and invasion experiments were performed in order to compare the pathogenicity of Salmonella. No significant differences were shown between pre-treated and non-adapted strains. According to these results, we report that acid adaptation of Salmonella enterica serovar Typhimurium dam mutants can increase their in vivo virulence in mice.
Collapse
|
48
|
Chatti A, Daghfous D, Landoulsi A. Effect of seqA mutation on Salmonella typhimurium virulence. J Infect 2007; 54:e241-5. [PMID: 17327135 DOI: 10.1016/j.jinf.2007.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 11/20/2022]
Abstract
It is well established that lack of SeqA protein leads to reinitiation at the same origin more than once per cell cycle, in E. coli. Aberrant cell division and filament formation in SeqA-deficient strains suggest that this protein might be involved in cell cycle process other than transient inhibition of replication initiation. The aim of our work was to examine the effect of lack of this protein on Salmonella typhimurium virulence. In the present study, Swiss albino mice were used for the determination of LD50, the competitive index and detection of bacteria in target organs. In vitro assays were used to determine the sensitivity of either wild-type and seqA mutant to hydrogen peroxide and bile salts. The seqA mutant strain of Salmonella typhimurium is attenuated for virulence in mice. seqA mutant is highly sensitive towards hydrogen peroxide and bile salts compared with the isogenic wild-type. The 50% lethal dose of seqA mutant were found to be significantly increased compared to the wild-type strain. In addition, enumeration of bacteria from target organs (spleen and liver) showed that the number of wild-type bacteria recovered from these organs was higher than SeqA-deficient cells during the infection. Also, competitive index demonstrated that seqA mutant was significantly out competed by the wild-type strain in both intraperitoneal and oral infections. In addition, our data showed that both adhesion and invasion of Salmonella typhimurium seqA mutant are reduced. According to these results, we can suggest that Salmonella typhimurium seqA mutant is attenuated for virulence in mice.
Collapse
Affiliation(s)
- Abdelwaheb Chatti
- Département des Sciences de la Vie, 03/UR/0902, Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia.
| | | | | |
Collapse
|
49
|
Genome-Wide Scan of the Gene Expression Kinetics of Salmonella enterica Serovar Typhi during Hyperosmotic Stress. Int J Mol Sci 2007. [DOI: 10.3390/i8020116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Genome-Wide Scan of the Gene Expression Kinetics of Salmonella enterica Serovar Typhi during Hyperosmotic Stress. Int J Mol Sci 2007. [PMCID: PMC3666050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
Salmonella enterica serovar Typhi is a human enteroinvasive pathogen that can overcome the stress caused by the high osmolarity of the human small intestine and cause systemic infection. To investigate the global transcriptional regulations of S. enterica serovar Typhi exposed to a hyperosmotic environment, a genomic oligo-DNA microarray containing 4474 Salmonella genes was prepared. A wild strain of S. enterica serovar Typhi GIFU10007 was grown in LB medium containing 50 mM NaCl to simulate a low osmotic environment. The hyperosmotic stress was simulated by an osmotic up-shift, which increased the concentration of NaCl in the LB from 50 mM to 300 mM. Genome-wide gene expressions of S. enterica serovar Typhi at 15 min, 30 min, 60 min, and 120 min after the osmotic up-shift were investigated by the microarray analysis. Gene expression profiles in somewhat later stage (60 ~120 min) of the stress were quite different from those in the early stage (0 ~ 30 min) of the stress. At 120 min after the osmotic stress, the expression levels of 889 genes were obviously changed. However, expression levels of only 382 genes were significantly changed at 15 min after the osmotic stress. The expression levels of most SPI-1 genes associated with invasion of the pathogen were increased at 120 min after the osmotic up-shift, but were not obviously changed at 15 min or 30 min after the osmotic stress. Expressions of a central regulatory gene, phoP, and sigma factor genes rpoE, rpoD, and rpoS were also changed with different profiles during the osmotic stress. These results indicated that the invasive ability of the pathogen is significantly increased after 2 h of hyperosmotic stress, and regulator PhoP and sigma factors RpoE, RpoD appear to participate in the network regulatory mechanisms that benefit the pathogen to adapt hyperosmotic environmental conditions. The later increased invasive ability of S. enterica serovar Typhi after hyperosmotic stress may be one reason why the pathogen performs invading in the distal ileum of human and not in areas of the upper small intestine.
Collapse
|