1
|
Gu X, Hou Q, Liu J, Xia P, Duan Q, Zhu G. Sef fimbria operon construction, expression, and function for direct rapid detection of Salmonella Enteritidis. Appl Microbiol Biotechnol 2021; 105:5631-5641. [PMID: 34155530 DOI: 10.1007/s00253-021-11400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Salmonella Enteritidis (SE) causes both horizontal and vertical transmission of diseases in poultry industry and is also one of the main causes of human food poisoning. Sequence analysis of the sef operon of poultry-derived Salmonella serotypes showed the presence of an entire sef operon in SE, whereas only sef pseudogenes were found in Salmonella Gallinarum and Salmonella Pullorum. Subsequently, the sef operon of SE was cloned into the pBR322 plasmid and expressed in a modified Escherichia coli strain SE5000. sef operon expression was demonstrated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western blot, agglutination assay, and transmission electron microscopy. The results showed that SE5000+Sef, but not SE5000+pBR322, could specifically react with SE-positive chicken serum in an agglutination assay, which could be clearly visualized by the naked eye within less than 2 min. In contrast, SE5000+Sef could not be recognized in Salmonella Gallinarum- and Salmonella Pullorum-positive chicken sera. Next, taking advantage of the exclusive presence of an entire sef operon in SE, we set up an agglutination-based detection system to monitor the dynamics of Sef-targeted antibody from SE-infected chicks for 47 days. Using the proposed detection method, SE was readily detectable starting from 2 weeks post-infection. Finally, we compared the proposed SE5000+Sef-based detection system with commercially available agglutination antigen using the classical bacterial isolation and identification procedure as reference. The results showed that the SE5000+Sef system was more consistent with the results of bacterial isolation and identification with almost 100% accuracy. We established a simple, sensitive, and cheap agglutination method for rapid and specific detection of SE-infected chickens, which can facilitate epidemiological investigation and eradication of SE infections. KEY POINTS: • Only the Salmonella Enteritidis serotype expressed Sef fimbriae in chicken infected with SE. • A rapid, large-scale method of detection by the naked eye of detection of SE-infected chicken is presented.
Collapse
Affiliation(s)
- Xuanqiang Gu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qianxi Hou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
3
|
Abstract
The first described adhesive antigen of Escherichia coli strains isolated from animals was the K88 antigen, expressed by strains from diarrheic pigs. The K88 antigen was visible by electron microscopy as a surface-exposed filament that was thin and flexible and had hemagglutinating properties. Many different fimbriae have been identified in animal enterotoxigenic E. coli (ETEC) and have been discussed in this article. The role of these fimbriae in the pathogenesis of ETEC has been best studied with K88, K99, 987P, and F41. Each fimbrial type carries at least one adhesive moiety that is specific for a certain host receptor, determining host species, age, and tissue specificities. ETEC are the most frequently diagnosed pathogens among neonatal and post-weaning piglets that die of diarrhea. Immune electron microscopy of animal ETEC fimbriae usually shows that the minor subunits are located at the fimbrial tips and at discrete sites along the fimbrial threads. Since fimbriae most frequently act like lectins by binding to the carbohydrate moieties of glycoproteins or glycolipids, fimbrial receptors have frequently been studied with red blood cells of various animal species. Identification and characterization of the binding moieties of ETEC fimbrial adhesins should be useful for the design of new prophylactic or therapeutic strategies. Some studies describing potential receptor or adhesin analogues that interfere with fimbria-mediated colonization have been described in the article.
Collapse
|
4
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of life-threatening diarrheal disease around the world. The major aspects of ETEC virulence are colonization of the small intestine and the secretion of enterotoxins which elicit diarrhea. Intestinal colonization is mediated, in part, by adhesins displayed on the bacterial cell surface. As colonization of the intestine is the critical first step in the establishment of an infection, it represents a potential point of intervention for the prevention of infections. Therefore, colonization factors (CFs) have been important subjects of research in the field of ETEC virulence. Research in this field has revealed that ETEC possesses a large array of serologically distinct CFs that differ in composition, structure, and function. Most ETEC CFs are pili (fimbriae) or related fibrous structures, while other adhesins are simple outer membrane proteins lacking any macromolecular structure. This chapter reviews the genetics, structure, function, and regulation of ETEC CFs and how such studies have contributed to our understanding of ETEC virulence and opened up potential opportunities for the development of preventive and therapeutic interventions.
Collapse
|
5
|
Porcine intestinal glycosphingolipids recognized by F6-fimbriated enterotoxigenic Escherichia coli. Microb Pathog 2014; 76:51-60. [PMID: 25241919 DOI: 10.1016/j.micpath.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/23/2022]
Abstract
One important virulence factor of enterotoxigenic Escherichia coli is their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. Here, the potential glycosphingolipid receptors of enterotoxigenic F6-fimbriated E. coli were examined by binding of purified F6 fimbriae, and F6-expressing bacteria, to glycosphingolipids on thin-layer chromatograms. When intestinal mucosal non-acid glycosphingolipids from single pigs were assayed for F6 binding capacity, a selective interaction with two glycosphingolipids was observed. The binding-active glycosphingolipids were isolated and characterized as lactotriaosylceramide (GlcNAcβ3Galβ4Glcβ1Cer) and lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer). Further binding assays using a panel of reference glycosphingolipids showed a specific interaction between the F6 fimbriae and a number of neolacto core chain (Galβ4GlcNAc) glycosphingolipids. In addition, an occasional binding of the F6 fimbriae to sulfatide, galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide was obtained. From the results we conclude that lactotriaosylceramide and lactotetraosylceramide are major porcine intestinal receptors for F6-fimbriated E. coli.
Collapse
|
6
|
Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA. Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol 2010; 77:1021-38. [PMID: 20572934 DOI: 10.1111/j.1365-2958.2010.07270.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fimbriae are adhesive organelles known to enable pathogens to colonize animal tissue, but little is known of their function in mutualistic symbioses. Photorhabdus colonization of Heterorhabditis bacteriophora nematodes is essential for the pair's insect pathogenic lifestyle. Maternal nematodes acquire Photorhabdus symbionts as a persistent intestinal biofilm prior to transmission to infective juvenile (IJ) stage offspring developing inside the maternal body. Screening 8000 Photorhabdus mutants for defects in IJ colonization revealed that a single fimbrial locus, named mad for maternal adhesion defective, is essential. The mad genes encode a novel usher/chaperone assembled fimbria regulated by an ON/OFF invertible promoter switch. Adherent Photorhabdus cells in maternal nematode intestines had the switch ON opposite to the OFF orientation of most other cells. A ΔmadA mutant failed to adhere to maternal intestines and be transmitted to the IJs. Mad fimbriae were detected on TT01 phase ON cells but not on ΔmadA phase ON cells. Also required for transmission is madJ, predicted to encode a transcriptional activator related to GrlA. Expression of madA-K or madIJK restored the ability of madJ mutant to adhere. The Mad fimbriae were not required for insect pathogenesis, indicating the specialized function of Mad fimbriae for symbiosis.
Collapse
Affiliation(s)
- Vishal S Somvanshi
- Department of Microbiology and Molecular Genetics and the Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Bettina Kaufmann-Daszczuk
- Department of Microbiology and Molecular Genetics and the Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Kwi-Suk Kim
- Department of Microbiology and Molecular Genetics and the Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Shane Mallon
- Department of Microbiology and Molecular Genetics and the Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Todd A Ciche
- Department of Microbiology and Molecular Genetics and the Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 2008; 76:1456-64. [PMID: 18227173 DOI: 10.1128/iai.01197-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Inhaled Yersinia pestis produces a severe primary pneumonia known as pneumonic plague, which is contagious and highly lethal to humans and animals. In this study, we first determined the susceptibility of Y. pestis KIM6 to antimicrobial molecules of the airways. We found that (i) rat bronchoalveolar lavage fluid (rBALF) effectively killed KIM6 cells growing at 37 degrees C; (ii) the antibacterial components of rBALF were small peptides (<10 kDa) that included two cationic antimicrobial peptides (CAMPs), the rat cathelicidin rCRAMP, and beta-defensin RBD-1; (iii) the human cathelicidin LL-37 killed KIM6 cells as well as rBALF did; and (iv) the bactericidal property of LL-37 was synergistically amplified by human beta-defensin 1, another constitutively expressed pulmonary CAMP. Second, the effects of three major surface proteins of Y. pestis, namely, the capsular antigen fraction 1 (F1), the pH 6 antigen (Psa fimbriae), and the outer membrane protease Pla, on the bactericidal effect of the antimicrobial rBALF peptides was determined with corresponding deletion mutants. We showed that (i) a Y. pestis psa mutant was only slightly more susceptible to rBALF than the parental KIM6 strain, (ii) a caf (F1 gene) mutant and a caf psa mutant were resistant to rBALF or LL-37, (iii) a caf pla mutant was as susceptible to the effect of rBALF or LL-37 as KIM6 was (caf+ pla+), and (iv) only the single caf mutant (pla+), but not KIM6 or the caf pla double mutant, degraded LL-37. The activity of Pla toward LL-37 was confirmed with pla mutants carrying a single-residue substitution affecting plasminogen cleavage. Taken together, our data indicated that Pla might act as a virulence factor not only by processing plasminogen but also by inactivating CAMPs, particularly when F1 is not expressed.
Collapse
|
8
|
Ohlsen K, Oelschlaeger TA, Hacker J, Khan AS. Carbohydrate receptors of bacterial adhesins: implications and reflections. Top Curr Chem (Cham) 2008; 288:17-65. [PMID: 22328026 DOI: 10.1007/128_2008_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria entering a host depend on adhesins to achieve colonization. Adhesins are bacterial surface structures mediating binding to host surficial areas. Most adhesins are composed of one or several proteins. Usually a single bacterial strain is able to express various adhesins. The adhesion type expressed may influence host-, tissue or even cell tropism of Gram-negative and of Gram-positive bacteria. The binding of fimbrial as well as of afimbrial adhesins of Gram-negative bacteria to host carbohydrate structures (=receptors) has been elucidated in great detail. In contrast, in Gram-positives, most well studied adhesins bind to proteinaceous partners. Nevertheless, for both bacterial groups the binding of bacterial adhesins to eukaryotic carbohydrate receptors is essential for establishing colonization or infection. The characterization of this interaction down to the submolecular level provides the basis for strategies to interfere with this early step of infection which should lead to the prevention of subsequent disease. However, this goal will not be achieved easily because bacterial adherence is not a monocausal event but rather mediated by a variety of adhesins.
Collapse
Affiliation(s)
- K Ohlsen
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, 97070, Würzburg
| | | | | | | |
Collapse
|
9
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
10
|
Zhu G, Chen H, Choi BK, Del Piero F, Schifferli DM. Histone H1 proteins act as receptors for the 987P fimbriae of enterotoxigenic Escherichia coli. J Biol Chem 2005; 280:23057-65. [PMID: 15840569 DOI: 10.1074/jbc.m503676200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tip adhesin FasG of the 987P fimbriae of enterotoxigenic Escherichia coli mediates two distinct adhesive interactions with brush border molecules of the intestinal epithelial cells of neonatal piglets. First, FasG attaches strongly to sulfatide with hydroxylated fatty acyl chains. This interaction involves lysine 117 and other lysine residues of FasG. Second, FasG recognizes specific intestinal brush border proteins that migrate on a sodium-dodecyl sulfate-polyacrylamide gel like a distinct set of 32-35-kDa proteins, as shown by ligand blotting assays. The protein sequence of high performance liquid chromatography-purified tryptic fragments of the major protein band matched sequences of human and murine histone H1 proteins. Porcine histone H1 proteins isolated from piglet intestinal epithelial cells demonstrated the same SDS-PAGE migration pattern and 987P binding properties as the 987P-specific protein receptors from porcine intestinal brush borders. Binding was dose-dependent and shown to be specific in adhesion inhibition and gel migration shift assays. Moreover, mapping of the histone H1 binding domain suggested that it is located in their lysine-rich C-terminal domains. Histone H1 molecules were visualized on the microvilli of intestinal epithelial cells by immunohistochemistry and electron microscopy. Taken together these results indicated that the intestinal protein receptors for 987P are histone H1 proteins. It is suggested that histones are released into the intestinal lumen by the high turnover of the intestinal epithelium. Their strong cationic properties can explain their association with the negatively charged brush border surfaces. There, the histone H1 molecules stabilize the sulfatide-fimbriae interaction by simultaneously binding to the membrane and to 987P.
Collapse
MESH Headings
- Adhesins, Escherichia coli/chemistry
- Animals
- Antigens, Bacterial/chemistry
- Bacterial Adhesion
- Cations
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Fatty Acids/metabolism
- Fimbriae Proteins/chemistry
- Fimbriae, Bacterial/metabolism
- Genotype
- Histones/chemistry
- Histones/genetics
- Histones/metabolism
- Immunohistochemistry
- Intestinal Mucosa/metabolism
- Intestines/microbiology
- Ligands
- Lysine/chemistry
- Microscopy, Electron
- Microscopy, Electron, Transmission
- Microvilli/metabolism
- Microvilli/microbiology
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Swine
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
11
|
Hess P, Altenhöfer A, Khan AS, Daryab N, Kim KS, Hacker J, Oelschlaeger TA. A Salmonella fim homologue in Citrobacter freundii mediates invasion in vitro and crossing of the blood-brain barrier in the rat pup model. Infect Immun 2004; 72:5298-307. [PMID: 15322026 PMCID: PMC517473 DOI: 10.1128/iai.72.9.5298-5307.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
From the invasive Citrobacter freundii strain 3009, an invasion determinant was cloned, sequenced, and expressed. Sequence analysis of the determinant showed high homology with the fim determinant from Salmonella enterica serovar Typhimurium. The genes of the invasion determinant directed invasion of recombinant Escherichia coli K-12 strains into human epithelial cell lines of the bladder and gut as well as mannose-sensitive yeast agglutination and were termed fim(Cf) genes. Expression of the Fim(Cf) proteins was shown by (35)S labeling and/or Western blotting. In the infant rat model of experimental hematogenous meningitis, C. freundii strain 3009 and the in vitro invasive recombinant E. coli K-12 strain harboring the fim(Cf) determinant reached the cerebrospinal fluid, in contrast to the case for the control strain. The fim determinant was also necessary for efficient in vitro invasion by C. freundii, because a deletion mutant was strongly reduced in its invasion efficiency. The mutation could be complemented in trans by the corresponding genes. Invasion by C. freundii could be blocked only by d-mannose, GlcNAc, and chitin hydrolysate and not by other carbohydrates tested. In contrast, yeast agglutination was not affected by GlcNAc or chitin hydrolysate. This finding indicated mannose residues to be essential for both yeast agglutination and invasion, whereas GlcNAc (oligomer) residues of host cells are involved exclusively in invasion. These results showed the fim determinant of C. freundii to be responsible for d-mannose- and GlcNAc-dependent in vitro invasion without being assembled into pili and for crossing of the blood-brain barrier in the infant rat model.
Collapse
Affiliation(s)
- Petra Hess
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Würzburg, Germany, Division of Infectious Diseases, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Artur Altenhöfer
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Würzburg, Germany, Division of Infectious Diseases, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - A. Salam Khan
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Würzburg, Germany, Division of Infectious Diseases, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Neda Daryab
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Würzburg, Germany, Division of Infectious Diseases, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Kwang Sik Kim
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Würzburg, Germany, Division of Infectious Diseases, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Jörg Hacker
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Würzburg, Germany, Division of Infectious Diseases, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Tobias A. Oelschlaeger
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Würzburg, Germany, Division of Infectious Diseases, Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
- Corresponding author. Mailing address: Institut für Molekulare Infektionsbiologie, Röntgenring 11, 97070 Würzburg, Germany. Phone: 931 312150. Fax: 931 312578. E-mail:
| |
Collapse
|
12
|
Buckles EL, Bahrani-Mougeot FK, Molina A, Lockatell CV, Johnson DE, Drachenberg CB, Burland V, Blattner FR, Donnenberg MS. Identification and characterization of a novel uropathogenic Escherichia coli-associated fimbrial gene cluster. Infect Immun 2004; 72:3890-901. [PMID: 15213132 PMCID: PMC427398 DOI: 10.1128/iai.72.7.3890-3901.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/02/2004] [Accepted: 03/24/2004] [Indexed: 11/20/2022] Open
Abstract
Recently, we identified a fimbrial usher gene in uropathogenic Escherichia coli strain CFT073 that is absent from an E. coli laboratory strain. Analysis of the CFT073 genome indicates that this fimbrial usher gene is part of a novel fimbrial gene cluster, aufABCDEFG. Analysis of a collection of pathogenic and commensal strains of E. coli and related species revealed that the auf gene cluster was significantly associated with uropathogenic E. coli isolates. For in vitro expression analysis of the auf gene cluster, RNA was isolated from CFT073 bacteria grown to the exponential or stationary phase in Luria-Bertani broth and reverse transcriptase PCR (RT-PCR) with oligonucleotide primers specific to the major subunit, aufA, was performed. We found that aufA is expressed in CFT073 only during the exponential growth phase; however, no expression of AufA protein was observed by Western blotting, indicating that under these conditions, the expression of the auf gene cluster is low. To determine if the auf gene cluster is expressed in vivo, RT-PCR was performed on bacteria from urine samples of mice infected with CFT073. Out of three independent experiments, we were able to detect expression of aufA at least once at 4, 24, and 48 h of infection, indicating that the auf gene cluster is expressed in the murine urinary tract. Furthermore, antisera from mice infected with CFT073 reacted with recombinant AufA in an enzyme-linked immunosorbent assay. To identify the structure encoded by the auf gene cluster, a recombinant plasmid containing the auf gene cluster under the T7 promoter was introduced into the E. coli BL-21 (AI) strain. Immunogold labeling using AufA antiserum revealed the presence of amorphous material extending from the surface of BL-21 cells. No hemagglutination or cellular adherence properties were detected in association with expression of AufA. Deletion of the entire auf gene cluster had no effect on the ability of CFT073 to colonize the kidney, bladder, or urine of mice. In addition, no significant histological differences between the parent and aufC mutant strain were observed. Therefore, Auf is a uropathogenic E. coli-associated structure that plays an uncertain role in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Eric L Buckles
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201-1116, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Autar R, Khan AS, Schad M, Hacker J, Liskamp RMJ, Pieters RJ. Adhesion Inhibition of F1C-Fimbriated Escherichia coli and Pseudomonas aeruginosa PAK and PAO by Multivalent Carbohydrate Ligands. Chembiochem 2003; 4:1317-25. [PMID: 14661274 DOI: 10.1002/cbic.200300719] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to evaluate their inhibition of bacterial adhesion, the carbohydrate sequences GalNAcbeta1-->4Gal and GalNAcbeta1-->4Galbeta1-->4Glc were synthesized. The disaccharide was conjugated to dendrons based on the 3,5-di-(2-aminoethoxy)-benzoic acid branching unit to yield di- and tetravalent versions of these compounds. A divalent compound was also prepared that had significantly longer spacer arms. Relevant monovalent compounds were prepared for comparison. Their anti-adhesion properties against F1C-fimbriated uropathogenic Escherichia coli were evaluated in an ELISA-type assay by using a recombinant strain and also by using Pseudomonas aeruginosa strains PAO and PAK. Adhesion inhibition was observed in all cases, and multivalency effects of up to one order of magnitude were observed. The combination of spacer and multivalency effects led to a 38-fold increase in the potency of a divalent inhibitor with long spacer arms towards the PAO strain when compared with the free carbohydrate.
Collapse
Affiliation(s)
- Reshma Autar
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Chen H, Schifferli DM. Construction, characterization, and immunogenicity of an attenuated Salmonella enterica serovar typhimurium pgtE vaccine expressing fimbriae with integrated viral epitopes from the spiC promoter. Infect Immun 2003; 71:4664-73. [PMID: 12874347 PMCID: PMC165986 DOI: 10.1128/iai.71.8.4664-4673.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that causes diarrhea, leading to near 100% mortality in neonatal piglets with corresponding devastating economic consequences. For the protection of neonatal and older animals, oral live vaccines present the attractive property of inducing desired mucosal immune responses, including colostral antibodies in sows--an effective means to passively protect suckling piglets. Newly attenuated Salmonella vaccine constructs expressing TGEV S protein epitopes were studied and evaluated for improved humoral immune response to TGEV. The macrophage-inducible Salmonella ssaH and spiC/ssaB promoters were compared for their ability to express the TGEV C and A epitopes in the context of the heterologous 987P fimbriae on Salmonella vaccines. Compared to the ssaH promoter, the Salmonella cya crp vector elicited significantly higher levels of mucosal and systemic antibodies in orally immunized mice when the chimeric fimbriae were expressed from the spiC promoter. The Salmonella spiC promoter construct induced the highest level of chimeric fimbriae after being taken up by the J774A.1 macrophagelike cells. The Salmonella cya crp vaccine vector was shown to incorporate into 987P partially degraded chimeric subunits lacking the TGEV epitopes. In contrast, its isogenic pgtE mutant produced fimbriae consisting exclusively of intact chimeric subunits. Mice immunized orally with the Salmonella pgtE vaccine expressing chimeric fimbriae from the spiC promoter elicited significantly higher systemic and mucosal antibody titers against the TGEV epitopes compared to the parental vaccine. This study indicates that the Salmonella cya crp pgtE vector and the spiC promoter can be used successfully to improve immune responses toward heterologous antigens.
Collapse
MESH Headings
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Viral/genetics
- Bacterial Proteins/genetics
- Base Sequence
- DNA, Bacterial/genetics
- Endopeptidases/genetics
- Endopeptidases/immunology
- Epitopes/genetics
- Female
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Gastroenteritis, Transmissible, of Swine/immunology
- Gastroenteritis, Transmissible, of Swine/prevention & control
- Genes, Bacterial
- Immunization, Secondary
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Salmonella Vaccines/genetics
- Salmonella Vaccines/immunology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/immunology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Huaiqing Chen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
15
|
Honarvar S, Choi BK, Schifferli DM. Phase variation of the 987P-like CS18 fimbriae of human enterotoxigenic Escherichia coli is regulated by site-specific recombinases. Mol Microbiol 2003; 48:157-71. [PMID: 12657052 DOI: 10.1046/j.1365-2958.2003.03419.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The gene cluster of the CS18 (PCFO20) fimbriae of human enterotoxigenic Escherichia coli (ETEC) was found to include seven genes (fotA to fotG) that are similar to each of the seven structural and export proteins of the 987P fimbriae. However, no analogous gene to the fasH regulatory gene, which is located at the 3' end of the 987P gene cluster and encodes an AraC-like activator of transcription, could be detected. Surprisingly, two novel genes (fotS and fotT) encoding proteins similar to the site-specific recombinases of the type 1 fimbriae (FimB and FimE) were identified at the 5' end of the fot gene cluster. These genes were shown to be required for the catalysis of a 312 bp-inversion just upstream of fotA. The inversion determines CS18 fimbrial phase variation. FotS participates in inverting the 312 bp-segment in both the ON and OFF orientation, whereas FotT has a bias for the OFF oriented recombination. Similar regulators of fimbriation by phase variation were described in uropathogenic and commensal Enterobacteriaceae. In contrast, only AraC-like transcriptional activators were previously described as regulators of the intestinal colonization factors of human ETEC isolates. Thus, the CS18 and 987P gene clusters encode similar components for fimbrial biogenesis but different types of regulators for fimbriation. The combination of blocks of genes encoding similar structural products but different regulatory proteins underlines how modular DNA rearrangements can evolve by serving pathogen diversification. Acquisition of a phase variation module to regulate fimbrial genes is proposed to be beneficial for the adaptation and transmission of pathogens.
Collapse
Affiliation(s)
- Shaya Honarvar
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, 3800 Spruce Street, Philadelphia, PA 19104-6049, USA
| | | | | |
Collapse
|
16
|
Nagy G, Dobrindt U, Schneider G, Khan AS, Hacker J, Emödy L. Loss of regulatory protein RfaH attenuates virulence of uropathogenic Escherichia coli. Infect Immun 2002; 70:4406-13. [PMID: 12117951 PMCID: PMC128157 DOI: 10.1128/iai.70.8.4406-4413.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection.
Collapse
Affiliation(s)
- Gábor Nagy
- Institute of Medical Microbiology and Immunology, University of Pécs, 7624 Pécs, Hungary, Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - Ulrich Dobrindt
- Institute of Medical Microbiology and Immunology, University of Pécs, 7624 Pécs, Hungary, Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - György Schneider
- Institute of Medical Microbiology and Immunology, University of Pécs, 7624 Pécs, Hungary, Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - A. Salam Khan
- Institute of Medical Microbiology and Immunology, University of Pécs, 7624 Pécs, Hungary, Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - Jörg Hacker
- Institute of Medical Microbiology and Immunology, University of Pécs, 7624 Pécs, Hungary, Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - Levente Emödy
- Institute of Medical Microbiology and Immunology, University of Pécs, 7624 Pécs, Hungary, Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
- Corresponding author. Mailing address: Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, 7643 Pécs, Hungary. Phone: 36 72 536252. Fax: 36 72 536253. E-mail:
| |
Collapse
|
17
|
Choi BK, Schifferli DM. Characterization of FasG segments required for 987P fimbria-mediated binding to piglet glycoprotein receptors. Infect Immun 2001; 69:6625-32. [PMID: 11598031 PMCID: PMC100036 DOI: 10.1128/iai.69.11.6625-6632.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Accepted: 07/24/2001] [Indexed: 11/20/2022] Open
Abstract
The 987P fimbriae of enterotoxigenic strains of Escherichia coli bind to both glycoprotein and glycolipid receptors on the brush borders of piglet enterocytes. A mutation in lysine residue 117 of the adhesive subunit FasG [fasG(K117A)] previously shown to abrogate 987P binding to the lipid receptor sulfatide did not affect the interaction with the glycoprotein receptors. Both the fimbriae and the FasG subunits of the wild type and the fasG(K117A) mutant bound to the glycoprotein receptors, confirming that lysine 117 was not required for binding to the glycoprotein receptors. Truncated FasG molecules were used to identify domains required for glycoprotein receptor recognition. At least two segments which did not include lysine117, namely, residues 211 (glutamine) to 220 (serine) and 20 (aspartic acid) to 41 (serine), were shown to be involved in the FasG-glycoprotein receptor interactions by ligand-blotting assays. Changing isoleucine 217 or leucine 215 of FasG to alanine abolished the property of a truncated FasG fusion protein to inhibit 987P recognition of its glycoprotein receptors. Thus, the K117 residue of FasG is required only for binding to the glycolipid receptor, whereas the newly identified hydrophobic residues of the FasG subunit are required specifically for the recognition of the glycoprotein receptor. Taken together, our data indicate that different residues of the FasG adhesin are important in 987P fimbrial binding to sulfatide and glycoprotein receptors, suggesting different mechanisms of interaction.
Collapse
Affiliation(s)
- B K Choi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
18
|
Edwards RA, Matlock BC, Heffernan BJ, Maloy SR. Genomic analysis and growth-phase-dependent regulation of the SEF14 fimbriae of Salmonella enterica serovar Enteritidis. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2705-2715. [PMID: 11577150 DOI: 10.1099/00221287-147-10-2705] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Salmonella enterica serovar Enteritidis is a leading cause of food poisoning in the USA and Europe. Although Salmonella serovars share many fimbrial operons, a few fimbriae are limited to specific Samonella serovars. SEF14 fimbriae are restricted to group D Salmonella and the genes encoding this virulence factor were acquired relatively recently. Genomic, genetic and gene expression studies have been integrated to investigate the ancestry, regulation and expression of the sef genes. Genomic comparisons of the Salmonella serovars sequenced revealed that the sef operon is inserted in leuX in Salmonella Enteritidis, Salmonella Paratyphi and Salmonella Typhi, and revealed the presence of a previously unidentified 25 kb pathogenicity island in Salmonella Typhimurium at this location. Salmonella Enteritidis contains a region of homology between the Salmonella virulence plasmid and the chromosome downstream of the sef operon. The sef operon itself consists of four co-transcribed genes, sefABCD, and adjacent to sefD there is an AraC-like transcriptional activator that is required for expression of the sef genes. Expression of the sef genes was optimal during growth in late exponential phase and was repressed during stationary phase. The regulation was coordinated by the RpoS sigma factor.
Collapse
Affiliation(s)
- Robert A Edwards
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA1
| | - Brian C Matlock
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA1
| | - Brian J Heffernan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA1
| | - Stanley R Maloy
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA1
| |
Collapse
|
19
|
Brunder W, Khan AS, Hacker J, Karch H. Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H(-). Infect Immun 2001; 69:4447-57. [PMID: 11401985 PMCID: PMC98518 DOI: 10.1128/iai.69.7.4447-4457.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-) have emerged as important causes of diarrheal diseases and the hemolytic-uremic syndrome in Germany. In this study, we characterized a 32-kb fragment of the plasmid of SF EHEC O157:H(-), pSFO157, which differs markedly from plasmid pO157 of classical non-sorbitol-fermenting EHEC O157:H7. We found a cluster of six genes, termed sfpA, sfpH, sfpC, sfpD, sfpJ, and sfpG, which mediate mannose-resistant hemagglutination and the expression of fimbriae. sfp genes are similar to the pap genes, encoding P-fimbriae of uropathogenic E. coli, but the sfp cluster lacks homologues of genes encoding subunits of a tip fibrillum as well as regulatory genes. The major pilin, SfpA, despite its similarity to PapA, does not cluster together with known PapA alleles in a phylogenetic tree but is structurally related to the PmpA pilin of Proteus mirabilis. The putative adhesin gene sfpG, responsible for the hemagglutination phenotype, shows significant homology neither to papG nor to other known sequences. Sfp fimbriae are 3 to 5 nm in diameter, in contrast to P-fimbriae, which are 7 nm in diameter. PCR analyses showed that the sfp gene cluster is a characteristic of SF EHEC O157:H(-) strains and is not present in other EHEC isolates, diarrheagenic E. coli, or other Enterobacteriaceae. The sfp gene cluster is flanked by two blocks of insertion sequences and an origin of plasmid replication, indicating that horizontal gene transfer may have contributed to the presence of Sfp fimbriae in SF EHEC O157:H(-).
Collapse
Affiliation(s)
- W Brunder
- Institut für Hygiene und Mikrobiologie der Universität Würzburg, D-97080 Würzburg, Germany.
| | | | | | | |
Collapse
|
20
|
Chen H, Schifferli DM. Enhanced immune responses to viral epitopes by combining macrophage-inducible expression with multimeric display on a Salmonella vector. Vaccine 2001; 19:3009-18. [PMID: 11282213 PMCID: PMC7126928 DOI: 10.1016/s0264-410x(00)00541-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, the immunogenicity of chimeric 987P fimbriae on a Salmonella vaccine strain was improved by optimizing fimbrial expression. The constitutive tetA promoter and the in vivo activated nirB and pagC promoters were evaluated for their use to express two epitopes of the transmissible gastroenteritis virus (TGEV) spike protein carried by fimbriae which were displayed on a Salmonella vaccine strain. Constructs with the pagC promoter were shown to drive increased expression of chimeric 987P fimbriae in macrophages as well as in Mg(2+)-poor media, mimicking a major environmental signal found in Salmonella-containing endocytic vacuoles of macrophages. Mice immunized orally with a Salmonella vaccine strain which expressed chimeric fimbriae from the pagC promoter elicited significantly higher mucosal and systemic immune responses to both the 987P fimbriae and the TGEV epitopes than mice immunized with the same strain hosting a tetA or nirB promoter-driven expression plasmid. Moreover, only the Salmonella vaccine strains harboring a plasmid with the pagC promoter, with or without an additional tetA promoter in tandem, elicited neutralizing antibodies to TGEV. This indicated that the pagC promoter can be used successfully to improve epitope-display by chimeric fimbriae on Salmonella vaccine strains for the induction of a desired immune response.
Collapse
Affiliation(s)
- H Chen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104-6049, USA
| | | |
Collapse
|
21
|
Chen H, Schifferli DM. Mucosal and systemic immune responses to chimeric fimbriae expressed by Salmonella enterica serovar typhimurium vaccine strains. Infect Immun 2000; 68:3129-39. [PMID: 10816454 PMCID: PMC97544 DOI: 10.1128/iai.68.6.3129-3139.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant live oral vaccines expressing pathogen-derived antigens offer a unique set of attractive properties. Among these are the simplicity of administration, the capacity to induce mucosal and systemic immunity, and the advantage of permitting genetic manipulation for optimal antigen presentation. In this study, the benefit of having a heterologous antigen expressed on the surface of a live vector rather than intracellularly was evaluated. Accordingly, the immune response of mice immunized with a Salmonella enterica serovar Typhimurium vaccine strain expressing the Escherichia coli 987P fimbrial antigen on its surface (Fas(+)) was compared with the expression in the periplasmic compartment (Fas(-)). Orally immunized BALB/c mice showed that 987P fimbriated Salmonella serovar Typhimurium CS3263 (aroA asd) with pCS151 (fas(+) asd(+)) elicited a significantly higher level of 987P-specific systemic immunoglobulin G (IgG) and mucosal IgA than serovar Typhimurium CS3263 with pCS152 (fasD mutant, asd(+)) expressing 987P periplasmic antigen. Further studies were aimed at determining whether the 987P fimbriae expressed by serovar Typhimurium chi4550 (cya crp asd) could be used as carriers of foreign epitopes. For this, the vaccine strain was genetically engineered to express chimeric fimbriae carrying the transmissible gastroenteritis virus (TGEV) C (379-388) and A (521-531) epitopes of the spike protein inserted into the 987P major fimbrial subunit FasA. BALB/c mice administered orally serovar Typhimurium chi4550 expressing the chimeric fimbriae from the tet promoter in pCS154 (fas(+) asd(+)) produced systemic antibodies against both fimbria and the TGEV C epitope but not against the TGEV A epitope. To improve the immunogenicity of the chimeric fimbriae, the in vivo inducible nirB promoter was inserted into pCS154, upstream of the fas genes, to create pCS155. In comparison with the previously used vaccine, BALB/c mice immunized orally with serovar Typhimurium chi4550/pCS155 demonstrated significantly higher levels of serum IgG and mucosal IgA against 987P fimbria. Moreover, mucosal IgA against the TGEV C epitope was only detected with serovar Typhimurium chi4550/pCS155. The induced antibodies also recognized the epitopes in the context of the full-length TGEV spike protein. Hence, immune responses to heterologous chimeric fimbriae on Salmonella vaccine vectors can be optimized by using promoters known to be activated in vivo.
Collapse
MESH Headings
- Adhesins, Escherichia coli/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/immunology
- Antigens, Surface/immunology
- Bacterial Proteins/genetics
- Bacterial Vaccines/immunology
- Escherichia coli/immunology
- Escherichia coli Proteins
- Female
- Fimbriae Proteins
- Fimbriae, Bacterial/immunology
- Immunity, Mucosal
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Nitrite Reductases
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/immunology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Surface Properties
- Transmissible gastroenteritis virus/immunology
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
- Viral Proteins/immunology
Collapse
Affiliation(s)
- H Chen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
22
|
Khan AS, Kniep B, Oelschlaeger TA, Van Die I, Korhonen T, Hacker J. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun 2000; 68:3541-7. [PMID: 10816509 PMCID: PMC97640 DOI: 10.1128/iai.68.6.3541-3547.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F1C fimbriae are correlated with uropathogenic Escherichia coli strains. Although F1C fimbriae mediate binding to kidney tubular cells, their receptor is not known. In this paper, we demonstrate for the first time specific carbohydrate residues as receptor structure for F1C-fimbria-expressing E. coli. The binding of the F1C fimbriated recombinant E. coli strain HB101(pPIL110-54) and purified F1C fimbriae to reference glycolipids of different carbohydrate compositions was evaluated by using thin-layer chromatography (TLC) overlay and solid-phase binding assays. TLC fimbrial overlay analysis revealed the binding ability of purified F1C fimbriae only to glucosylceramide (GlcCer), beta1-linked galactosylceramide 2 (GalCer2) with nonhydroxy fatty acids, lactosylceramide, globotriaosylceramide, paragloboside (nLc(4)Cer), lactotriaosylceramide, gangliotriaosylceramide (asialo-GM(2) [GgO(3)Cer]) and gangliotetraosylceramide (asialo-GM(1) [GgO(4)Cer]). The binding of purified F1C fimbriae as well as F1C fimbriated recombinant E. coli strain HB101(pPIL110-54) was optimal to microtiter plates coated with asialo-GM(2) (GgO(3)Cer). The bacterial interaction with asialo-GM(1) (GgO(4)Cer) and asialo-GM(2) (GgO(3)Cer) was strongly inhibited only by disaccharide GalNAcbeta1-4Galbeta linked to bovine serum albumin. We observed no binding to globotetraosylceramide or Forssman antigen (Gb(5)Cer) glycosphingolipids or to sialic-acid-containing gangliosides. It was demonstrated that the presence of a GalCer or GlcCer residue alone is not sufficient for optimal binding, and additional carbohydrate residues are required for high-affinity adherence. Indeed, the binding efficiency of F1C fimbriated recombinant bacteria increased by 19-fold when disaccharide sequence GalNAcbeta1-4Galbeta is linked to glucosylceramide as in asialo-GM(2) (GgO(3)Cer). Thus, it is suggested that the disaccharide sequence GalNAcbeta1-4Galbeta of asialo-GM(2) (GgO(3)Cer) which is positioned internally in asialo-GM(1) (GgO(4)Cer) is the high-affinity binding epitope for the F1C fimbriae of uropathogenic E. coli.
Collapse
Affiliation(s)
- A S Khan
- Institut für Molekulare Infektionsbiologie, University of Würzburg, 97070 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Sun R, Anderson TJ, Erickson AK, Nelson EA, Francis DH. Inhibition of adhesion of Escherichia coli k88ac fimbria to its receptor, intestinal mucin-type glycoproteins, by a monoclonal antibody directed against a variable domain of the fimbria. Infect Immun 2000; 68:3509-15. [PMID: 10816505 PMCID: PMC97636 DOI: 10.1128/iai.68.6.3509-3515.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of enterotoxigenic Escherichia coli that express K88 fimbriae are among the most common causes of diarrhea in young pigs. Adhesion of bacteria to receptors on intestinal epithelial cells, mediated by K88 fimbriae, is the initial step in the establishment of infection. Three antigenic variants of K88 fimbriae exist in nature: K88ab, K88ac, and K88ad. K88ac is the most prevalent and may be the only variant of significance in swine disease. Each K88 fimbrial variant is composed of multiple antigenic determinants. Some of these determinants are shared among the three variants and may be referred to as conserved epitopes, whereas others are unique to a specific variant and may be referred to as variable epitopes. In this study, monoclonal antibodies (MAbs) specific to either variable or conserved epitopes of K88ac fimbriae were produced. The specificity of each MAb was tested by enzyme-linked immunosorbent and immunoblot assays. Fab fragments were prepared from these MAbs and were tested for their ability to block the binding of K88-positive bacteria and purified fimbriae to porcine enterocyte brush border vesicles and purified K88 receptors, respectively. The purified receptors were intestinal mucin-type sialoglycoproteins (IMTGP) isolated from porcine enterocytes (A. K. Erickson, D. R. Baker, B. T. Bosworth, T. A. Casey, D. A. Benfield, and D. H. Francis, Infect. Immun. 62:5404-5410, 1994). Fab fragments prepared from MAbs specific for variable epitopes blocked the binding of bacteria to brush borders and of fimbriae to IMTGP. However, those from MAbs specific for a conserved epitope did not. These observations indicate that the receptor-binding domain of a K88ac fimbria is contained, at least in part, within the antigenically variable epitopes of that fimbria. Epitope mapping for one of the MAbs, which recognizes a linear epitope on K88ac fimbriae, indicated that this MAb binds to the region from amino acid no. 64 to no. 107 on the major subunit of K88ac fimbriae.
Collapse
MESH Headings
- Adhesins, Escherichia coli/immunology
- Adhesins, Escherichia coli/metabolism
- Animals
- Antibodies, Bacterial
- Antibodies, Monoclonal
- Antigens, Bacterial
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bacterial Adhesion
- Enterocytes/metabolism
- Epitope Mapping
- Escherichia coli/pathogenicity
- Escherichia coli Proteins
- Fimbriae Proteins
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Intestinal Mucosa/cytology
- Microvilli/metabolism
- Mucins/immunology
- Mucins/metabolism
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Swine
Collapse
Affiliation(s)
- R Sun
- Department of Veterinary Science, South Dakota State University, Brookings, South Dakota 57007-1396, USA
| | | | | | | | | |
Collapse
|
24
|
Espinosa-Urgel M, Salido A, Ramos JL. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 2000; 182:2363-9. [PMID: 10762233 PMCID: PMC111295 DOI: 10.1128/jb.182.9.2363-2369.2000] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many agricultural uses of bacteria require the establishment of efficient bacterial populations in the rhizosphere, for which colonization of plant seeds often constitutes a critical first step. Pseudomonas putida KT2440 is a strain that colonizes the rhizosphere of a number of agronomically important plants at high population densities. To identify the functions involved in initial seed colonization by P. putida KT2440, we subjected this strain to transposon mutagenesis and screened for mutants defective in attachment to corn seeds. Eight different mutants were isolated and characterized. While all of them showed reduced attachment to seeds, only two had strong defects in their adhesion to abiotic surfaces (glass and different plastics). Sequences of the loci affected in all eight mutants were obtained. None of the isolated genes had previously been described in P. putida, although four of them showed clear similarities with genes of known functions in other organisms. They corresponded to putative surface and membrane proteins, including a calcium-binding protein, a hemolysin, a peptide transporter, and a potential multidrug efflux pump. One other showed limited similarities with surface proteins, while the remaining three presented no obvious similarities with known genes, indicating that this study has disclosed novel functions.
Collapse
Affiliation(s)
- M Espinosa-Urgel
- Department of Plant Biochemistry, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain.
| | | | | |
Collapse
|
25
|
Choi BK, Schifferli DM. Lysine residue 117 of the FasG adhesin of enterotoxigenic Escherichia coli is essential for binding of 987P fimbriae to sulfatide. Infect Immun 1999; 67:5755-61. [PMID: 10531225 PMCID: PMC96951 DOI: 10.1128/iai.67.11.5755-5761.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FasG subunit of the 987P fimbriae of enterotoxigenic strains of Escherichia coli was previously shown to mediate fimbrial binding to a glycoprotein and a sulfatide receptor on intestinal brush borders of piglets. Moreover, the 987P adhesin FasG is required for fimbrial expression, since fasG null mutants are nonfimbriated. In this study, fasG was modified by site-directed mutagenesis to study its sulfatide binding properties. Twenty single mutants were generated by replacing positively charged lysine (K) or arginine (R) residues with small, nonpolar alanine (A) residues. Reduced levels of binding to sulfatide-containing liposomes correlated with reduced fimbriation and FasG surface display in four fasG mutants (R27A, R286A, R226A, and R368). Among the 16 remaining normally fimbriated mutants with wild-type levels of surface-exposed FasG, only one mutant (K117A) did not interact at all with sulfatide-containing liposomes. Four mutants (K117A, R116A, K118A, and R200A) demonstrated reduced binding to such liposomes. Since complete phenotypic dissociation between the structure and specific function of 987P was observed only with mutant K117A, this residue is proposed to play an essential role in the FasG-sulfatide interaction, possibly communicating with the sulfate group of sulfatide by hydrogen bonding and/or salt bridge formation. Residues K17, R116, K118, and R200 may stabilize this interaction.
Collapse
Affiliation(s)
- B K Choi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
26
|
Rani DB, Bayer ME, Schifferli DM. Polymeric display of immunogenic epitopes from herpes simplex virus and transmissible gastroenteritis virus surface proteins on an enteroadherent fimbria. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:30-40. [PMID: 9874660 PMCID: PMC95656 DOI: 10.1128/cdli.6.1.30-40.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The strong immunogenicity of bacterial fimbriae results from their polymeric and proteinaceous nature, and the protective role of these immunogens in experimental or commercial vaccines is associated with their capacity to induce antiadhesive antibodies. Fimbria-mediated intestinal colonization by enteropathogens typically leads to similar antibody responses. The possibility of taking advantage of these properties was investigated by determining whether enteroadhesive fimbriae, like the 987P fimbriae of enterotoxigenic Escherichia coli, can serve as carriers for foreign antigens without losing their adhesive characteristics. Random linker insertion mutagenesis of the fasA gene encoding the major 987P subunit identified five different mutants expressing wild-type levels of fimbriation. The linker insertion sites of these mutants were used to introduce three continuous segments of viral surface glycoproteins known to be accessible to antibodies. These segments encode residues 11 to 19 or 272 to 279 of herpes simplex virus type 1 (HSV-1) glycoprotein D [gD(11-19) and gD(272-279), respectively] or residues 379 to 388 of the transmissible gastroenteritis virus (TGEV) spike protein [S(379-388)]. Studies of bacteria expressing fimbriae incorporating mutated FasA subunits alone or together with wild-type FasA subunits (hybrid fimbriae) indicated that foreign epitopes were best exported and displayed on assembled fimbriae when they were inserted near the amino terminus of FasA. Fimbriated bacteria expressing FasA subunits carrying the HSV gD(11-19) or the TGEV S(379-388) epitope inserted between the second and third residues of mature FasA elicited high levels of foreign epitope antibodies in all rabbits immunized parenterally. Antibodies against the HSV epitope were also shown to recognize the epitope in the context of the whole gD protein. Because the 987P adhesive subunit FasG was shown to be present on mutated fimbriae and to mediate bacterial attachment to porcine intestinal receptors, polymeric display of foreign epitopes on 987P offers new opportunities to test the potential beneficial effect of enteroadhesion for mucosal immunization and protection against various enteric pathogens.
Collapse
MESH Headings
- Adhesins, Escherichia coli/genetics
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Surface/genetics
- Antigens, Viral/genetics
- Base Sequence
- DNA Primers/genetics
- DNA, Viral/genetics
- Epitopes/genetics
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli/virology
- Fimbriae Proteins
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/virology
- Gene Expression
- Genes, Viral
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Humans
- Immunity, Mucosal
- Immunization
- Microscopy, Immunoelectron
- Rabbits
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/immunology
Collapse
Affiliation(s)
- D B Rani
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
27
|
Interactions between the Enteric Pathogen and the Host. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997. [DOI: 10.1007/978-1-4899-1828-4_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
28
|
Edwards RA, Cao J, Schifferli DM. Identification of major and minor chaperone proteins involved in the export of 987P fimbriae. J Bacteriol 1996; 178:3426-33. [PMID: 8655537 PMCID: PMC178109 DOI: 10.1128/jb.178.12.3426-3433.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 987P fimbriae of Escherichia coli consist mainly of the major subunit, FasA, and two minor subunits, FasF and FasG. In addition to the previously characterized outer membrane or usher protein FasD, the FasB, FasC, and FasE proteins are required for fimbriation. To better understand the roles of these minor proteins, their genes were sequenced and the predicted polypeptides were shown to be most similar to periplasmic chaperone proteins of fimbrial systems. Western blot (immunoblot) analysis and immunoprecipitation of various fas mutants with specific antibody probes identified both the subcellular localizations and associations of these minor components. FasB was shown to be a periplasmic chaperone for the major fimbrial subunit, FasA. A novel periplasmic chaperone, FasC, which stabilizes and specifically interacts with the adhesin, FasG, was identified. FasE, a chaperone-like protein, is also located in the periplasm and is required for optimal export of FasG and possibly other subunits. The use of different chaperone proteins for various 987P subunits is a novel observation for fimbrial biogenesis in bacteria. Whether other fimbrial systems use a similar tactic remains to be discovered.
Collapse
Affiliation(s)
- R A Edwards
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
29
|
Viboud GI, Jonson G, Dean-Nystrom E, Svennerholm AM. The structural gene encoding human enterotoxigenic Escherichia coli PCFO20 is homologous to that for porcine 987P. Infect Immun 1996; 64:1233-9. [PMID: 8606084 PMCID: PMC173909 DOI: 10.1128/iai.64.4.1233-1239.1996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Putative colonization factor PCFO20 was recently identified in an enterotoxigenic Escherichia coli (ETEC) strain of serogroup O20 isolated from a child with diarrhea in Argentina. The gene encoding the structural subunit of PCFO20 fimbriae, fotA, was cloned from strain ARG-2 in the expression phage vector lambda ZAP Express. One positive clone, pGV29, that carried a 3.3-kb fragment was identified on the basis of fimbrillin production by using a monospecific rabbit anti-PCFO20 serum. Nucleotide sequencing of a 1.3-kb Sau3A-ClaI fragment of the subclone pGV292 containing the region coding for PCFO20 fimbrillin revealed two open reading frames of which one was complete. A western blot (immunoblot) showed that the cloned protein, FotA, migrated like the PCFO20 fimbrial subunit protein did. Fimbriae were not detected on the surface of E. coli host bacteria containing pGV292 or pGV29, suggesting that the genes needed for assembly of PCFO20 fimbriae are lacking in both clones. The fotA gene encodes a 20,574-Da prefimbrillin protein which contains a 21-amino-acid signal sequence; the mature protein has a size of 18.1 kDa. The subunit protein FotA was found to be more homologous to the subunit of porcine 987P than to any fimbrial subunit produced by human ETEC. Alignments of the amino acid sequences of the two proteins indicate that they are partly identical, with an overall similarity of 82%. FotA fimbrillin was shown to be transported and assembled by the fimbria assembly machinery in porcine ETEC strain 987. PCFO20 and 987P may have evolved from a common ancestral gene. They are immunologically related but have affinity for different host cell receptors, since PCFO20-producing bacteria do not bind to neonatal piglet enterocytes.
Collapse
Affiliation(s)
- G I Viboud
- Department of Medical Microbiology and Immunology, Goteborg University, Sweden
| | | | | | | |
Collapse
|
30
|
Yeung MK. Construction and use of integration plasmids to generate site-specific mutations in the Actinomyces viscosus T14V chromosome. Infect Immun 1995; 63:2924-30. [PMID: 7622214 PMCID: PMC173398 DOI: 10.1128/iai.63.8.2924-2930.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stable transformants of Actinomyces viscosus T14V carrying heterologous DNA were obtained with the aid of integration plasmids. These plasmids contained a kanamycin resistance (Kmr) gene flanked by A. viscosus T14V genomic DNA, including parts of the type 1 structural fimbrial subunit gene (fimP) on one or both sides of the antibiotic marker. Significantly more Kmr transformants were obtained with a plasmid carrying longer segments of homologous strain T14V DNA. Integration of this plasmid into the A. viscosus T14V genome affected the expression and function of type 1 fimbriae in the transformants. In the transformant strain designated A. viscosus MY50D, the inactivated fimP replaced the wild-type fimP via allelic replacement. A. viscosus MY51S and MY52S each contained a copy of the plasmid integrated into the genome by a Campbell-like insertion mechanism. A. viscosus MY50D and MY51S lacked type 1 fimbriae and did not bind to proline-rich proteins (the fimbrial receptors) immobilized on nitrocellulose. In contrast, strain MY52S synthesized the structural subunit protein, as detected by immunostaining with anti-A. viscosus T14V type 1 fimbria antibodies. However, the high-molecular-weight proteins observed in sodium dodecyl sulfate-polyacrylamide gels of fimbriae from the cell wall of the wild-type strain T14V were absent in cell wall preparations of this strain. Moreover, A. viscosus MY52S failed to bind, in vitro, to proline-rich proteins. Thus, these results demonstrate that insertion of heterologous DNA at specific sites of the Actinomyces genome can be facilitated with integratable plasmids and that the transformants and mutants generated will aid in the delineation of the roles and contributions of specific genes to the structure and function of any macromolecule produced by these organisms.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio 78284-7888, USA
| |
Collapse
|
31
|
Cao J, Khan AS, Bayer ME, Schifferli DM. Ordered translocation of 987P fimbrial subunits through the outer membrane of Escherichia coli. J Bacteriol 1995; 177:3704-13. [PMID: 7601834 PMCID: PMC177086 DOI: 10.1128/jb.177.13.3704-3713.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 987P fimbria of enterotoxigenic Escherichia coli is a heteropolymeric structure which consists essentially of a major FasA subunit and a minor subunit, the FasG adhesin. The latter harbors the binding moiety for receptor molecules on piglet intestinal epithelial cells. In this study, anti-FasF antibody probes were developed and used to demonstrate that the FasF protein represents a new minor fimbrial component. FasF was identified in highly purified fimbriae, and its sequence demonstrated significant levels of similarity with that of FasA. Immune electron microscopy localized both the FasG and FasF proteins at the fimbrial tip as well as at broken ends and at various intervals along the fimbrial length. The presence of these minor proteins in purified 987P fimbriae was corroborated by enzyme-linked immunosorbent assay inhibitions. Finally, the use of nonfimbriated fasG, fasF, and fasA mutants indicated that subunit translocation through the outer membrane follows a specific order, FasG being the first, FasF being the second, and FasA being the third type of exported subunit. Since fimbriae are thought to grow from the base, FasG is proposed to be a tip adhesin and FasF is proposed to be a linker molecule between the adhesin and the fimbrial shaft. Moreover, export of FasG (or FasF) in the absence of FasF (or FasA) indicates that during the process of fimbrial biogenesis in the outer membrane, translocating events precede the initiation of subunit heteropolymerization.
Collapse
MESH Headings
- Adhesins, Escherichia coli/isolation & purification
- Adhesins, Escherichia coli/metabolism
- Amino Acid Sequence
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/metabolism
- Antigens, Surface/isolation & purification
- Antigens, Surface/metabolism
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Base Sequence
- Biological Transport
- Cell Membrane/metabolism
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Escherichia coli/ultrastructure
- Fimbriae Proteins
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Microscopy, Immunoelectron
- Models, Biological
- Molecular Sequence Data
- Sequence Analysis, DNA
- Time Factors
Collapse
Affiliation(s)
- J Cao
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|