1
|
An in silico reverse vaccinology study of Brachyspira pilosicoli, the causative organism of intestinal spirochaetosis, to identify putative vaccine candidates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Hawley KL, Montezuma-Rusca JM, Delgado KN, Singh N, Uversky VN, Caimano MJ, Radolf JD, Luthra A. Structural Modeling of the Treponema pallidum Outer Membrane Protein Repertoire: a Road Map for Deconvolution of Syphilis Pathogenesis and Development of a Syphilis Vaccine. J Bacteriol 2021; 203:e0008221. [PMID: 33972353 PMCID: PMC8407342 DOI: 10.1128/jb.00082-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/27/2021] [Indexed: 01/11/2023] Open
Abstract
Treponema pallidum, an obligate human pathogen, has an outer membrane (OM) whose physical properties, ultrastructure, and composition differ markedly from those of phylogenetically distant Gram-negative bacteria. We developed structural models for the outer membrane protein (OMP) repertoire (OMPeome) of T. pallidum Nichols using solved Gram-negative structures, computational tools, and small-angle X-ray scattering (SAXS) of selected recombinant periplasmic domains. The T. pallidum "OMPeome" harbors two "stand-alone" proteins (BamA and LptD) involved in OM biogenesis and four paralogous families involved in the influx/efflux of small molecules: 8-stranded β-barrels, long-chain-fatty-acid transporters (FadLs), OM factors (OMFs) for efflux pumps, and T. pallidum repeat proteins (Tprs). BamA (TP0326), the central component of a β-barrel assembly machine (BAM)/translocation and assembly module (TAM) hybrid, possesses a highly flexible polypeptide-transport-associated (POTRA) 1-5 arm predicted to interact with TamB (TP0325). TP0515, an LptD ortholog, contains a novel, unstructured C-terminal domain that models inside the β-barrel. T. pallidum has four 8-stranded β-barrels, each containing positively charged extracellular loops that could contribute to pathogenesis. Three of five FadL-like orthologs have a novel α-helical, presumptively periplasmic C-terminal extension. SAXS and structural modeling further supported the bipartite membrane topology and tridomain architecture of full-length members of the Tpr family. T. pallidum's two efflux pumps presumably extrude noxious small molecules via four coexpressed OMFs with variably charged tunnels. For BamA, LptD, and OMFs, we modeled the molecular machines that deliver their substrates into the OM or external milieu. The spirochete's extended families of OM transporters collectively confer a broad capacity for nutrient uptake. The models also furnish a structural road map for vaccine development. IMPORTANCE The unusual outer membrane (OM) of T. pallidum, the syphilis spirochete, is the ultrastructural basis for its well-recognized capacity for invasiveness, immune evasion, and persistence. In recent years, we have made considerable progress in identifying T. pallidum's repertoire of OMPs. Here, we developed three-dimensional (3D) models for the T. pallidum Nichols OMPeome using structural modeling, bioinformatics, and solution scattering. The OM contains three families of OMP transporters, an OMP family involved in the extrusion of noxious molecules, and two "stand-alone" proteins involved in OM biogenesis. This work represents a major advance toward elucidating host-pathogen interactions during syphilis; understanding how T. pallidum, an extreme auxotroph, obtains a wide array of biomolecules from its obligate human host; and developing a vaccine with global efficacy.
Collapse
Affiliation(s)
- Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, Connecticut, USA
| | - Jairo M. Montezuma-Rusca
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases, UConn Health, Farmington, Connecticut, USA
| | | | - Navreeta Singh
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Melissa J. Caimano
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Justin D. Radolf
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Tan K, Deatherage Kaiser BL, Wu R, Cuff M, Fan Y, Bigelow L, Jedrzejczak RP, Adkins JN, Cort JR, Babnigg G, Joachimiak A. Insights into PG-binding, conformational change, and dimerization of the OmpA C-terminal domains from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi. Protein Sci 2017; 26:1738-1748. [PMID: 28580643 DOI: 10.1002/pro.3209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 11/10/2022]
Abstract
Salmonella enterica serovar Typhimurium can induce both humoral and cell-mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N-terminal eight-stranded β-barrel transmembrane domain and a C-terminal domain (OmpACTD ). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. typhimurium (STOmpACTD ) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD ), in closed form. In the open form of STOmpACTD , an aspartate residue from a long β2-α3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD , a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD , suggest a large conformational change that includes an extension of α3 helix by ordering a part of β2-α3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG-anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD , or possibly that of full length STOmpA.
Collapse
Affiliation(s)
- Kemin Tan
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, 60439
| | | | - Ruiying Wu
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Marianne Cuff
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Yao Fan
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Lance Bigelow
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Robert P Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637
| | - Joshua N Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - John R Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Gyorgy Babnigg
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637.,Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, Illinois, 60439.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois, 60439
| |
Collapse
|
4
|
Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 2010; 78:5178-94. [PMID: 20876295 DOI: 10.1128/iai.00834-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's "stealth pathogenicity," we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection.
Collapse
|
5
|
Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol 2009; 191:7566-80. [PMID: 19820083 DOI: 10.1128/jb.01031-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG.
Collapse
|
6
|
Veith PD, Dashper SG, O'Brien-Simpson NM, Paolini RA, Orth R, Walsh KA, Reynolds EC. Major proteins and antigens of Treponema denticola. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1421-32. [PMID: 19501677 DOI: 10.1016/j.bbapap.2009.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/20/2009] [Accepted: 06/01/2009] [Indexed: 11/15/2022]
Abstract
Treponema denticola is a Gram-negative, motile, asaccharolytic, anaerobic spirochaete which along with Porphyromonas gingivalis and Tannerella forsythia has been shown to form a bacterial consortium called the Red Complex that is strongly associated with the clinical progression of chronic periodontitis. T. denticola was grown in continuous culture in a complex medium with a mean generation time of 15.75 h. Samples from two different membrane-enriched preparations and a cytoplasm-enriched preparation were separated by two-dimensional gel electrophoresis and the proteins identified by MALDI-TOF/TOF mass spectrometry. In total, 219 non-redundant proteins were identified including numerous virulence factors, lipoproteins, ABC transporter proteins and enzymes involved in the metabolism of nine different amino acids of which glycine seems to be of particular importance. Novel findings include the identification of several abundant peptide uptake systems, and the identification of three flagellar filament outer layer proteins. Two-dimensional Western blot analysis using sera from mice immunized with formalin-killed T. denticola cells suggested that Msp, PrcA, OppA, OppA10, MglB, TmpC and several flagellar filament proteins are antigenic.
Collapse
Affiliation(s)
- Paul D Veith
- Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, the University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Localization and characterization of VVA0331, a 489-kDa RTX-like protein, in Vibrio vulnificus YJ016. Arch Microbiol 2009; 191:441-50. [PMID: 19326097 DOI: 10.1007/s00203-009-0471-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/19/2009] [Accepted: 03/06/2009] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus YJ016 contains three genes encoding proteins homologous to repeats-in-toxin proteins. One of these genes, vva0331, possesses a long open reading frame of 13,971 bp in length and resides on the small chromosome between two gene clusters encoding a type I secretion system and several regulatory proteins, respectively. Bioinformatic analysis revealed that VVA0331 consist of nineteen 87-amino acid repeats, two Arg-Gly-Asp motifs, four cysteine residues, an outer membrane protein domain, a polysaccharide-binding site and several motifs related to cell adhesions. These features are distinct from those of typical repeat-in-toxins and autotransporter adhesins. Real-time quantitative PCR analysis indicates that vva0331 gene expression is activated at 30 degrees C and regulated by iron. In addition, VVA0331 is present primarily in a secreted form as determined by cell fractionation assay and Western blot analysis. No significant difference in Hep2 cell adherence, cytotoxicity, and virulence was observed between the wild type and vva0331 mutant strains. In contrast, these strains exhibited apparently different outer membrane protein profiles, and antiserum raised against C-terminal region of VVA0331 reacted with an 85-kDa outer membrane protein of V. vulnificus YJ016.
Collapse
|
8
|
Brinkman MB, McKevitt M, McLoughlin M, Perez C, Howell J, Weinstock GM, Norris SJ, Palzkill T. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J Clin Microbiol 2006; 44:888-91. [PMID: 16517872 PMCID: PMC1393150 DOI: 10.1128/jcm.44.3.888-891.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify antigens important in the human immune response to syphilis, the serum antibody reactivity of syphilitic patients was examined with 908 of the 1,039 proteins in the proteome of Treponema pallidum subsp. pallidum using a protein array enzyme-linked immunosorbent assay. Thirty-four proteins exhibited significant reactivity when assayed with human sera from patients in the early latent stage of syphilis. A subset of antigens identified were further scrutinized for antibody reactivity at primary, secondary, and latent disease stages, and the results demonstrate that the humoral immune response to individual T. pallidum proteins develops at different rates during the time course of infection.
Collapse
Affiliation(s)
- Mary Beth Brinkman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subsp. pallidum. Clinical manifestations separate the disease into stages; late stages of disease are now uncommon compared to the preantibiotic era. T. pallidum has an unusually small genome and lacks genes that encode many metabolic functions and classical virulence factors. The organism is extremely sensitive to environmental conditions and has not been continuously cultivated in vitro. Nonetheless, T. pallidum is highly infectious and survives for decades in the untreated host. Early syphilis lesions result from the host's immune response to the treponemes. Bacterial clearance and resolution of early lesions results from a delayed hypersensitivity response, although some organisms escape to cause persistent infection. One factor contributing to T. pallidum's chronicity is the paucity of integral outer membrane proteins, rendering intact organisms virtually invisible to the immune system. Antigenic variation of TprK, a putative surface-exposed protein, is likely to contribute to immune evasion. T. pallidum remains exquisitely sensitive to penicillin, but macrolide resistance has recently been identified in a number of geographic regions. The development of a syphilis vaccine, thus far elusive, would have a significant positive impact on global health.
Collapse
Affiliation(s)
- Rebecca E Lafond
- Department of Medicine, Box 359779, Harborview Medical Center, 325 Ninth Ave., Seattle, WA 98104, USA
| | | |
Collapse
|
10
|
Hsieh WJ, Pan MJ. IdentificationLeptospira santarosaiserovar shermani specific sequences by suppression subtractive hybridization. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09575.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Caimano MJ, Bourell KW, Bannister TD, Cox DL, Radolf JD. The Treponema denticola major sheath protein is predominantly periplasmic and has only limited surface exposure. Infect Immun 1999; 67:4072-83. [PMID: 10417176 PMCID: PMC96705 DOI: 10.1128/iai.67.8.4072-4083.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent discovery that the Treponema pallidum genome encodes 12 orthologs of the Treponema denticola major sheath protein (Msp) prompted us to reexamine the cellular location and topology of the T. denticola polypeptide. Experiments initially were conducted to ascertain whether Msp forms an array on or within the T. denticola outer membrane. Transmission electron microscopy (EM) of negatively stained and ultrathin-sectioned organisms failed to identify a typical surface layer, whereas freeze-fracture EM revealed that the T. denticola outer membrane contains heterogeneous transmembrane proteins but no array. In contrast, a lattice-like structure was observed in vesicles released from mildly sonicated treponemes; combined EM and biochemical analyses demonstrated that this structure was the peptidoglycan sacculus. Immunoelectron microscopy (IEM) subsequently was performed to localize Msp in T. denticola. Examination of negatively stained whole mounts identified substantial amounts of Msp in sonicated organisms. IEM of ultrathin-sectioned, intact treponemes also demonstrated that the preponderance of antigen was unassociated with the outer membrane. Lastly, immunofluorescence analysis of treponemes embedded in agarose gel microdroplets revealed that only minor portions of Msp are surface exposed. Taken as a whole, our findings challenge the widely held belief that Msp forms an array within the T. denticola outer membrane and demonstrate, instead, that it is predominantly periplasmic with only limited surface exposure. These findings also have implications for our evolving understanding of the contribution(s) of Msp/Tpr orthologs to treponemal physiology and disease pathogenesis.
Collapse
Affiliation(s)
- M J Caimano
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | |
Collapse
|
12
|
Deka RK, Lee YH, Hagman KE, Shevchenko D, Lingwood CA, Hasemann CA, Norgard MV, Radolf JD. Physicochemical evidence that Treponema pallidum TroA is a zinc-containing metalloprotein that lacks porin-like structure. J Bacteriol 1999; 181:4420-3. [PMID: 10400603 PMCID: PMC93947 DOI: 10.1128/jb.181.14.4420-4423.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although TroA (Tromp1) was initially reported to be a Treponema pallidum outer membrane protein with porin-like properties, subsequent studies have suggested that it actually is a periplasmic substrate-binding protein involved in the transport of metals across the treponemal cytoplasmic membrane. Here we conducted additional physicochemical studies to address the divergent viewpoints concerning this protein. Triton X-114 phase partitioning of recombinant TroA constructs with or without a signal sequence corroborated our prior contention that the native protein's amphiphilic behavior is due to its uncleaved leader peptide. Whereas typical porins are trimers with extensive beta-barrel structure, size exclusion chromatography and circular dichroism spectroscopy revealed that TroA was a monomer and predominantly alpha-helical. Neutron activation, atomic absorption spectroscopy, and anomalous X-ray scattering all demonstrated that TroA binds zinc in a 1:1 molar stoichiometric ratio. TroA does not appear to possess structural features consistent with those of bacterial porins.
Collapse
Affiliation(s)
- R K Deka
- Departments of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shevchenko DV, Sellati TJ, Cox DL, Shevchenko OV, Robinson EJ, Radolf JD. Membrane topology and cellular location of the Treponema pallidum glycerophosphodiester phosphodiesterase (GlpQ) ortholog. Infect Immun 1999; 67:2266-76. [PMID: 10225883 PMCID: PMC115966 DOI: 10.1128/iai.67.5.2266-2276.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent reports that isolated Treponema pallidum outer membranes contain an ortholog for glycerophosphodiester phosphodiesterase (GlpQ) (D. V. Shevchenko, D. R. Akins, E. J. Robinson, M. Li, O. V. Shevchenko, and J. D. Radolf, Infect. Immun. 65:4179-4189, 1997) and that this protein is a potential opsonic target for T. pallidum (C. E. Stebeck, J. M. Shaffer, T. W. Arroll, S. A. Lukehart, and W. C. Van Voorhis, FEMS Microbiol. Lett. 154:303-310, 1997) prompted a more detailed investigation of its physicochemical properties and cellular location. [14C]palmitate radiolabeling studies of a GlpQ-alkaline phosphatase fusion expressed in Escherichia coli confirmed the prediction from DNA sequencing that the protein is lipid modified. Studies using Triton X-114 phase partitioning revealed that the protein's amphiphilicity is due to lipid modification and that a substantial portion of the polypeptide is associated with the T. pallidum peptidoglycan sacculus. Three different approaches, i.e., (i) proteinase K treatment of intact treponemes, (ii) indirect immunofluorescence analysis of treponemes encapsulated in agarose beads, and (iii) opsonophagocytosis of treponemes incubated with antiserum against recombinant GlpQ by rabbit peritoneal macrophages, confirmed that GlpQ is entirely subsurface in T. pallidum. Moreover, rabbits hyperimmunized with GlpQ were not protected against intradermal challenge with virulent treponemes. Circular dichroism spectroscopy confirmed that the recombinant form of the polypeptide lacked discernible evidence of denaturation. Finally, GlpQ was not radiolabeled when T. pallidum outer membranes were incubated with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-diazarene, a photoactivatable, lipophilic probe which promiscuously labels both proteins and lipids within phospholipid bilayers. Taken as a whole, these studies indicate that the T. pallidum GlpQ ortholog is a periplasmic protein associated predominantly with the spirochete's peptidoglycan-cytoplasmic membrane complex.
Collapse
Affiliation(s)
- D V Shevchenko
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
14
|
Stamm LV, Greene SR, Bergen HL, Hardham JM, Barnes NY. Identification and sequence analysis of Treponema pallidum tprJ, a member of a polymorphic multigene family. FEMS Microbiol Lett 1998; 169:155-63. [PMID: 9851047 DOI: 10.1111/j.1574-6968.1998.tb13312.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
TnphoA mutagenesis was used to identify genes encoding exported proteins in a genomic DNA library of Treponema pallidum, the syphilis agent. The nucleotide sequence of an open reading frame (tprJ) that encodes a 755-amino acid protein with a predicted molecular mass of 81.1 kDa was determined. The deduced amino acid sequence of TprJ has homology to the major surface protein of Treponema denticola, a periodontal pathogen. Southern hybridization and genomic DNA sequence analysis indicate that tprJ is a member of a polymorphic multigene family. RT-PCR data showed that tprJ is expressed in treponemes during syphilitic infection. A putative tprJ gene was sequenced from T. pertenue, the closely related yaws agent. The deduced amino acid sequence of T. pertenue TprJ is 87.3% identical to that of T. pallidum TprJ. This is the first report of significant sequence differences within homologous genes of T. pallidum and T. pertenue.
Collapse
Affiliation(s)
- L V Stamm
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill 27599-7400, USA.
| | | | | | | | | |
Collapse
|
15
|
Shevchenko DV, Akins DR, Robinson EJ, Li M, Shevchenko OV, Radolf JD. Identification of homologs for thioredoxin, peptidyl prolyl cis-trans isomerase, and glycerophosphodiester phosphodiesterase in outer membrane fractions from Treponema pallidum, the syphilis spirochete. Infect Immun 1997; 65:4179-89. [PMID: 9317025 PMCID: PMC175601 DOI: 10.1128/iai.65.10.4179-4189.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we characterized candidate rare outer membrane (OM) proteins with apparent molecular masses of 19, 27, 38, and 38.5 kDa, which had been identified previously in OM fractions from Treponema pallidum (J. D. Radolf et al., Infect. Immun. 63:4244-4252, 1995). Using N-terminal and internal amino acid sequences, a probe for the 19-kDa candidate was PCR amplified and used to screen a T. pallidum genomic library in Lambda Zap II. The corresponding gene (tlp) encoded a homolog for periplasmic thioredoxin-like proteins (Tlp), which reduce c-type cytochromes. A degenerate oligonucleotide derived from the N terminus of the 27-kDa protein was used to PCR amplify a duplex probe from a T. pallidum genomic library in pBluescript II SK+. With this probe, the corresponding gene (ppiB) was identified and found to code for a presumptive periplasmic cyclophilin B-type peptidyl prolyl cis-trans isomerase (PpiB). We postulate that PpiB assists the folding of proteins within the T. pallidum periplasmic space. The N terminus of the 38-kDa candidate was blocked to Edman degradation. However, internal sequence data revealed that it was basic membrane protein (Bmp), a previously characterized, signal peptidase I-processed protein. Triton X-114 phase partitioning revealed that despite its name, Bmp is hydrophilic and therefore likely to be periplasmic. The final candidate was also blocked to Edman degradation; as before, a duplex probe was PCR amplified with degenerate primers derived from internal sequences. The corresponding gene (glpQ) coded for a presumptively lipid-modified homolog of glycerophosphodiester phosphodiesterase (GlpQ). Based upon findings with other treponemal lipoproteins, the hydrophilic GlpQ polypeptide is thought to be anchored by N-terminal lipids to the periplasmic leaflet(s) of the cytoplasmic membrane and/or OM. The discovery of T. pallidum periplasmic proteins with potentially defined functions provides fresh insights into a poorly understood aspect of treponemal physiology. At the same time, however, these findings also raise important issues regarding the use of OM preparations for identifying rare OM proteins of T. pallidum.
Collapse
Affiliation(s)
- D V Shevchenko
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
16
|
Hardham JM, Stamm LV, Porcella SF, Frye JG, Barnes NY, Howell JK, Mueller SL, Radolf JD, Weinstock GM, Norris SJ. Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog. Gene 1997; 197:47-64. [PMID: 9332349 DOI: 10.1016/s0378-1119(97)00234-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have characterized a 5.2-kilobase (kb) putative transport related operon (tro) locus of Treponema pallidum subsp. pallidum (Nichols strain) (Tp) encoding six proteins: TroA, TroB, TroC, TroD, TroR and Phosphoglycerate mutase (Pgm). Four of these gene products (TroA-TroD) are homologous to members of the ATP-Binding Cassette (ABC) superfamily of bacterial transport proteins. TroA (previously identified as Tromp1) has significant sequence similarity to a family of Gram-negative periplasmic substrate-binding proteins and to a family of streptococcal proteins that may have dual roles as substrate binding proteins and adhesins. TroB is homologous to the ATP-binding protein component, whereas TroC and TroD are related to the hydrophobic membrane protein components of ABC transport systems. TroR is similar to Gram-positive iron-activated repressor proteins (DesR, DtxR, IdeR, and SirR). The last open reading frame (ORF) of the tro operon encodes a protein that is highly homologous to the glycolytic pathway enzyme, Pgm. Primer extension results demonstrated that the tro operon is transcribed from a sigma 70-type promoter element. Northern analysis and reverse transcriptase-polymerase chain reactions provided evidence for the presence of a primary 1-kb troA transcript and a secondary, less abundant, troA-pgm transcript. The tro operon is flanked by a Holliday structure DNA helicase homolog (upstream) and two ORFs representing a purine nucleoside phosphorylase homolog and tpp15, a previously characterized gene encoding a membrane lipoprotein (downstream). The presence of a complex operon containing a putative ABC transport system and a DtxR homolog indicates a possible linkage between transport and gene regulation in Tp.
Collapse
Affiliation(s)
- J M Hardham
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School 77225-0708, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shevchenko DV, Akins DR, Robinson E, Li M, Popova TG, Cox DL, Radolf JD. Molecular characterization and cellular localization of TpLRR, a processed leucine-rich repeat protein of Treponema pallidum, the syphilis spirochete. J Bacteriol 1997; 179:3188-95. [PMID: 9150213 PMCID: PMC179096 DOI: 10.1128/jb.179.10.3188-3195.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Automated Edman degradation was used to obtain N-terminal and internal amino acid sequences from a 26-kDa protein in isolated Treponema pallidum outer membranes (OMs). The resulting sequences enabled us to PCR amplify from T. pallidum DNA a 275-bp fragment of the corresponding gene. The complete nucleotide sequence of the gene was determined from fragments amplified by long-distance PCR. Primer extension verified the assigned translational start of the open reading frame (ORF) and putative upstream promoter elements. The ORF encoded a highly basic (pI 9.6) 26-kDa protein which contained an N-terminal 25-amino-acid leader peptide terminated by a signal peptidase I cleavage site. The mature protein contained seven tandemly spaced copies (as well as an eighth incomplete copy) of a leucine-rich repeat (LRR), a motif previously identified in a number of prokaryotic and eukaryotic proteins. Accordingly, the polypeptide was designated T. pallidum leucine-rich repeat protein (TpLRR). Although Triton X-114 phase partitioning showed that TpLRR was hydrophilic, cell localization studies showed that most of the antigen was associated with the peptidoglycan-cytoplasmic membrane complex rather than being freely soluble in the periplasmic space. Immunoblot studies showed that syphilis patients develop a weak antibody response to the antigen. Lastly, the lrr(T. pallidum) gene was mapped to a 60-kb SfiI-SpeI fragment of the T. pallidum chromosome which also contains the rrnA and flaA genes. The function(s) of TpLRR is currently unknown; however, protein-protein and/or protein-lipid interactions mediated by its LRR motifs may facilitate interactions between components of the T. pallidum cell envelope.
Collapse
Affiliation(s)
- D V Shevchenko
- Department of Internal Medicine, U.T. Southwestern Medical Center at Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Klesney-Tait J, Hiltke TJ, Maciver I, Spinola SM, Radolf JD, Hansen EJ. The major outer membrane protein of Haemophilus ducreyi consists of two OmpA homologs. J Bacteriol 1997; 179:1764-73. [PMID: 9045839 PMCID: PMC178892 DOI: 10.1128/jb.179.5.1764-1773.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The major outer membrane protein (MOMP) of Haemophilus ducreyi is an OmpA homolog that migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels as three species with apparent molecular weights ranging from 37,000 to 43,000. Monoclonal antibodies directed against this macromolecule were used to identify recombinant clones containing fragments of the gene encoding this protein. Nucleotide sequence analysis of these fragments confirmed that the MOMP encoded by the intact gene (momp) was a member of the OmpA family of outer membrane proteins. Construction of an isogenic H. ducreyi mutant unable to express the MOMP led to the discovery of a second outer membrane protein which migrated at the same rate on SDS-PAGE gels as the MOMP. N-terminal amino acid sequence analysis of this second protein revealed that its N terminus was nearly identical to that of the MOMP and also had homology with members of the OmpA family. Nucleotide sequence analysis of the region downstream from the momp gene revealed the presence of a partial open reading frame encoding a predicted OmpA-like protein. A modification of anchored PCR technology was used to obtain the nucleotide sequence of this downstream gene which was shown to encode a second OmpA homolog (OmpA2). The N-terminal amino acid sequence of OmpA2 was identical to that of the OmpA-like protein detected in the momp mutant. The H. ducreyi MOMP and OmpA2 proteins, which comigrated on SDS-PAGE gels and which were encoded by the tandem arranged momp and ompA2 genes, were 72% identical.
Collapse
Affiliation(s)
- J Klesney-Tait
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
19
|
Greene SR, Stamm LV, Hardham JM, Young NR, Frye JG. Identification, sequences, and expression of Treponema pallidum chemotaxis genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1997; 7:267-84. [PMID: 9255518 DOI: 10.3109/10425179709034046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treponema pallidum, the agent of syphilis, is a pathogenic spirochete that has no known mechanisms of genetic exchange and cannot be continuously cultivated in vitro. A probe based on the nucleotide sequence of the T. pallidum cheA gene was used to screen a T. pallidum genomic DNA library. A treponemal DNA region containing four open reading frames (orfs) was identified. The proteins encoded by these orfs have significant homology with proteins involved in bacterial chemotaxis. The orfs have been designated cheA, cheW, cheX, and cheY. The cheA, cheW, and cheY genes were individually-cloned and expressed in vitro. The observed molecular mass of each protein correlated well with its predicted molecular mass. Reverse transcriptase-PCR data indicate that cheA through cheY are co-transcribed. The organization of these genes suggests that they comprise an operon. We hypothesize that the ability to sense and respond to nutrient gradients is important for the survival and dissemination of T. pallidum in vivo. The presence of a putative che operon strongly suggests that T. pallidum has the potential for a chemotactic response.
Collapse
Affiliation(s)
- S R Greene
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill 27599-7400, USA
| | | | | | | | | |
Collapse
|
20
|
Hardham JM, Frye JG, Young NR, Stamm LV. Identification and sequences of the Treponema pallidum flhA, flhF, and orf304 genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1997; 7:107-16. [PMID: 9063647 DOI: 10.3109/10425179709020157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recently identified fla operon of Treponema pallidum contains several genes that encode motility-related proteins. We have determined the nucleotide sequences of three genes, designated flhA, flhF, and orf304, that are located immediately downstream of the flhB gene in the fla operon. The flhA gene encodes a 707-amino acid protein that contains five putative membrane spanning domains. FlhA has strong homology with members of a family of proteins that are involved in flagellar biogenesis and regulation/secretion of virulence-related proteins. The flhF gene encodes a 437-amino acid protein that contains three consensus elements that are characteristic of a GTP-binding domain. The orf304 gene encodes a 304-amino acid protein that contains a consensus ATP-binding motif. The order of the flhA, flhF, and orf304 genes is identical to that of corresponding genes in the Bacillus subtilis che/fla operon. Due to the location of the flhA, flhF and orf304 genes in the T. pallidum fla operon, we hypothesize that the FlhA, FlhF, and Orf304 proteins are involved in the biogenesis/assembly of treponemal periplasmic flagella.
Collapse
Affiliation(s)
- J M Hardham
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill 27599-7400, USA
| | | | | | | |
Collapse
|
21
|
Nguyen CC, Saier MH. Structural and phylogenetic analysis of the MotA and MotB families of bacterial flagellar motor proteins. Res Microbiol 1996; 147:317-32. [PMID: 8763618 DOI: 10.1016/0923-2508(96)84707-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MotA and MotB are two well-characterized proteins in Escherichia coli which are believed to function as the proton channel and the anchor, respectively, of the motor component of the bacterial flagellum. We have identified and analysed all currently sequenced members of the MotA and MotB families. Members of these families include (1) these E. coli proteins, (2) their pmf-interacting motor homologues in other bacteria, (3) two ORFs which map downstream of the gene encoding the catabolite repression-mediating CepA protein in Bacillus species and (4) unidentified open reading frames. With one exception (the MotB protein of Rhodobactec sphaeroides), members of the MotB family exhibit a C-terminal domain that is homologous to peptidoglycan-interaction domains of numerous sequenced lipoproteins and outer membrane proteins. Multiple alignments, average hydropathy and similarity plots, and phylogenetic trees have allowed (1) identification of regions of relative conservation, (2) definition of signature sequences for these protein families and (3) determination of relative phylogenetic distances relating all members of each family. The phylogenies of these proteins do not follow those of the organisms from which they were isolated, suggesting the presence of divergent isoforms in many bacteria. Phylogenetic analyses of the peptidoglycan-interaction domains of MotB proteins indicated that, except for MotB of R. sphaeroides, these domains became associated with the MotB proteins early during evolutionary history, before members of the MotB family or members of the outer membrane protein family diverged from each other.
Collapse
Affiliation(s)
- C C Nguyen
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
22
|
Costello GM, Vipond R, MacIntyre S. Aeromonas salmonicida possesses two genes encoding homologs of the major outer membrane protein, OmpA. J Bacteriol 1996; 178:1623-30. [PMID: 8626290 PMCID: PMC177847 DOI: 10.1128/jb.178.6.1623-1630.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two homologs of the outer membrane protein OmpA were identified in Aeromonas salmonicida by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and amino-terminal sequence analyses. An A. salmonicida genomic DNA library was constructed by using lambda GEM-11 and recombinant phage carrying both genes ompAI and ompAII) selected by immunoscreening. A 5.0-kb BamHI fragment containing the two genes in tandem was subcloned in pBluescript and used for further subcloning and sequencing of the genes. The encoded proteins (Mr = 33,564 and 32,536 for mature OmpAI and OmpAII, respectively) had only 64% identity with each other and otherwise had the highest level of homology to OmpA proteins from the members of the family Enterobacteriaceae. Based on the Escherichia coli OmpA model, an eight-stranded amphipathic beta-barrel model for the membrane assembly of the N-terminal half of OmpAI and OmpAII was predicted. Most variation between the two proteins was localized to the predicted surface loops and periplasmic turns, while the transmembrane strands and C-terminals domains were highly conserved. Expression of ompAI and ompAII separately in E. coli indicated that both genes could be independently transcribed from their own promoters and that both gene products were assembled into the E. coli outer membrane. A survey of different Aeromonas spp. by PCR revealed that possession of two tandem ompA genes was widespread among this genus. This is the first report of any bacterial species possessing two genes for homologs of this major outer membrane protein.
Collapse
Affiliation(s)
- G M Costello
- School of Animal and Microbial Sciences, University of Reading, UK
| | | | | |
Collapse
|
23
|
Stamm LV, Hardham JM, Frye JG. Expression and sequence analysis of a Treponema pallidum gene, tpn38(b), encoding an exported protein with homology to T. pallidum and Borrelia burgdorferi proteins. FEMS Microbiol Lett 1996; 135:57-63. [PMID: 8598278 DOI: 10.1111/j.1574-6968.1996.tb07966.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An Escherichia coli clone containing recombinant plasmid C19 was identified from a Treponema pallidum genomic DNA library by in situ immunoassay. E. coli maxicells containing pC19 synthesized a treponemal protein doublet of 39.2 and 38.2 kDa, designated TpN38(b). Pulse-chase and protein processing studies showed that TpN38(b) is synthesized with a cleavable amino-terminal signal peptide. A 2.0-kb fragment of pC19 containing the tpn38(b) gene was subcloned and sequenced. The tpn38(b) gene is 1029 nucleotides long and encodes a protein of 343 amino acids with a calculated molecular mass of 37.9 kDa. The deduced amino acid sequence of TpN38(b) has homology with the T. pallidum TpN35 lipoprotein and the Borrelia burgdorferi BmpA, BmpB, BmpC, and BmpD proteins.
Collapse
Affiliation(s)
- L V Stamm
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill 27599-7400, USA.
| | | | | |
Collapse
|
24
|
Stamm LV, Young NR, Frye JG, Hardham JM. Identification and sequences of the Treponema pallidum mglA and mglC genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1996; 6:293-8. [PMID: 8988365 DOI: 10.3109/10425179609020876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Treponema pallidum, the agent of syphilis, cannot be continuously cultivated in vitro. To identify treponemal genes encoding exported proteins, we performed TnphoA mutagenesis of a T. pallidum genomic DNA library in Escherichia coli. Clone 6D2 was chosen for further study based on partial nucleotide sequence obtained from p6D2 containing a TnphoA insertion. A complete open reading frame (orf1) and a truncated orf (orf2) were identified in the treponemal DNA of p6D2. Orf1 encodes a hydrophobic protein of 531 amino acids with a calculated M(r) of 57,882 Da. The deduced amino acid sequence of Orf1 has homology to the MglC proteins of E. coli, Haemophilus influenzae, and Salmonella typhimurium. T. pallidum Orf1 (MglC) contains a conserved motif that is found in integral cytoplasmic membrane proteins of ATP-binding cassette (ABC) transport systems. T. pallidum orf2 encodes a protein of 496 amino acids with a calculated M(r) of 55,547 Da. The deduced amino acid sequence of Orf2 has homology to the MglA proteins of S. typhimurium, E. coli, H. influenzae, and Mycoplasma genitalium. Orf2 (MglA) contains two consensus ATP-binding motifs. T. pallidum mglA and mglC are located downstream of mglB, consistent with the gene order of previously identified mgl operons. The putative T. pallidum mgl operon encodes the first high-affinity ABC transport system identified in this spirochete.
Collapse
Affiliation(s)
- L V Stamm
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill 27599-7400, USA.
| | | | | | | |
Collapse
|
25
|
Stamm LV, Frye JG, Hardham JM. Sequence of the Leptospira biflexa serovar patoc recA gene. Gene 1995; 167:339-40. [PMID: 8566806 DOI: 10.1016/0378-1119(95)00665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nucleotide (nt) sequence of the recA gene of Leptospira biflexa serovar patoc strain Patoc I has been determined. The deduced amino acid (aa) sequence of the RecA protein is 387 aa long with a predicted molecular mass of 42,355 Da. The aa sequence has a high degree of identity to the aa sequences of many bacterial RecA, including Pseudomonas fluorescens, Escherichia coli and Bacillus subtilis. This is the first recA sequence reported for a bacterium in the order Spirochaetales.
Collapse
Affiliation(s)
- L V Stamm
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
26
|
Hardham JM, Frye JG, Stamm LV. Identification and sequences of the Treponema pallidum fliM', fliY, fliP, fliQ, fliR and flhB' genes. Gene X 1995; 166:57-64. [PMID: 8529894 DOI: 10.1016/0378-1119(95)00583-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Information regarding the biology and virulence attributes of Treponema pallidum (Tp) is limited due to the lack of genetic exchange mechanisms and the inability to continuously cultivate this spirochete. We have utilized TnphoA mutagenesis of a Tp genomic DNA library in Escherichia coli (Ec) to identify genes encoding exported proteins, a subset of which are likely to be important in treponemal pathogenesis. We report here the identification and nucleotide (nt) sequence of a 5-kb treponemal DNA insert that contains seven open reading frames (ORFs). The proteins encoded by six of these ORFs have homology with members of a newly described protein family involved in the biogenesis/assembly of flagella and the control of flagellar rotation in Ec, Salmonella typhimurium (St) and Bacillus subtilis (Bs). Certain members of this family are also involved in the export of virulence factors in Yersinia (Yr) spp., St and Shigella flexneri (Sf). We have named these six ORFs fliM', fliY, fliP, fliQ, fliR and flhB'. The operon containing these ORFs has been designated as the fla operon. We hypothesize that the protein products of these genes are involved in the biogenesis/assembly of flagella and the control of flagellar rotation in Tp.
Collapse
Affiliation(s)
- J M Hardham
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
27
|
Radolf JD, Robinson EJ, Bourell KW, Akins DR, Porcella SF, Weigel LM, Jones JD, Norgard MV. Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete. Infect Immun 1995; 63:4244-52. [PMID: 7591054 PMCID: PMC173603 DOI: 10.1128/iai.63.11.4244-4252.1995] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous freeze-fracture electron microscopy (EM) studies have shown that the outer membrane (OM) of Treponema pallidum contains sparse transmembrane proteins. One strategy for molecular characterization of these rare OM proteins involves isolation of T. pallidum OMs. Here we describe a simple and extremely gentle method for OM isolation based upon isopycnic sucrose density gradient ultracentrifugation of treponemes following plasmolysis in 20% sucrose. Evidence that T. pallidum OMs were isolated included (i) the extremely low protein/lipid ratio of the putative OM fraction, (ii) a paucity of antigenic and/or biochemical markers for periplasmic, cytoplasmic membrane, and cytosolic compartments, and (iii) freeze-fracture EM demonstrating that the putative OMs contained intramembranous particles highly similar in size and density to those in native T. pallidum OMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the OMs contained a relatively small number of treponemal proteins, including several which did not appear to correspond to previously characterized T. pallidum antigens. Interestingly, these candidate rare OM proteins reacted poorly with syphilitic sera as determined by both conventional immunoblotting and enhanced chemiluminescence. Compared with whole cells, T. pallidum OMs were deficient in cardiolipin, the major lipoidal antigen reactive with antibodies in syphilitic sera. Also noteworthy was that other lipoidal constituents of OMs, including the recently discovered glycolipids, did not react with human syphilitic sera. These latter observations suggest that the poor antigenicity of virulent T. pallidum is a function of both the lipid composition and the low protein content of its OM.
Collapse
Affiliation(s)
- J D Radolf
- Department of Internal Medicine, U.T. Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Blanco DR, Champion CI, Exner MM, Erdjument-Bromage H, Hancock RE, Tempst P, Miller JN, Lovett MA. Porin activity and sequence analysis of a 31-kilodalton Treponema pallidum subsp. pallidum rare outer membrane protein (Tromp1). J Bacteriol 1995; 177:3556-62. [PMID: 7768866 PMCID: PMC177062 DOI: 10.1128/jb.177.12.3556-3562.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have recently reported the isolation and purification of the Treponema pallidum outer membrane and the identification of its rare protein constituents, including a 31-kDa protein markedly enriched in the outer membrane preparation (D.R. Blanco, K. Reimann, J. Skare, C.I. Champion, D. Foley, M. M. Exner, R. E. W. Hancock, J. N. Miller, and M. A. Lovett, J. Bacteriol. 176:6088-6099, 1994). In this study, we report the cloning, sequencing, and expression of the structural gene which encodes the 31-kDa outer membrane protein, designated Tromp1. The deduced amino acid sequence from the tromp1 gene sequence encodes a 318-amino-acid polypeptide with a putative 40-amino-acid signal peptide. Processing of Tromp1 results in a mature protein with a predicted molecular mass of 30,415 Da and a calculated pI of 6.6. Secondary-structure predictions identified repeated stretches of amphipathic beta-sheets typical of outer membrane protein membrane-spanning sequences. A topological model of Tromp1 containing 14 transmembrane segments is proposed. Specific antiserum against a recombinant Tromp1 fusion protein was generated and was used to identify native Tromp1 in cellular fractionation. Upon Triton X-114 extraction and phase separation of T. pallidum, the 31-kDa Tromp1 protein was detected in the detergent-phase fraction but not in the protoplasmic cylinder or aqueousphase fractions, consistent with a hydrophobic outer membrane protein. Anti-Tromp1 antiserum was also used to identify native Tromp1 purified from whole T. pallidum by Triton X-100 solubilization followed by nondenaturing isoelectric focusing. Reconstitution of purified Tromp1 into planar lipid bilayers showed porin activity based on the measured single channel conductanes of 0.15 and 0.7 nS in 1 M KCl. These findings demonstrate that Tromp1 is a transmembrane outer membrane porin protein of T. pallidum.
Collapse
Affiliation(s)
- D R Blanco
- Department of Microbiology and Immunology, School of Medicine, University of California at Los Angeles 90024, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gilleland LB, Gilleland HE. Synthetic peptides representing two protective, linear B-cell epitopes of outer membrane protein F of Pseudomonas aeruginosa elicit whole-cell-reactive antibodies that are functionally pseudomonad specific. Infect Immun 1995; 63:2347-51. [PMID: 7539410 PMCID: PMC173309 DOI: 10.1128/iai.63.6.2347-2351.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Peptide 9 (TDAYNQKLSERRAN) and peptide 10 (NATAEGRAINRRVE) represent surface-exposed epitopes of outer membrane protein F of Pseudomonas aeruginosa. Rats immunized with four intramuscular inoculations on days 0, 14, 28, and 42 with either peptide 9 or peptide 10 conjugated to keyhole limpet hemocyanin were afforded protection against pulmonary lesions when examined 7 days subsequent to challenge (day 56) via intratracheal inoculation of P. aeruginosa-containing agar beads. Peptide 9 shares considerable homology with other OmpA-related outer membrane proteins in various bacteria, whereas peptide 10 displays little homology with these other proteins. Antisera directed to peptide 9 reacted weakly with cell envelope proteins from the various other OmpA-associated bacteria upon immunoblot analysis. However, antisera directed to peptide 10 reacted only with Neisseria gonorrhoeae cell envelope proteins upon immunoblot analysis. Antisera to both peptides 9 and 10 reacted at minimal titers with whole cells of the various other bacteria in a whole-cell enzyme-linked immunosorbent assay (ELISA) but antisera to each of the peptides reacted at high titers when various strains of P. aeruginosa were used as the ELISA antigen. Antibodies to peptides 9 and 10 were protective, reactive to all strain of P. aeruginosa tested except for a protein F-deficient mutant, and functionally specific against pseudomonads.
Collapse
Affiliation(s)
- L B Gilleland
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine in Shreveport 71130-3932, USA
| | | |
Collapse
|
30
|
Abstract
Treponema pallidum, the syphilis spirochaete, has a remarkable ability to evade the humoral and cellular responses it elicits in infected hosts. Although formerly attributed to the presence of an outer coat comprised of serum proteins and/or mucopolysaccharides, current evidence indicates that the immuno-evasiveness of this bacterium is largely the result of its unusual molecular architecture. Based upon a combination of molecular, biochemical, and ultrastructural data, it is now believed that the T. pallidum outer membrane (OM) contains a paucity of poorly immunogenic transmembrane proteins ('rare outer membrane proteins') and that its highly immunogenic proteins are lipoproteins anchored predominantly to the periplasmic leaflet of the cytoplasmic membrane. The presence in the T. pallidum OM of a limited number of transmembrane proteins has profound implications for understanding syphilis pathogenesis as well as treponemal physiology. Two major strategies for molecular characterization of rare outer membrane proteins have evolved. The first involves the identification of candidate OM proteins as fusions with Escherichia coli alkaline phosphatase. The second involves the characterization of candidate OM proteins identified in outer membranes isolated from virulent T. pallidum. Criteria to define candidate OM proteins and for definitive identification of rare OM proteins are proposed as a guide for future studies.
Collapse
Affiliation(s)
- J D Radolf
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-9113, USA
| |
Collapse
|
31
|
Beucher M, Sparling PF. Cloning, sequencing, and characterization of the gene encoding FrpB, a major iron-regulated, outer membrane protein of Neisseria gonorrhoeae. J Bacteriol 1995; 177:2041-9. [PMID: 7721696 PMCID: PMC176847 DOI: 10.1128/jb.177.8.2041-2049.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
FrpB (for Fe-regulated protein B) is a 76-kDa outer membrane protein that is part of the iron regulon of Neisseria gonorrhoeae and Neisseria meningitidis. The frpB gene from gonococcal strain FA19 was cloned and sequenced. FrpB was homologous to several TonB-dependent outer membrane receptors of Escherichia coli as well as HemR of Yersinia enterocolitica and CopB of Moraxella catarrhalis. An omga insertion into the frpB coding sequence caused a 60% reduction in 55Fe uptake from heme, but careful analysis suggested that this effect was nonspecific. While FrpB was related to the family of TonB-dependent proteins, a function in iron uptake could not be documented.
Collapse
Affiliation(s)
- M Beucher
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
32
|
Walker EM, Howell JK, You Y, Hoffmaster AR, Heath JD, Weinstock GM, Norris SJ. Physical map of the genome of Treponema pallidum subsp. pallidum (Nichols). J Bacteriol 1995; 177:1797-804. [PMID: 7896703 PMCID: PMC176808 DOI: 10.1128/jb.177.7.1797-1804.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A physical map of the chromosome of Treponema pallidum subsp. pallidum (Nichols), the causative agent of syphilis, was constructed from restriction fragments produced by NotI, SfiI, and SrfI. These rare-cutting restriction endonucleases cleaved the T. pallidum genome into 16, 8, and 15 fragments, respectively. Summation of the physical lengths of the fragments indicates that the chromosome of T. pallidum subsp. pallidum is approximately 1,030 to 1,080 kbp in size. The physical map was constructed by hybridizing a variety of probes to Southern blots of single and double digests of T. pallidum genomic DNA separated by contour-clamped homogeneous electric field electrophoresis. Probes included cosmid clones constructed from T. pallidum subsp. pallidum genomic DNA, restriction fragments excised from gels, and selected genes. Physical mapping confirmed that the chromosome of T. pallidum subsp. pallidum is circular, as the SfiI and SrfI maps formed complete circles. A total of 13 genes, including those encoding five membrane lipoproteins (tpn47, tpn41, tpn29-35, tpn17, and tpn15), a putative outer membrane porin (tpn50), the flagellar sheath and hook proteins (flaA and flgE), the cytoplasmic filament protein (cfpA), 16S rRNA (rrnA), a major sigma factor (rpoD), and a homolog of cysteinyl-tRNA synthetase (cysS), have been localized in the physical map as a first step toward studying the genetic organization of this noncultivable pathogen.
Collapse
Affiliation(s)
- E M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston 77225
| | | | | | | | | | | | | |
Collapse
|
33
|
Cox DL, Akins DR, Porcella SF, Norgard MV, Radolf JD. Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol 1995; 15:1151-64. [PMID: 7623668 DOI: 10.1111/j.1365-2958.1995.tb02288.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Controversy exists regarding the constituents and antigenic properties of the Treponema pallidum outer membrane; a major point of contention concerns the cellular location(s) of the spirochaete's lipoprotein immunogens. To address these issues and circumvent problems associated with prior efforts to localize treponemal surface antigens, we developed a novel strategy for investigating T. pallidum molecular architecture. Virulent treponemes were encapsulated in porous agarose beads (gel microdroplets) and then probed in the presence or absence of Triton X-100. Intact, encapsulated treponemes were not labelled by monospecific antisera directed against four major T. pallidum lipoproteins or a candidate T. pallidum outer membrane protein (TpN50) with C-terminal sequence homology to Escherichia coli OmpA or by human or rabbit syphilitic serum. Each of these immunologic reagents, however, labelled encapsulated treponemes co-incubated with detergent. In contrast, antibodies generated against isolated T. pallidum outer membranes labelled intact organisms and the pattern of fluorescence was consistent with the distribution of rare outer membrane proteins visualized by freeze-fracture electron microscopy. In addition to providing strong evidence that the protein portions of treponemal lipoproteins are located within the periplasmic space, these studies have extended our understanding of the topographical relationships among T. pallidum cell envelope constituents. They also demonstrate the feasibility of generating antibodies against rare outer membrane proteins and detecting them on the surfaces of virulent treponemes.
Collapse
Affiliation(s)
- D L Cox
- Division of STD Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | |
Collapse
|
34
|
Weigel LM, Radolf JD, Norgard MV. The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. Proc Natl Acad Sci U S A 1994; 91:11611-5. [PMID: 7972112 PMCID: PMC45281 DOI: 10.1073/pnas.91.24.11611] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The recent model of Treponema pallidum molecular architecture proposes that the vast majority of the bacterium's integral membrane proteins are lipoprotein immunogens anchored in the cytoplasmic membrane while the outer membrane contains only a limited number of surface-exposed transmembrane proteins. This unique model explains, in part, the organism's remarkable ability to evade host immune defenses and establish persistent infection. Our strategy for refining this model involves demonstrating that the physiological functions of treponemal membrane proteins are consistent with their proposed cellular locations. In this study, we used an ampicillin-digoxigenin conjugate to demonstrate by chemiluminescence that the 47-kDa lipoprotein immunogen of T. pallidum (Tpp47) is a penicillin-binding protein. Reexamination of the Tpp47 primary sequence revealed the three amino acid motifs characteristic of penicillin-binding proteins. A recombinant, nonlipidated, soluble form of Tpp47 was used to demonstrate that Tpp47 is a zinc-dependent carboxypeptidase. Escherichia coli expressing Tpp47 was characterized by cell wall abnormalities consistent with altered peptidoglycan biosynthesis. Though the inability to cultivate T. pallidum in vitro and the lack of genetic exchange systems continue to impede treponemal research, this study advances strategies for utilizing E. coli molecular genetics as a means of elucidating the complex relationships between syphilis pathogenesis and T. pallidum membrane biology.
Collapse
Affiliation(s)
- L M Weigel
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048
| | | | | |
Collapse
|
35
|
Radolf JD. Role of outer membrane architecture in immune evasion by Treponema pallidum and Borrelia burgdorferi. Trends Microbiol 1994; 2:307-11. [PMID: 7812663 DOI: 10.1016/0966-842x(94)90446-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Combined ultrastructural and molecular studies have revealed that the syphilis and Lyme-disease spirochetes, Treponema pallidum and Borrelia burgdorferi, have distinctive molecular architectures. Both organisms persist in their hosts and have strategies for immune evasion that include the use of rare, poorly immunogenic surface-exposed proteins as potential virulence determinants.
Collapse
Affiliation(s)
- J D Radolf
- Dept of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas 75235
| |
Collapse
|