1
|
Advances in Babesia Vaccine Development: An Overview. Pathogens 2023; 12:pathogens12020300. [PMID: 36839572 PMCID: PMC9962624 DOI: 10.3390/pathogens12020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Babesiosis is a tick-borne zoonotic disease, which is caused by various species of intracellular Babesia parasite. It is a problem not only for the livestock industry but also for global health. Significant global economic losses, in particular in cattle production, have been observed. Since the current preventive measures against babesiosis are insufficient, there is increasing pressure to develop a vaccine. In this review, we survey the achievements and recent advances in the creation of antibabesiosis vaccine. The scope of this review includes the development of a vaccine against B. microti, B. bovis, B. bigemina, B. orientalis and B. divergens. Here, we present different strategies in their progress and evaluation. Scientists worldwide are still trying to find new targets for a vaccine that would not only reduce symptoms among animals but also prevent the further spread of the disease. Molecular candidates for the production of a vaccine against various Babesia spp. are presented. Our study also describes the current prospects of vaccine evolution for successful Babesia parasites elimination.
Collapse
|
2
|
A prime-boost combination of a three-protein cocktail and multiepitopic MVA as a vaccine against Babesia bigemina elicits neutralizing antibodies and a Th1 cellular immune response in mice. Ticks Tick Borne Dis 2022; 13:101991. [DOI: 10.1016/j.ttbdis.2022.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
|
3
|
Xiao Z, Kandel A, Li L. Synergistic Activation of Bovine CD4+ T Cells by Neutrophils and IL-12. Pathogens 2021; 10:pathogens10060694. [PMID: 34204973 PMCID: PMC8228106 DOI: 10.3390/pathogens10060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cell activation requires inflammatory cytokines to provide a third signal (3SI), such as interleukin-12 (IL-12). We recently reported that bovine neutrophils can enhance the activation of bovine CD4+ T cells. To explore the interactions between neutrophils and third signal cytokines in bovine CD4+ T cell activation, naïve CD4+ T cells were isolated from cattle lymph nodes and stimulated for 3.5 days with anti-bovine CD3 (first signal; 1SI), anti-bovine CD28 (second signal; 2SI), and recombinant human IL-12 (3SI) in the presence or absence of neutrophils harvested from the same animals. Indeed, the strongest activation was achieved in the presence of all three signals, as demonstrated by CD25 upregulation, IFNγ production in CD4+ T cells, and secretion of IFNγ and IL-2 in cell supernatants. More importantly, 1SI plus neutrophils led to enhanced CD25 expression that was further increased by IL-12, suggesting synergistic action by IL-12 and neutrophils. Consistently, neutrophils significantly increased IFNγ production in 1SI plus IL-12-stimulated CD4+ T cells. Our data suggest the synergy of neutrophils and IL-12 as a novel regulator on bovine CD4+ T cell activation in addition to three signals. This knowledge could assist the development of immune interventions for the control of infectious diseases in cattle.
Collapse
|
4
|
Brown WC, McElwain TF, Hötzel I, Ruef BJ, Rice-Ficht AC, Stich RW, Suarez CE, Estes DM, Palmer GH. Immunodominant T-cell antigens and epitopes ofBabesia bovisandBabesia bigemina. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Niu Q, Valentin C, Bonsergent C, Malandrin L. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group). INFECTION GENETICS AND EVOLUTION 2014; 28:21-32. [PMID: 25200723 DOI: 10.1016/j.meegid.2014.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Charlotte Valentin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France.
| |
Collapse
|
6
|
Niu Q, Bonsergent C, Guan G, Yin H, Malandrin L. Sequence and organization of the rhoptry-associated-protein-1 (rap-1) locus for the sheep hemoprotozoan Babesia sp. BQ1 Lintan (B. motasi phylogenetic group). Vet Parasitol 2013; 198:24-38. [PMID: 24075419 DOI: 10.1016/j.vetpar.2013.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Babesiosis is a frequent infection of animals worldwide by tick borne pathogen Babesia, and several species are responsible for ovine babesiosis. Recently, several Babesia motasi-like isolates were described in sheep in China. In this study, we sequenced the multigenic rap-1 gene locus of one of these isolates, Babesia sp. BQ1 Lintan. The RAP-1 proteins are involved in the process of red blood cells invasion and thus represent a potential target for vaccine development. A complex composition and organization of the rap-1 locus was discovered with: (1) the presence of 3 different types of rap-1 sequences (rap-1a, rap-1b and rap-1c); (2) the presence of multiple copies of rap-1a and rap-1b; (3) polymorphism among the rap-1a copies, with two classes (named rap-1a61 and rap-1a67) having a similarity of 95.7%, each class represented by two close variants; (4) polymorphism between rap-1a61-1 and rap-1a61-2 limited to three nucleotide positions; (5) a difference of eight nucleotides between rap-1a67-1 and rap-1a67-2 from position 1270 to the putative stop site of rap-1a67-1 which might produce two putative proteins of slightly different sizes; (6) the ratio of rap-1a copies corresponding to one rap-1a67, one rap-1a61-1 and one rap-1a61-2; (7) the presence of three different intergenic regions separating rap-1a, rap-1b and rap-1c; (8) interspacing of the rap-1a copies with rap-1b copies; and (9) the terminal position of rap-1c in the locus. A 31kb locus composed of 6 rap-1a sequences interspaced with 5 rap-1b sequences and with a terminal rap-1c copy was hypothesized. A strikingly similar sequence composition (rap-1a, rap-1b and rap-1c), as well as strong gene identities and similar locus organization with B. bigemina were found and highlight the conservation of synteny at this locus in this phylogenetic clade.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, BP 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR BioEpAR, F-44307 Nantes, France
| | | | | | | | | |
Collapse
|
7
|
Abstract
Tick fever or cattle fever (babesiosis) is economically the most important arthropod-borne disease of cattle worldwide with vast areas of Australia, Africa, South and Central America and the United States continuously under threat. Tick fever was the first disease for which transmission by an arthropod to a mammal was implicated at the turn of the twentieth century and is the first disease to be eradicated from a continent (North America). This review describes the biology of Babesia spp. in the host and the tick, the scale of the problem to the cattle industry, the various components of control programmes, epidemiology, pathogenesis, immunity, vaccination and future research. The emphasis is on Babesia bovis and Babesia bigemina.
Collapse
Affiliation(s)
- R Bock
- Tock Fever Centre, Animal and Plant Health Service, Queensland Department of Primary Industries & Fisheries, 280 Grindle Road, Wacol Qld 4076, Australia.
| | | | | | | |
Collapse
|
8
|
Brown WC, Norimine J, Goff WL, Suarez CE, McElwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol 2006; 28:315-27. [PMID: 16842268 DOI: 10.1111/j.1365-3024.2006.00849.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Babesial parasites infect cattle in tropical and temperate regions of the world and cause significant morbidity and mortality. Discovery of protective antigens that could be used in a killed vaccine has been slow and to date there are few promising vaccine candidates for cattle Babesia. This review describes mechanisms of protective innate and adaptive immune responses to babesial parasites and different strategies to identify potentially protective protein antigens of B. bovis, B. bigemina, and B. divergens. Successful parasites often cause persistent infection, and this paper also discusses how B. bovis evades and regulates the immune response to promote survival of parasite and host. Development of successful non-living recombinant vaccines will depend on increased understanding of protective immune mechanisms and availability of parasite genomes.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
9
|
Norimine J, Mosqueda J, Suarez C, Palmer GH, McElwain TF, Mbassa G, Brown WC. Stimulation of T-helper cell gamma interferon and immunoglobulin G responses specific for Babesia bovis rhoptry-associated protein 1 (RAP-1) or a RAP-1 protein lacking the carboxy-terminal repeat region is insufficient to provide protective immunity against virulent B. bovis challenge. Infect Immun 2003; 71:5021-32. [PMID: 12933845 PMCID: PMC187345 DOI: 10.1128/iai.71.9.5021-5032.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhoptry-associated protein 1 (RAP-1) is a targeted vaccine antigen for Babesia bovis and Babesia bigemina infections of cattle. The 60-kDa B. bovis RAP-1 is recognized by antibodies and T lymphocytes from cattle that recovered from infection and were immune to subsequent challenge. Immunization with native or recombinant protein was reported to reduce parasitemias in challenged animals. We recently reported that the NT domain of B. bovis RAP-1 contained immunodominant T-cell epitopes, whereas the repeat-rich CT domain was less immunostimulatory for T lymphocytes from cattle immune to B. bovis. The present study was therefore designed to test the hypothesis that the NT region of RAP-1, used as a vaccine with interleukin-12 and RIBI (catalog no. R-730; RIBI Immunochem Research, Inc., Hamilton, Mont. [now Corixa, Seattle, Wash.]) adjuvant to induce a type 1 response, would prime calves for antibody and T-helper cell responses comparable to or greater than those induced by full-length RAP-1 containing the C-terminal repeats. Furthermore, a type 1 immune response to RAP-1 was hypothesized to induce protection against challenge. Following four inoculations of either recombinant full-length RAP-1 or RAP-1 NT protein, RAP-1-specific immunoglobulin G (IgG) titers, T-lymphocyte proliferation, and gamma interferon production were similar. Similar numbers of NT region peptides were recognized. However, in spite of the presence of strong RAP-1-specific IgG and CD4(+)-T-lymphocyte responses that were recalled upon challenge, neither antigen stimulated a protective immune response. We conclude that successful priming of calves with recombinant RAP-1 and adjuvants that elicit strong Th1 cell and IgG responses is insufficient to protect calves against virulent B. bovis challenge.
Collapse
Affiliation(s)
- Junzo Norimine
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant epitopes in Babesia bovis rhoptry-associated protein 1 that elicit memory CD4(+)-T-lymphocyte responses in B. bovis-immune individuals are located in the amino-terminal domain. Infect Immun 2002; 70:2039-48. [PMID: 11895969 PMCID: PMC127881 DOI: 10.1128/iai.70.4.2039-2048.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Babesia bovis rhoptry-associated protein 1 (RAP-1), which confers partial protection against B. bovis challenge, is recognized by antibodies and T lymphocytes from cattle that have recovered from infection and are immune to subsequent challenge. RAP-1 is a 60-kDa protein with an N-terminal (NT) region that contains four cysteine residues conserved among all Babesia RAP-1 family members and a C-terminal (CT) region that contains multiple, degenerate, tandem 23-amino-acid (aa) repeats. To define the location of CD4(+)-T-cell epitopes for vaccine development using a recombinant protein or minigene construct, a series of truncated recombinant RAP-1 proteins and peptides were tested for stimulation of T-cell lines derived from B. bovis-immune cattle. CD4(+)-T-cell lines from three B. bovis-immune cattle with different DRB3 haplotypes responded to the NT region of RAP-1, whereas T cells from only one animal responded weakly to the CT region. T-cell lines from the three individuals recognized two to six NT-region peptides spanning aa 134 to 316 and representing at least four dominant epitopes. Using RAP-1-specific CD4(+)-T-cell clones, two NT-region epitopes, EYLVNKVLYMATMNYKT (aa 187 to 203) and EAPWYKRWIKKFR (aa 295 to 307), and one CT-region repeat epitope, FREAPQATKHFL, which is present twice at aa positions 391 to 402 and 414 to 425, were identified. Several peptides representing degenerate repeats of the agonist CT-region peptide FREAPQATKHFL neither stimulated responses of T-cell clones specific for this peptide nor inhibited responses to the agonist peptide. Upon stimulation with specific antigen, T-cell clones specific for NT or CT epitopes produced gamma interferon. The presence of T-helper-cell epitopes in the NT domain of RAP-1, which is highly conserved among otherwise antigenically different strains of B. bovis, supports the inclusion of this region in vaccine constructs to be tested in cattle.
Collapse
Affiliation(s)
- Junzo Norimine
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology Animal Disease Research Unit, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
11
|
Brown WC. Molecular approaches to elucidating innate and acquired immune responses to Babesia bovis, a protozoan parasite that causes persistent infection. Vet Parasitol 2001; 101:233-48. [PMID: 11707299 DOI: 10.1016/s0304-4017(01)00569-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For many vector-transmitted protozoal parasites, immunological control of acute infection leads to a state of persistent infection during which parasitemias may cycle unnoticed in infected but otherwise clinically healthy animals. Achieving persistent infection is a strategy that favors parasitism, since both host and, therefore, parasite survive, and endemically infected animal populations provide a reservoir of parasites continually available for subsequent transmission. Examples of the major economically important protozoan pathogens that cause persistent infection in mammals include the related Theileria and Babesia parasites as well as Trypanosoma species. Control of acute infection and maintenance of clinical immunity against subsequent infection are determined by the interplay of innate and acquired immune responses. This review will focus on approaches taken to gain an understanding of the molecular basis for innate and acquired immunity against the hemoprotozoan parasite of cattle, Babesia bovis. Knowledge of mechanisms used by the parasite to survive within infected cattle from acute to persistent infection combined with definition of the correlates of protective immunity in cattle should be applicable to designing effective vaccines.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
12
|
Voyich JM, Palecanda A, Burgess DE. Antigen-specific T-cell responses in cattle immunized with antigens of Tritrichomonas foetus. J Parasitol 2001; 87:1040-8. [PMID: 11695362 DOI: 10.1645/0022-3395(2001)087[1040:astcri]2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The cellular immune responses of cattle immunized with antigens of Tritrichomonas foetus were investigated. Subcutaneous injections of antigen preparations primed bovine peripheral blood mononuclear cells (PBMC) by 30 days of immunization as demonstrated by antigen-specific proliferation and by cytokine production upon antigen challenge of PBMC. Antigen-specific T-cells derived from PBMC responded by production of interferon (IFN)-gamma message detected by reverse transcriptase polymerase chain reaction, secreted IFN-gamma detected by enzyme-linked immunosorbent assay, and intracellular IFN-gamma detected by flow cytometry. Phenotypic analysis of PBMC responding in vitro to parasite antigen demonstrated a shift from a mixed CD4+, CD8+, gammadelta+, to predominantly CD4+, CD8-, gammadelta- phenotype in the Tf190-primed PBMC. In conclusion, systemic immunization of cattle with parasite antigen results in priming of bovine T-cells that are antigen specific and can produce an anamnestic IFN-gamma response to subsequent stimulation with antigens of T. foetus.
Collapse
Affiliation(s)
- J M Voyich
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717, USA
| | | | | |
Collapse
|
13
|
Shoda LK, Kegerreis KA, Suarez CE, Roditi I, Corral RS, Bertot GM, Norimine J, Brown WC. DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide. Infect Immun 2001; 69:2162-71. [PMID: 11254571 PMCID: PMC98143 DOI: 10.1128/iai.69.4.2162-2171.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Accepted: 01/05/2001] [Indexed: 01/29/2023] Open
Abstract
The activation of innate immune responses by genomic DNA from bacteria and several nonvertebrate organisms represents a novel mechanism of pathogen recognition. We recently demonstrated the CpG-dependent mitogenic activity of DNA from the protozoan parasite Babesia bovis for bovine B lymphocytes (W. C. Brown, D. M. Estes, S. E. Chantler, K. A. Kegerreis, and C. E. Suarez, Infect. Immun. 66:5423-5432, 1998). However, activation of macrophages by DNA from protozoan parasites has not been demonstrated. The present study was therefore conducted to determine whether DNA from the protozan parasites B. bovis, Trypanosoma cruzi, and T. brucei activates macrophages to secrete inflammatory mediators associated with protective immunity. DNA from Escherichia coli and all three parasites stimulated B-lymphocyte proliferation and increased macrophage production of interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-alpha), and nitric oxide (NO). Regulation of IL-12 and NO production occurred at the level of transcription. The amounts of IL-12, TNF-alpha, and NO induced by E. coli and protozoal DNA were strongly correlated (r2 > 0.9) with the frequency of CG dinucleotides in the genome, and immunostimulation by DNA occurred in the order E. coli > or = T. cruzi > T. brucei > B. bovis. Induction of inflammatory mediators by E. coli, T. brucei, and B. bovis DNA was dependent on the presence of unmethylated CpG dinucleotides. However, at high concentrations, E. coli and T. cruzi DNA-mediated macrophage activation was not inhibited following methylation. The recognition of protozoal DNA by B lymphocytes and macrophages may provide an important innate defense mechanism to control parasite replication and promote persistent infection.
Collapse
Affiliation(s)
- L K Shoda
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Babesiosis is an emerging, tick-transmitted, zoonotic disease caused by hematotropic parasites of the genus Babesia. Babesial parasites (and those of the closely related genus Theileria) are some of the most ubiquitous and widespread blood parasites in the world, second only to the trypanosomes, and consequently have considerable worldwide economic, medical, and veterinary impact. The parasites are intraerythrocytic and are commonly called piroplasms due to the pear-shaped forms found within infected red blood cells. The piroplasms are transmitted by ixodid ticks and are capable of infecting a wide variety of vertebrate hosts which are competent in maintaining the transmission cycle. Studies involving animal hosts other than humans have contributed significantly to our understanding of the disease process, including possible pathogenic mechanisms of the parasite and immunological responses of the host. To date, there are several species of Babesia that can infect humans, Babesia microti being the most prevalent. Infections with Babesia species generally follow regional distributions; cases in the United States are caused primarily by B. microti, whereas cases in Europe are usually caused by Babesia divergens. The spectrum of disease manifestation is broad, ranging from a silent infection to a fulminant, malaria-like disease, resulting in severe hemolysis and occasionally in death. Recent advances have resulted in the development of several diagnostic tests which have increased the level of sensitivity in detection, thereby facilitating diagnosis, expediting appropriate patient management, and resulting in a more accurate epidemiological description.
Collapse
|
15
|
Abstract
Babesiosis is an emerging, tick-transmitted, zoonotic disease caused by hematotropic parasites of the genus Babesia. Babesial parasites (and those of the closely related genus Theileria) are some of the most ubiquitous and widespread blood parasites in the world, second only to the trypanosomes, and consequently have considerable worldwide economic, medical, and veterinary impact. The parasites are intraerythrocytic and are commonly called piroplasms due to the pear-shaped forms found within infected red blood cells. The piroplasms are transmitted by ixodid ticks and are capable of infecting a wide variety of vertebrate hosts which are competent in maintaining the transmission cycle. Studies involving animal hosts other than humans have contributed significantly to our understanding of the disease process, including possible pathogenic mechanisms of the parasite and immunological responses of the host. To date, there are several species of Babesia that can infect humans, Babesia microti being the most prevalent. Infections with Babesia species generally follow regional distributions; cases in the United States are caused primarily by B. microti, whereas cases in Europe are usually caused by Babesia divergens. The spectrum of disease manifestation is broad, ranging from a silent infection to a fulminant, malaria-like disease, resulting in severe hemolysis and occasionally in death. Recent advances have resulted in the development of several diagnostic tests which have increased the level of sensitivity in detection, thereby facilitating diagnosis, expediting appropriate patient management, and resulting in a more accurate epidemiological description.
Collapse
Affiliation(s)
- M J Homer
- Corixa Corporation and The Infectious Disease Research Institute, Seattle, Washington 98104, USA
| | | | | | | | | |
Collapse
|
16
|
Tuo W, Palmer GH, McGuire TC, Zhu D, Brown WC. Interleukin-12 as an adjuvant promotes immunoglobulin G and type 1 cytokine recall responses to major surface protein 2 of the ehrlichial pathogen Anaplasma marginale. Infect Immun 2000; 68:270-80. [PMID: 10603398 PMCID: PMC97131 DOI: 10.1128/iai.68.1.270-280.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma marginale is a tick-transmitted pathogen of cattle closely related to the human ehrlichiae, Ehrlichia chaffeensis and the agent of human granulocytic ehrlichiosis (HGE). These pathogens have in common a structurally conserved outer membrane protein (OMP) designated the major surface protein 2 (MSP-2) in A. marginale and HGE and OMP-1 in E. chaffeensis. Protective immunity against ehrlichial pathogens is believed to require induction of gamma interferon (IFN-gamma) and opsonizing immunoglobulin (Ig) subclasses directed against OMP epitopes that, in concert, activate macrophages for phagocytosis and killing. Because interleukin-12 (IL-12) acts as an adjuvant for protein immunization to induce IFN-gamma and protective immunity against intracellular pathogens, we hypothesized that as an adjuvant with MSP-2, IL-12 would augment type 1 recall responses to A. marginale. IL-12 was coadsorbed with MSP-2 to alum and shown to significantly enhance IFN-gamma production by lymph node cells (LNC) and LNC-derived CD4(+) T-cell lines from immunized calves following recall stimulation with A. marginale. LNC proliferation and IL-2 production were also enhanced in IL-12-treated calves. Elevated recall proliferative responses by peripheral blood mononuclear cells were still evident 9 months after immunization. Serum IgG levels were consistently increased in IL-12 immunized calves, predominantly due to higher IgG1 responses. The results support the use of IL-12 coadsorbed with OMP of ehrlichial pathogens in alum to amplify both antibody and type-1 cytokine responses important for protective immunity.
Collapse
Affiliation(s)
- W Tuo
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA
| | | | | | | | | |
Collapse
|
17
|
Brown WC, Palmer GH. Designing blood-stage vaccines against Babesia bovis and B. bigemina. PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:275-81. [PMID: 10377530 DOI: 10.1016/s0169-4758(99)01471-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The tick-transmitted apicomplexan parasites Babesia bovis and B. bigemina cause significant disease in cattle in many tropical and temperate areas of the world. These parasites present a challenge for vaccine development, and yet provide a system for studying the pathogenesis, mechanisms of protective immunity and regulation of host immune responses associated with intraerythrocytic protozoan parasites in a non-rodent species. In this article, Wendy Brown and Guy Palmer review strategies for identifying candidate vaccine antigens of B. bovis and B. bigemina and for priming immune responses to evoke strain crossprotective immunity.
Collapse
Affiliation(s)
- W C Brown
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
18
|
Tuo W, Estes DM, Brown WC. Comparative effects of interleukin-12 and interleukin-4 on cytokine responses by antigen-stimulated memory CD4+ T cells of cattle: IL-12 enhances IFN-gamma production, whereas IL-4 has marginal effects on cytokine expression. J Interferon Cytokine Res 1999; 19:741-9. [PMID: 10454344 DOI: 10.1089/107999099313587] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interleukin-12 (IL-12) and IL-4 are important immunoregulatory cytokines that determine the fate of naive T cells during antigen priming in mice and also influence cytokine synthesis by differentiated murine and human T cells. The roles of these cytokines in regulating the differentiation and effector function of bovine T cells are less well studied. We investigated the ability of human IL-12 and bovine IL-4 to modify cytokine expression by antigen-stimulated T cells from cattle immune to the protozoal parasites Babesia bovis and Babesia bigemina or reactive with Mycobacterium bovis purified protein derivative. Peripheral blood mononuclear cells (PBMC) were cultured with specific antigen and IL-4 or IL-12 for 1 week. Then viable lymphoblasts consisting of predominantly CD4+ T cells were restimulated with antigen and antigen-presenting cells (APC) with or without cytokine. Cell lines were cultured for several weeks, and following restimulation with antigen and APC in the absence of exogenous cytokine, the cell lines were analyzed for proliferation, interferon-gamma (IFN-gamma) production, and expression of IL-2, IL4-, IL-10, or IFN-gamma transcript levels using a quantitative competitive RT-PCR. IL-12 and IL-4 had no effect on the composition of CD4, CD8, or gammadelta T cells in the cell lines or on the level of antigen-induced proliferation. IL-12 stimulated enhanced levels of IFN-gamma protein and transcript expression in all cell lines, with no consistent effects on IL-2 or IL-4 expression. In two B. bovis-specific cell lines, IL-12 suppressed IL-10 expression. IL-4 had no consistent effect on expression of any cytokine. These results indicate the use of IL-12 as an adjuvant to enhance type 1 cytokine responses in cattle during antigen priming.
Collapse
Affiliation(s)
- W Tuo
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman 99164, USA
| | | | | |
Collapse
|
19
|
Shoda LK, Rice-Ficht AC, Zhu D, McKown RD, Brown WC. Bovine T cell responses to recombinant thioredoxin of Fasciola hepatica. Vet Parasitol 1999; 82:35-47. [PMID: 10223348 DOI: 10.1016/s0304-4017(98)00268-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fasciolosis is an economically significant disease of ruminants, caused by infection with the digenetic trematodes, Fasciola hepatica and F. gigantica. Some vaccination trials using irradiated metacercariae or isolated proteins have been shown to afford significant protection. However, the mechanisms of specific immunity against this pathogen have not been elucidated. We have identified thioredoxin, a tegument antigen of F. hepatica, among several proteins that are common to both the juvenile and adult fluke within the mammalian host and have undertaken studies to characterize bovine T cell responses to recombinant thioredoxin protein (FH 2020). Peripheral blood mononuclear cells from immune cattle proliferated specifically to crude F. hepatica antigenic extract but not to FH 2020. However, after repeated stimulation of lymphocytes by alternating crude extract and FH 2020, FH 2020-specific proliferation by T cell lines was observed. T cell clones were subsequently generated and found to respond specifically but weakly to both crude antigen and FH 2020. Thioredoxin appears to be only weakly antigenic for bovine T cells and is, therefore, an unpromising candidate for inducing resistance to F. hepatica.
Collapse
Affiliation(s)
- L K Shoda
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA
| | | | | | | | | |
Collapse
|
20
|
Tuo W, MacMillan H, Günter N, Bazer FW, Brown WC. Upregulation of interleukin-4 and IFN-gamma expression by IFN-tau, a member of the type I IFN family. J Interferon Cytokine Res 1999; 19:179-87. [PMID: 10090403 DOI: 10.1089/107999099314324] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trophoblast interferon-tau (IFN-tau) is a new member of the type I IFN family that is produced in large quantities by the ruminant conceptus. Like other type I IFN, IFN-tau inhibits viral replication and activates natural killer (NK)-mediated cytotoxicity. In mice and humans, type I IFN enhances type 1 T helper (Th) cell responses, but the effects of type I IFN, including IFN-tau, on cytokine expression by bovine Th cells have not been described. The present study determined the effects of IFN-tau on interleukin-4 (IL-4), IFN-gamma, and IL-10 expression by antigen-specific, CD4+ T cell lines derived from cattle immune to either Babesia bovis, Babesia bigemina rhoptry-associated protein-1, or Anaplasma marginale. IFN-tau upregulated IFN-gamma secretion and steady-state levels of IFN-gamma and IL-4 mRNA by cell lines cultured for 3-6 weeks. In contrast, the steady-state levels of IL-10 mRNA were either not changed or inhibited at these times. Similar effects were obtained with human IFN-alpha. Comparison of the quantities of IFN-gamma, IL-4, and IL-10 transcripts in IFN-tau-treated or IFN-alpha-treated cultures revealed that even though IFN-gamma was the predominant cytokine expressed by all T cell lines, both IFN-gamma and IL-4 steady-state transcript levels were upregulated by a comparable degree. Thus, these studies demonstrate that IFN-tau is an immunomodulatory cytokine that promotes enhanced IL-4 and IFN-gamma responses by effector T cells but not, strictly speaking, Thl-biased responses in cattle. These results indicate the potential use of this cytokine as an adjuvant in ruminants to boost cell-mediated immune responses.
Collapse
Affiliation(s)
- W Tuo
- Department of Veterinary Pathology and Microbiology, Washington State University, Pullman 99164, USA
| | | | | | | | | |
Collapse
|
21
|
Brown WC, McElwain TF, Palmer GH, Chantler SE, Estes DM. Bovine CD4(+) T-lymphocyte clones specific for rhoptry-associated protein 1 of Babesia bigemina stimulate enhanced immunoglobulin G1 (IgG1) and IgG2 synthesis. Infect Immun 1999; 67:155-64. [PMID: 9864210 PMCID: PMC96291 DOI: 10.1128/iai.67.1.155-164.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optimal protective immunity against babesial infection is postulated to require both complement-fixing and opsonizing antibodies in addition to gamma interferon (IFN-gamma)-mediated macrophage activation. The rhoptry-associated protein 1 (RAP-1) of Babesia bigemina induces partial protective immunity and is a candidate vaccine antigen. Previous studies demonstrated that cattle immunized with native protein that were subsequently protected against challenge had a strong IFN-gamma and weaker interleukin-4 (IL-4) response in immune lymph node lymphocytes that reflected the cytokine profile of the majority of CD4(+) T-cell clones obtained from peripheral blood. RAP-1-specific T helper (Th) cell clones that coexpress IFN-gamma and IL-4 are typical of numerous parasite-specific clones examined. However, the function of such cells as helper cells to enhance immunoglobulin secretion by bovine B cells has not been reported. In cattle, both immunoglobulin G1 (IgG1) and IgG2 can fix complement, but IgG2 is the superior opsonizing subclass. Therefore, studies were undertaken to ascertain the functional relevance of RAP-1-specific, CD4(+) Th0 cells as helper cells to enhance IgG1 and/or IgG2 production by autologous B lymphocytes. For comparison, Th0 clones specific for the metazoan parasite Fasciola hepatica that expressed relatively more IL-4 than the B. bigemina-specific Th cells were similarly assayed. B. bigemina RAP-1-specific clones could enhance production of both IgG1 and IgG2 by autologous B cells, whereas Th cell clones specific for F. hepatica enhanced predominantly IgG1 production. The capacity to enhance IgG2 production was associated with production of IFN-gamma by Th cells cocultured with B cells, antigen, and IL-2. The in vitro helper T-cell activity of these T-cell clones was representative of the in vivo serologic responses, which were composed of a mixed IgG1-IgG2 response in B. bigemina RAP-1 immune cattle and a biased IgG1 response in F. hepatica-immune cattle.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164, USA.
| | | | | | | | | |
Collapse
|
22
|
Tuo W, Bazer FW, Davis WC, Zhu D, Brown WC. Differential Effects of Type I IFNs on the Growth of WC1− CD8+ γδ T Cells and WC1+ CD8− γδ T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Type I IFNs have a broad array of immunoregulatory functions that include up-regulation of type 1 immune responses through enhancing differentiation and activation of CD8+ T cells and CD4+ Th1 cells. Ovine trophoblast IFN-τ is a recently described type I IFN with the potential for therapeutic use, based on its potent antiviral activity yet low toxicity. Studies were designed to determine the immunoregulatory effects of IFN-τ on Ag-stimulated T cells, and a novel effect of type I IFNs on γδ T cells was observed. In cultures of parasite Ag-stimulated bovine T cells that contained a mixture of αβ and γδ T cells, both IFN-τ and IFN-α suppressed the expansion of WC1+ CD2− CD6− CD8− γδ T cells, yet stimulated the growth of WC1− CD2+ CD6+ CD8+ γδ T cells and CD8+ αβ T cells. The CD8+ γδ T cell subset expressed high levels of the IL-2R α-chain. Furthermore, we showed that type I IFN enhanced IL-2 production by these Ag-stimulated T cell lines. In short term cultures of PBMC, IL-2 stimulated an expansion of WC1− CD6+ CD8+ γδ T cells, which was significantly increased by IFN-τ, even though IFN-τ alone did not support cell survival. These studies demonstrate for the first time that type I IFNs differentially modulate the proliferation of different subsets of γδ T cells, which appears to act in part via IL-2.
Collapse
Affiliation(s)
- Wenbin Tuo
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| | - Fuller W. Bazer
- †Center for Animal Biotechnology, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843
| | - William C. Davis
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| | - Daming Zhu
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| | - Wendy C. Brown
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| |
Collapse
|
23
|
Echaide IE, Hines SA, McElwain TF, Suarez CE, McGuire TC, Palmer GH. In vivo binding of immunoglobulin M to the surfaces of Babesia bigemina-infected erythrocytes. Infect Immun 1998; 66:2922-7. [PMID: 9596768 PMCID: PMC108290 DOI: 10.1128/iai.66.6.2922-2927.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1997] [Accepted: 03/02/1998] [Indexed: 02/07/2023] Open
Abstract
Babesia bigemina infection of mature bovine erythrocytes results in new proteins specifically exposed on the parasitized cell surface. Monoclonal antibody (MAb) 64/32 binds a protein, designated p94, on B. bigemina-infected erythrocytes but not on either uninfected or B. bovis-parasitized erythrocytes. However, p94 was not encoded by B. bigemina and was not a parasite-modified erythrocyte membrane protein. In contrast, we showed that p94 could be eluted from the infected erythrocyte surface and was identified as specifically bound immunoglobulin M (IgM) heavy chain for the following reasons: (i) MAb 64/32 bound a reduced molecule of 94 kDa in both infected erythrocyte lysates and normal bovine serum; (ii) MAb 64/32 bound a 94-kDa molecule in reduced preparations of purified IgM; (iii) an anti-bovine mu heavy-chain MAb, BIg73, reacted specifically with the surface of infected erythrocytes and bound the 94-kDa molecule in lysates of infected erythrocytes, normal bovine serum, and purified IgM; and (iv) immunoprecipitation of infected erythrocyte lysates with MAb 64/32 depleted the 94-kDa antigen bound by anti-mu MAb BIg73 and vice versa. Binding of IgM to the infected erythrocyte surface was detected in vivo early in acute parasitemia and occurred during both the trophozoite and merozoite stages of intraerythrocytic parasitism. The common feature of IgM binding to the parasitized erythrocyte surface among otherwise genetically and antigenically distinct B. bigemina strains is suggestive of an advantageous role in parasite survival in vivo.
Collapse
Affiliation(s)
- I E Echaide
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The Th1/Th2 paradigm has provided a useful framework for understanding the observed bias in immune responses that are often dominated by either cell-mediated or humoral responses, and for devising therapeutic strategies to stimulate T cell- or antibody-mediated immunity. However this paradigm is an oversimplification of a much more complex immunoregulatory network. Studies with bovine Th cell clones and immunoregulatory cytokines support this viewpoint. This paper highlights the progress that has been made in defining type 1 and type 2 responses in cattle. Evidence is presented for the presence of different subtypes of antigen-specific Th cell clones of cattle which constitute a spectrum of cell phenotypes, and for cytokine-mediated regulation of Th cell responses that differs from that observed in mice. The majority of over 60 parasite antigen-specific Th cell clones coexpress IL-4 and IFN-gamma, and polarized cytokine profiles were rarely observed. Furthermore, IL-2 and IL-10 expression was not restricted to IFN-gamma or IL-4-producing cells, respectively. This lack of coordinate regulation of "Th1" and "Th2" cytokines strengthens the emerging viewpoint that Th1 and Th2 responses, per se, do not typify the immune response to most pathogens. In addition, we provide evidence that major regulatory cytokines, IL-4, IL-10, and IL-12, do not selectively exert their negative (IL-4 and IL-10) or positive (IL-12) effects on Th1-like cells.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | |
Collapse
|
25
|
Brown WC, McElwain TF, Hötzel I, Suarez CE, Palmer GH. Helper T-cell epitopes encoded by the Babesia bigemina rap-1 gene family in the constant and variant domains are conserved among parasite strains. Infect Immun 1998; 66:1561-9. [PMID: 9529082 PMCID: PMC108089 DOI: 10.1128/iai.66.4.1561-1569.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among important candidates for babesial vaccines are apical complex proteins, including rhoptry-associated protein 1 (RAP-1) from Babesia bovis and B. bigemina, which have been shown to induce partial immunity. Four variant B. bigemina rap-1 transcripts identified in a clone of the Mexico strain have highly conserved sequence in the central region but vary in sequence at the amino and carboxy termini (NT and CT) of the predicted proteins, resulting in different combinations of NT and CT domains in the individual gene products. Cattle were immunized with native protein consisting of the RAP-alpha1 variant, which contains NT-1 and CT-1 domains, and T-cell responses were characterized. We previously reported the identification of two T helper (Th) cell epitopes in B. bigemina RAP-1alpha1 protein (I. Hötzel, W. C. Brown, T. F. McElwain, S. D. Rodriguez, and G. H. Palmer, Mol. Biochem. Parasitol. 81:89-99, 1996). One epitope mapped to the constant domain of RAP-1 (amino acids [aa] 144 to 187), and one mapped to the CT-1 variable domain (aa 386 to 480). Th1-like clones responding to these epitopes proliferated differentially to different strains of B. bigemina, raising the possibilities that the T-cell epitopes may vary antigenically and that CT-1 may be differentially expressed with respect to the other RAP-1 CT domains in the different strains. In this report, we definitively map the T-cell epitope identified in the constant domain of RAP-1 to aa 159 to 187 (FVVSLLKKNVVRDPESNDVENFASQYFYM) and show that the predicted amino acid sequence is completely conserved among seven strains. The T-cell epitope in the CT-1 domain was mapped to aa 436 to 465 (VNSEKVDADDAGNAETQQLPDAENEVRADD), which is also completely conserved among eight strains of B. bigemina. We further show that the RAP-1alpha1-immunized cattle were protected against homologous B. bigemina challenge, thus suggesting an association between protective immunity and the helper T-cell response against the two epitopes. The immunogenic and highly conserved nature of these T-cell epitopes and their ability to stimulate functionally relevant Th cells that express gamma interferon support their inclusion in a vaccine.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | | | |
Collapse
|
26
|
Hirano A, Brown WC, Trigona W, Tuo W, Estes DM. Kinetics of expression and subset distribution of the TNF superfamily members CD40 ligand and Fas ligand on T lymphocytes in cattle. Vet Immunol Immunopathol 1998; 61:251-63. [PMID: 9613439 DOI: 10.1016/s0165-2427(97)00155-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD40 and Fas are members of the tumor necrosis factor receptor (TNFR) superfamily. CD40 and Fas play key roles in T cell-B cell interactions. Cross linkage of these molecules induces cell activation and cell death, respectively. The interaction of CD40 with its ligand (CD40L), which is expressed on activated T cells, plays a pivotal role in the generation of the T-dependent (TD) immune response, and FasL-bearing T cells, which have been shown to be predominantly of either the TH0 or TH1 type, have the potential to induce the apoptotic death of Fas expressing B cells. We investigated bovine CD40L mRNA expression in established T cell clones by RT-PCR and Southern blotting. T cells analyzed included CD4+ TH0 and TH1 cell subpopulations, CD8+, and gamma/delta T cells stimulated with either specific antigen or Con A. All CD4+ clones but not all CD8+ or gamma/delta T cell receptor (TCR)-bearing clones expressed mRNA for CD40L. To determine the activation requirements for CD40L expression in cattle, we examined the kinetics and induction requirements for CD40L transcription in peripheral blood T cells using a phorbol ester and/or ionomycin, immobilized mouse anti-bovine CD3, or Con A. Our results demonstrate that CD40L mRNA appears relatively early after activation (1 h) and peaks at 2-4 h poststimulation. A rise in intracellular calcium concentration mediated by ionomycin treatment alone was sufficient to induce CD40L mRNA expression at relatively high levels. Ionomycin treatment in combination with other agonists (anti-CD3, PMA) did not enhance CD40L mRNA expression above levels obtained with ionomycin alone. The bovine Fas ligand gene was partially cloned and mRNA expression determined by RT-PCR in a panel of T cell clones. Our results demonstrate that TH0 and TH1 bovine T cell clones expressed Fas ligand transcripts although only one gamma/delta T cell clone did. This expression was upregulated within 3 h after mitogen stimulation and reduced by 24 h.
Collapse
Affiliation(s)
- A Hirano
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia 65211, USA
| | | | | | | | | |
Collapse
|
27
|
Hötzel I, Suarez CE, McElwain TF, Palmer GH. Genetic variation in the dimorphic regions of RAP-1 genes and rap-1 loci of Babesia bigemina. Mol Biochem Parasitol 1997; 90:479-89. [PMID: 9476795 DOI: 10.1016/s0166-6851(97)00182-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rhoptry-associated protein-1 (RAP-1) of Babesia bigemina induces protective immune responses in cattle. RAP-1 has two regions of sequence dimorphism at the carboxy and amino terminal ends, respectively. Neutralization-sensitive, surface-exposed B-cell epitopes are present in the amino terminal variant type 1 (NT-1), and CD4+ T-cell epitopes in the carboxy terminal variant type 1 (CT-1). Importantly, antibodies recognizing NT-1 epitopes do not cross react with NT-2 and CD4+ T-cells recognizing epitopes in CT-1 do not cross react with CT-2, suggesting that variation in dimorphic regions of RAP-1 is immunologically significant. We evaluated rap-1 locus structure and the extent of sequence variation in the dimorphic regions of rap-1 genes from geographically diverse strains of B. bigemina. All strains contained NT-1 and NT-2 the encoding sequences were highly conserved, with at least 99%, nucleotide identity among strains. However, the Puerto Rico strain encoded a hybrid NT-1/NT-2 sequence which appears to have originated by a gene conversion event. The 3' ends of rap-1 genes, which include the carboxy terminal variants, are conserved among strains. A new and conserved CT variant (CT-3), with a region of sequence identity to CT-2 and a sequence not related to either CT-1 or CT-2, was identified in all strains of B. bigemina. All but one strain encode both NTs and the three CT variants. The S1A strain, an attenuated strain from Argentina, does not encode CT-2. While NT-1 is associated only with CT-1, NT-2 can be associated with all three CT variants in RAP-1. Within the genome, rap-1 genes are arranged in tandem repeats but with different gene copy number and arrangements among strains. Collectively, the data suggest that gene conversion and unequal recombination events contribute to overall rap-1 sequence conservation among gene variants and strains but may also generate new rap-1 variants.
Collapse
Affiliation(s)
- I Hötzel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | |
Collapse
|
28
|
Ruef BJ, Tuo W, Rodriguez SD, Roussel AJ, Chitko-McKown CG, Palmer GH, McElwain TF, Canals A, Zarlenga DS, Gasbarre LC, Brown WC. Immunization with Babesia bigemina rhoptry-associated protein 1 induces a type 1 cytokine response. J Interferon Cytokine Res 1997; 17:45-54. [PMID: 9041471 DOI: 10.1089/jir.1997.17.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rhoptry-associated protein-1 (RAP-1) homologues of Babesia bigemina and Babesia bovis are promising candidates for inclusion in subunit vaccines against these hemoprotozoan parasites. Partial protection against challenge infection has been achieved with native forms of these antigens, but the mechanism of immunity has not been thoroughly defined. We previously demonstrated that a panel of antigen-specific T helper cell clones derived from B. bigemina RAP-1-immunized cattle expressed relatively high levels of interferon-gamma (IFN-gamma) protein and transcript and low levels of interleukin-4 (IL-4), indicative of a type 1 immune response. In the current study we present evidence that subcutaneous immunization with native B. bigemina RAP-1 protein in RIBI adjuvant induces a predominant type 1 immune response in vivo, characterized by relatively high levels of IFN-gamma and IL-2 and low levels of IL-4 and IL-10 mRNA in the draining prescapular lymph node. Ex vivo restimulation of draining lymph node lymphocytes with specific antigen resulted in proliferation and enhanced expression of IL-2 and IFN-gamma, whereas IL-4 and IL-10 transcript levels remained relatively low. These findings show that our previously described cytokine profiles of antigen-specific cloned T cell lines are representative of autologous in vivo responses and confirm that type 1 recall responses to B. bigemina RAP-1 can be evoked in immunized animals by native parasite antigen.
Collapse
Affiliation(s)
- B J Ruef
- Department of Veterinary Pathobiology, Texas A & M University, College Station 77843, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hötzel I, Brown WC, McElwain TF, Rodríguez SD, Palmer GH. Dimorphic sequences of rap-1 genes encode B and CD4+ T helper lymphocyte epitopes in the Babesia bigemina rhoptry associated protein-1. Mol Biochem Parasitol 1996; 81:89-99. [PMID: 8892308 DOI: 10.1016/0166-6851(96)02686-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rhoptry-associated protein-1 (RAP-1) of Babesia bigemina induces protective immune responses in cattle and contains neutralization-sensitive B cell epitopes. RAP-1 variants containing blocks of sequence dimorphism in the amino and carboxy terminal ends are encoded by four nonallelic genes in B. bigemina. Epitopes recognized by RAP-1 specific monoclonal antibodies (MAbs) and bovine CD4+ T cell clones were mapped to determine whether these epitopes are localized in the amino and carboxy terminal dimorphic regions. Four B cell epitopes, including a neutralization-sensitive epitope, required both the amino terminal variant type 1 (NT-1) and non-dimorphic sequences for conformation. Intrachain disulfide bonds were required for at least one of these epitopes, since reduction and alkylation of cysteine residues abolished MAb binding. A fifth B cell epitope was mapped to the carboxy terminal variant type 1 (CT-1). As expected, the neutralizing MAb and two other MAbs requiring NT-1 for epitope binding recognized only the two RAP-1 variants with the NT-1 sequence, while the MAb binding an epitope in CT-1 did not bind RAP-1 variants with CT-2. In contrast, the fourth MAb requiring NT-1 for binding recognized all rap-1 gene products, indicating that dimorphic residues are not part of the epitope recognized by this MAb. Bovine CD4+ T cell clones characterized previously as responding in a strain dependent fashion recognized at least one epitope in CT-1, and did not cross-react with CT-2. A second group of bovine CD4+ T cell clones that responded to multiple parasite strains recognized an epitope in a non-dimorphic region of RAP-1. These data indicate that dimorphic regions of RAP-1 encode unique B and T helper lymphocyte epitopes and may be required for enhanced protective immune responses in cattle.
Collapse
Affiliation(s)
- I Hötzel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | | | |
Collapse
|
30
|
Brown WC, McElwain TF, Ruef BJ, Suarez CE, Shkap V, Chitko-McKown CG, Tuo W, Rice-Ficht AC, Palmer GH. Babesia bovis rhoptry-associated protein 1 is immunodominant for T helper cells of immune cattle and contains T-cell epitopes conserved among geographically distant B. bovis strains. Infect Immun 1996; 64:3341-50. [PMID: 8757873 PMCID: PMC174227 DOI: 10.1128/iai.64.8.3341-3350.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability of rhoptry-associated protein 1 (RAP-1) of Babesia bovis and Babesia bigemina to confer partial protective immunity in cattle has stimulated interest in characterizing both B-cell and T-cell epitopes of these proteins. It was previously shown that B. bovis RAP-1 associates with the merozoite surface as well as rhoptries and expresses B-cell epitopes conserved among otherwise antigenically different B. bovis strains. An amino-terminal 307-amino-acid domain of the molecule that is highly conserved in the B. bigemina RAP-1 homolog did not contain cross-reactive B-cell epitopes. The studies reported here demonstrate that B. bovis RAP-1 is strongly immunogenic for T helper (Th) cells from B. bovis-immune cattle and that like B-cell epitopes, Th-cell epitopes are conserved in different B. bovis strains but not in B. bigemina RAP-1. Lymphocytes from cattle immune to challenge with the Mexico strain of B. bovis proliferated against recombinant B. bovis RAP-1 protein derived from the Mexico strain. T-cell lines established by stimulating lymphocytes with recombinant RAP-1 protein responded against B. bovis, but not B. bigemina, merozoites. T-cell lines established by repeated stimulation of lymphocytes with B. bovis membrane antigen proliferated strongly against RAP-1, demonstrating the immunodominant nature of this protein. RAP-1-specific CD4+ T cell clones recognized Mexico, Texas, Australia, and Israel strains of B. bovis but neither B. bigemina merozoites nor recombinant B. bigemina RAP- 1. Analysis of cytokine mRNA in RAP-1-specific Th cell clones revealed strong expression of gamma interferon but little or no expression of interleukin-2 (IL-2), IL-4, or IL-10. Gamma interferon production was confirmed by enzyme-linked imunosorbent assay. These results indicate the potential to use selected B. bovis RAP-1 peptides as immunogens to prime for strong, anamnestic, strain-cross-reactive type 1 immune responses upon exposure to B. bovis.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Pathiobiology, Texas A & M University, College Station 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|