1
|
Phase-variable bacterial loci: how bacteria gamble to maximise fitness in changing environments. Biochem Soc Trans 2019; 47:1131-1141. [PMID: 31341035 DOI: 10.1042/bst20180633] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Phase-variation of genes is defined as the rapid and reversible switching of expression - either ON-OFF switching or the expression of multiple allelic variants. Switching of expression can be achieved by a number of different mechanisms. Phase-variable genes typically encode bacterial surface structures, such as adhesins, pili, and lipooligosaccharide, and provide an extra contingency strategy in small-genome pathogens that may lack the plethora of 'sense-and-respond' gene regulation systems found in other organisms. Many bacterial pathogens also encode phase-variable DNA methyltransferases that control the expression of multiple genes in systems called phasevarions (phase-variable regulons). The presence of phase-variable genes allows a population of bacteria to generate a number of phenotypic variants, some of which may be better suited to either colonising certain host niches, surviving a particular environmental condition and/or evading an immune response. The presence of phase-variable genes complicates the determination of an organism's stably expressed antigenic repertoire; many phase-variable genes are highly immunogenic, and so would be ideal vaccine candidates, but unstable expression due to phase-variation may allow vaccine escape. This review will summarise our current understanding of phase-variable genes that switch expression by a variety of mechanisms, and describe their role in disease and pathobiology.
Collapse
|
2
|
Analysis of Invasive Nontypeable Haemophilus influenzae Isolates Reveals Selection for the Expression State of Particular Phase-Variable Lipooligosaccharide Biosynthetic Genes. Infect Immun 2019; 87:IAI.00093-19. [PMID: 30833337 PMCID: PMC6479036 DOI: 10.1128/iai.00093-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a major human pathogen, responsible for several acute and chronic infections of the respiratory tract. The incidence of invasive infections caused by NTHi is increasing worldwide. NTHi is able to colonize the nasopharynx asymptomatically, and the exact change(s) responsible for transition from benign carriage to overt disease is not understood. We have previously reported that phase variation (the rapid and reversible ON-OFF switching of gene expression) of particular lipooligosaccharide (LOS) glycosyltransferases occurs during transition from colonizing the nasopharynx to invading the middle ear. Variation in the structure of the LOS is dependent on the ON/OFF expression status of each of the glycosyltransferases responsible for LOS biosynthesis. In this study, we surveyed a collection of invasive NTHi isolates for ON/OFF expression status of seven phase-variable LOS glycosyltransferases. We report that the expression state of the LOS biosynthetic genes oafA ON and lic2A OFF shows a correlation with invasive NTHi isolates. We hypothesize that these gene expression changes contribute to the invasive potential of NTHi. OafA expression, which is responsible for the addition of an O-acetyl group onto the LOS, has been shown to impart a phenotype of increased serum resistance and may serve as a marker for invasive NTHi.
Collapse
|
3
|
Nejati F, Fateh A, Nojoumi SA, Rahbar M, Behrouzi A, Vaziri F, Siadat SD. MLVA typing of Haemophilus influenzae isolated from two Iranian university hospitals. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:30-36. [PMID: 29922416 PMCID: PMC6004631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVES Different serotypes of Haemophilus influenzae is now divided into 2 divisions: encapsulated and unencapsulated. Multiple locus variable number tandem repeat analysis (MLVA) includes such specifications as the extra power of separation, ease of data interpretation, and epidemiological data accordance, which have made it an appropriate molecular device for good typing and phylogenetic analysis of bacterial pathogens. MATERIALS AND METHODS In this research, cultured samples were studied and strains identified through biochemical tests were recognized. Moreover, DNA was extracted and studied qualitatively and quantitatively. Four pairs of specialized primers related to H. influenzae variable number tandem repeats (VNTR) and preparation of PCR were designed according to the regulated program. Also, electrophoresis of PCR products was performed. Finally, the interpretation of electrophoresis gel was done with respect to the observable bands showing the presence or absence of the required sequence in the samples related to every primer. RESULTS This study was the first MLVA typing of the unencapsulated H. influenzae in Iran. In this research, the VNTR sequences were tested in 30 strains without the unencapsulated H. influenzae. Among 30 mentioned strains, for which MLVA profile was obtained in this research, 25 different MLVA types were observed. Likewise, there was no repetition in VNTR sequences resulting from PCR in few H. influenzae. In all these cases, the number of repetitions in MLVA profile was determined as 0, except for one of the primers in 4 strains, which was 16%. However, this did not occur for the other VNTRs. CONCLUSION The highest diversity of the repeats was for VNTR5 (7 types), followed by VNTR6 with 6 types of repeats, and VNTR12-1 and VNTR12-2 with 3 different types.
Collapse
Affiliation(s)
- Faranak Nejati
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Reference Health Laboratories Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran,Corresponding authors: Farzam Vaziri & Seyed Davar Siadat, PhD, Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran. Tel: +982166968853, Fax: +982166496721
| | - Seyed Davar Siadat
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran,Corresponding authors: Farzam Vaziri & Seyed Davar Siadat, PhD, Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran. Tel: +982166968853, Fax: +982166496721
| |
Collapse
|
4
|
Ferrari RG, Panzenhagen PHN, Conte-Junior CA. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front Microbiol 2017; 8:2587. [PMID: 29312260 PMCID: PMC5744012 DOI: 10.3389/fmicb.2017.02587] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.
Collapse
Affiliation(s)
- Rafaela G. Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. N. Panzenhagen
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Klafack S, Wang Q, Zeng W, Wang Y, Li Y, Zheng S, Kempter J, Lee PY, Matras M, Bergmann SM. Genetic Variability of Koi Herpesvirus In vitro-A Natural Event? Front Microbiol 2017. [PMID: 28642739 PMCID: PMC5462989 DOI: 10.3389/fmicb.2017.00982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Worldwide koi herpesvirus (KHV) causes high mortalities in Cyprinus carpio L. aquaculture. So far, it is unknown how the different variants of KHV have developed and how they spread in the fish, but also in the environmental water bodies. Therefore, a phylogenetic method based on variable number of tandem repeats (VNTR) was improved to gain deeper insights into the phylogeny of KHV and its possible worldwide distribution. Moreover, a VNTR-3 qPCR was designed which allows fast virus typing. This study presents a useful method for molecular tracing of diverse KHV types, variants, and lineages.
Collapse
Affiliation(s)
- Sandro Klafack
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| | - Qing Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Weiwei Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Yingying Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Yingying Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Shucheng Zheng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery SciencesGuangzhou, China
| | - Jolanta Kempter
- Department of Aquaculture, West Pomeranian University of TechnologySzczecin, Poland
| | - Pei-Yu Lee
- Department of Research and Development, GeneReach Biotechnology CorporationTaichung, China
| | - Marek Matras
- National Veterinary Research InstitutePulawy, Poland
| | - Sven M Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India. Int J Genomics 2016; 2016:3034756. [PMID: 27525259 PMCID: PMC4976149 DOI: 10.1155/2016/3034756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 12/31/2022] Open
Abstract
Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis.
Collapse
|
7
|
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 2016; 40:480-93. [PMID: 27075488 PMCID: PMC4931227 DOI: 10.1093/femsre/fuw007] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Collapse
Affiliation(s)
- Rita F. Maldonado
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Miguel A. Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
8
|
Qi Z, Cui Y, Zhang Q, Yang R. Taxonomy of Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:35-78. [PMID: 27722860 DOI: 10.1007/978-94-024-0890-4_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter summarized the taxonomy and typing works of Yersinia pestis since it's firstly identified in Hong Kong in 1894. Phenotyping methods that based on phenotypic characteristics, including biotyping, serotyping, antibiogram analysis, bacteriocin typing, phage typing, and plasmid typing, were firstly applied in classification of Y. pestis in subspecies level. And then, with the advancement of molecular biological technology, the methods based on outer membrane protein profiles, fatty acid composition, and bacterial mass fingerprinting were also used to identify the populations within Y. pestis. However, Y. pestis is a highly homogenous species; therefore, the above typing methods could only provide low resolution, e.g., only one serotype and one phage type were observed for the whole species. Since the 1990s, molecular typing based on DNA variations, including single-nucleotide polymorphism, gene gain/loss, variable-number tandem repeats, clustered regularly interspaced short palindromic repeat, etc., was introduced and improved the resolution and robust of typing result. Especially in recent years, genotyping-based whole-genome-wide variations were successfully employed in Y. pestis, which built the "gold standard" of typing scheme of the species and could distinguish the samples under the strain level. The taxonomy and typing works leaved us enormous polymorphism data; therefore, a comprehensive fingerprint database of Y. pestis was needed to collect and standardize these data, for facilitating future works on evolution, plague surveillance and control, anti-bioterrorism, and microbial forensic researches.
Collapse
Affiliation(s)
- Zhizhen Qi
- Qinghai Provincial Key Laboratory for Plague Control and Research, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai Province, 811602, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China
| | - Qingwen Zhang
- Qinghai Provincial Key Laboratory for Plague Control and Research, Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai Province, 811602, China
| | - Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
9
|
Cunty A, Cesbron S, Poliakoff F, Jacques MA, Manceau C. Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis. Appl Environ Microbiol 2015; 81:6773-89. [PMID: 26209667 PMCID: PMC4561677 DOI: 10.1128/aem.01688-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/13/2015] [Indexed: 11/20/2022] Open
Abstract
The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level.
Collapse
Affiliation(s)
- A Cunty
- UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 Quasav, Institut National de la Recherche Agronomique, Beaucouzé, France Laboratoire de la Santé des Végétaux, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Angers, France
| | - S Cesbron
- UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 Quasav, Institut National de la Recherche Agronomique, Beaucouzé, France
| | - F Poliakoff
- Laboratoire de la Santé des Végétaux, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Angers, France
| | - M-A Jacques
- UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 Quasav, Institut National de la Recherche Agronomique, Beaucouzé, France
| | - C Manceau
- Laboratoire de la Santé des Végétaux, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Angers, France
| |
Collapse
|
10
|
Halkilahti J, Haukka K, Siitonen A. Genotyping of outbreak-associated and sporadic Yersinia pseudotuberculosis strains by novel multilocus variable-number tandem repeat analysis (MLVA). J Microbiol Methods 2013; 95:245-50. [DOI: 10.1016/j.mimet.2013.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 01/03/2023]
|
11
|
Bühlmann A, Dreo T, Rezzonico F, Pothier JF, Smits THM, Ravnikar M, Frey JE, Duffy B. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites. Environ Microbiol 2013; 16:2112-25. [PMID: 24112873 DOI: 10.1111/1462-2920.12289] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/14/2013] [Indexed: 01/08/2023]
Abstract
Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region.
Collapse
Affiliation(s)
- Andreas Bühlmann
- Plant Protection Division, Agroscope Changins-Wädenswil Research Station ACW, CH-8820, Wädenswil, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7. BIOMED RESEARCH INTERNATIONAL 2013; 2013:390354. [PMID: 24093095 PMCID: PMC3777172 DOI: 10.1155/2013/390354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Abstract
VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.
Collapse
|
13
|
Wu X, Zhu X, He Y, Arslan AN. PMBC: pattern mining from biological sequences with wildcard constraints. Comput Biol Med 2013; 43:481-92. [PMID: 23566394 DOI: 10.1016/j.compbiomed.2013.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/25/2022]
Abstract
Patterns/subsequences frequently appearing in sequences provide essential knowledge for domain experts, such as molecular biologists, to discover rules or patterns hidden behind the data. Due to the inherent complex nature of the biological data, patterns rarely exactly reproduce and repeat themselves, but rather appear with a slightly different form in each of its appearances. A gap constraint (In this paper, a gap constraint (also referred to as a wildcard) is a character that can be substituted for any character predefined in an alphabet.) provides flexibility for users to capture useful patterns even if their appearances vary in the sequences. In order to find patterns, existing tools require users to explicitly specify gap constraints beforehand. In reality, it is often nontrivial or time-consuming for users to provide proper gap constraint values. In addition, a change made to the gap values may give completely different results, and require a separate time-consuming re-mining procedure. Therefore, it is desirable to automatically and efficiently find patterns without involving user-specified gap requirements. In this paper, we study the problem of frequent pattern mining without user-specified gap constraints and propose PMBC (namely P̲atternM̲ining from B̲iological sequences with wildcard C onstraints) to solve the problem. Given a sequence and a support threshold value (i.e. pattern frequency threshold), PMBC intends to discover all subsequences with their support values equal to or greater than the given threshold value. The frequent subsequences then form patterns later on. Two heuristic methods (one-way vs. two-way scans) are proposed to discover frequent subsequences and estimate their frequency in the sequences. Experimental results on both synthetic and real-world DNA sequences demonstrate the performance of both methods for frequent pattern mining and pattern frequency estimation.
Collapse
Affiliation(s)
- Xindong Wu
- Department of Computer Science, University of Vermont, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|
14
|
Whitby PW, VanWagoner TM, Morton DJ, Seale TW, Springer JM, Hempel RJ, Stull TL. Signature-tagging of a bacterial isolate demonstrates phenotypic variability of the progeny in vivo in the absence of defined mutations. J Microbiol Methods 2012; 91:336-40. [PMID: 23085534 PMCID: PMC3506178 DOI: 10.1016/j.mimet.2012.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 11/22/2022]
Abstract
Awareness of the high degree of redundancy that occurs in several nutrient uptake pathways of Haemophilus influenzae led us to attempt to develop a quantitative STM method that could identify both null mutants and mutants with decreased fitness that remain viable in vivo. To accomplish this task we designed a modified STM approach that utilized a set of signature tagged wild-type (STWT) strains (in a single genetic background) as carriers for mutations in genes of interest located elsewhere in the genome. Each STWT strain differed from the others by insertion of a unique, Q-PCR-detectable, seven base pair tag into the same redundant gene locus. Initially ten STWTs were created and characterized in vitro and in vivo. As anticipated, the STWT strains were not significantly different in their in vitro growth. However, in the chinchilla model of otitis media, certain STWTs outgrew others by several orders of magnitude in mixed infections. Removal of the predominant STWT resulted in its replacement by a different predominant STWT on retesting. Unexpectedly we observed that the STWT exhibiting the greatest proliferation was animal dependent. These findings identify an inherent inability of the signature tag methodologies to accurately elucidate fitness in this animal model of infection and underscore the subtleties of H. influenzae gene regulation.
Collapse
Affiliation(s)
- Paul W Whitby
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hoa TTT, Zwart MP, Phuong NT, de Jong MCM, Vlak JM. Low numbers of repeat units in variable number of tandem repeats (VNTR) regions of white spot syndrome virus are correlated with disease outbreaks. JOURNAL OF FISH DISEASES 2012; 35:817-826. [PMID: 22913744 DOI: 10.1111/j.1365-2761.2012.01406.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 06/01/2023]
Abstract
White spot syndrome virus (WSSV) is the most important pathogen in shrimp farming systems worldwide including the Mekong Delta, Vietnam. The genome of WSSV is characterized by the presence of two major 'indel regions' found at ORF14/15 and ORF23/24 (WSSV-Thailand) and three regions with variable number tandem repeats (VNTR) located in ORF75, ORF94 and ORF125. In the current study, we investigated whether or not the number of repeat units in the VNTRs correlates with virus outbreak status and/or shrimp farming practice. We analysed 662 WSSV samples from individual WSSV-infected Penaeus monodon shrimp from 104 ponds collected from two important shrimp farming regions of the Mekong Delta: Ca Mau and Bac Lieu. Using this large data set and statistical analysis, we found that for ORF94 and ORF125, the mean number of repeat units (RUs) in VNTRs was significantly lower in disease outbreak ponds than in non-outbreak ponds. Although a higher mean RU number was observed in the improved-extensive system than in the rice-shrimp or semi-intensive systems, these differences were not significant. VNTR sequences are thus not only useful markers for studying WSSV genotypes and populations, but specific VNTR variants also correlate with disease outbreaks in shrimp farming systems.
Collapse
Affiliation(s)
- T T T Hoa
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
van Cuyck H, Pichon B, Leroy P, Granger-Farbos A, Underwood A, Soullié B, Koeck JL. Multiple-locus variable-number tandem-repeat analysis of Streptococcus pneumoniae and comparison with multiple loci sequence typing. BMC Microbiol 2012; 12:241. [PMID: 23088225 PMCID: PMC3562504 DOI: 10.1186/1471-2180-12-241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/03/2012] [Indexed: 11/16/2022] Open
Abstract
Background Streptococcus pneumoniae infections remain a major cause of morbidity and mortality worldwide. The diversity of pneumococci was first evidenced by serotyping of their capsular polysaccharides, responsible of virulence, resolving into more than 93 serotypes. Molecular tools have been developed to track the emergence and the spread of resistant, hyper virulent or non-vaccine type clones, particularly DNA-based methods using genetic polymorphism. Pulsed-Field Gel Electrophoresis analysis (PFGE) and Multiple Loci Sequence Typing (MLST) are the most frequently used genotyping techniques for S. pneumoniae. MLST is based on sequence comparison of housekeeping genes clustering isolates within sequence types. The availability of genome sequence data from different S. pneumoniae strains facilitated the search for other class of genetic markers as polymorphic DNA sequences for a Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA). This study aims at confirming the relevance of MLVA of S. pneumoniae, comparing MLST and MLVA performances when discriminating subgroups of strains belonging to the same Sequence Type (ST), and defining a restricted but universal set of MLVA markers that has at least the same discriminatory power as MLST for S. pneumoniae by applying marker sets used by different authors on 331 isolates selected in UK. Results A minimum spanning tree was built including the serotypes distribution and comparing MLVA and MLST results. 220 MLVA types were determined grouped in 10 Sequence Types (ST). MLVA differentiated ST162 in two clonal complexes. A minimal set was defined: ms 25 and ms37, ms17, ms19, ms33, ms39, and ms40 including two universal markers. The selection was based on MLVA markers with a Diversity Index >0.8 and a selection of others depending of the population tested and the aim of the study. This set of 7 MLVA markers yields strain clusters similar to those obtained by MLST. Conclusions MLVA can discriminate relevant subgroups among strains belonging to the same ST. MLVA offers the possibility to deduce the ST from the MLVA Type. It permits to investigate local outbreaks or to track the worldwide spread of clones and the emergence of variants.
Collapse
|
17
|
Zhao S, Poulin L, Rodriguez-R LM, Serna NF, Liu SY, Wonni I, Szurek B, Verdier V, Leach JE, He YQ, Feng JX, Koebnik R. Development of a variable number of tandem repeats typing scheme for the bacterial rice pathogen Xanthomonas oryzae pv. oryzicola. PHYTOPATHOLOGY 2012; 102:948-56. [PMID: 22957820 DOI: 10.1094/phyto-04-12-0078-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Xanthomonas oryzae pv. oryzicola is an important bacterial pathogen responsible for outbreaks of bacterial leaf streak (BLS) on rice, mostly occurring in Asia and parts of Africa. To better monitor epidemics and assess population structures, efficient tools that allow the precise identification and diagnosis of pathogenic populations are needed. In this study, we explored variable numbers of tandem repeats (VNTR) as a fast, reliable, and cost-effective molecular typing tool. Screening of three X. oryzae pv. oryzicola genome sequences (Philippine strain BLS256, Chinese strain GX01, and Malian strain MAI10) predicted 28 candidate VNTR loci. Primer pairs for polymerase chain reaction (PCR) amplification of all 28 loci were designed and applied to a panel of 20 X. oryzae pv. oryzicola strains originating from Asia and Africa. Sequencing of PCR amplicons revealed 25 robust and polymorphic VNTR loci that are shared among Asian and African X. oryzae pv. oryzicola strains. A dendrogram constructed from 25 VNTR loci indicated that most Asian strains are clearly discriminated from African strains. However, in agreement with previous reports, one strain from Mali is related to Asian strains, pointing to a possible introduction of Asian strains to the African continent. The new VNTR-based tool described here is useful for studies of population structures and epidemiological monitoring of X. oryzae pv. oryzicola.
Collapse
Affiliation(s)
- Shuai Zhao
- Institut de Recherche pour le Developpement, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
19
|
Miya S, Takahashi H, Kamimura C, Nakagawa M, Kuda T, Kimura B. Highly discriminatory typing method for Listeria monocytogenes using polymorphic tandem repeat regions. J Microbiol Methods 2012; 90:285-91. [PMID: 22677602 DOI: 10.1016/j.mimet.2012.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022]
Abstract
Tandem repeats (TR), which are repetitive nucleotide sequences in DNA, are polymorphic both in repeat number and sequence. In this study, we developed a new typing method, multilocus TR sequence analysis (MLTSA), for the foodborne pathogen Listeria monocytogenes using sequence polymorphisms in three tandem repeat regions. The obtained dendrogram clustered L. monocytogenes strains of lineage I and lineage II separately, and formed three groups within the lineage I cluster, each of which included one of the three major L. monocytogenes epidemic clones (ECI, ECIa, and ECII). These results were consistent with a previously established virulence-gene-based MLST method. In comparison, our method grouped some epidemiologically related isolates together, which virulence-gene-based MLST did not. Moreover, our method, using three tandem repeat regions, showed a higher discriminatory power than the MLST method, which uses six virulence gene regions. This MLTSA approach using sequence polymorphisms in TR regions could be a useful tool in the epidemiological study of L. monocytogenes.
Collapse
Affiliation(s)
- Satoko Miya
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Cavanagh JP, Klingenberg C, Hanssen AM, Fredheim EA, Francois P, Schrenzel J, Flægstad T, Sollid JE. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis. J Microbiol Methods 2012; 89:159-66. [DOI: 10.1016/j.mimet.2012.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
21
|
Shelenkov A, Korotkov E. LEPSCAN--a web server for searching latent periodicity in DNA sequences. Brief Bioinform 2011; 13:143-9. [PMID: 22396486 DOI: 10.1093/bib/bbr044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED A web server for searching latent periodicity based on the method of modified profile analysis has been developed. This method allows searching latent periodicity in presence of insertions and deletions. During searching process, the periodicity classes are used which were found by us earlier for various groups of organisms. Period length belongs to the range 2-20 nt, not including the triplet periodicity. The results obtained are subjected to various filtration steps to ensure their statistical significance. AVAILABILITY The use of web server is free for non-commercial users. No registration is required. URL of the server is http://victoria.biengi.ac.ru/lepscan. Current software version is 1.06.
Collapse
Affiliation(s)
- Andrew Shelenkov
- Bioinformatics Department, Bioengineering Centre, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
22
|
Saurabh B, Sneha S, Suvidya R, Pramod K, Shailesh B. Analysis of distribution and significance of simple sequence repeats in enteric bacteria Shigella dysenteriae SD197. Bioinformation 2011; 6:348-51. [PMID: 21814393 PMCID: PMC3143398 DOI: 10.6026/97320630006348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/28/2011] [Indexed: 11/23/2022] Open
Abstract
We have explored the possible role of SSR density in genome to generate biological information. In our study, we have checked the SSR (simple sequence repeats) status in virulent and non virulent genes of enteric bacteria to see whether the SSRs distribution contributes to virulence. The genome, plasmid and virulent genes sequences in fasta format were downloaded from NCBI GenBank and VFDB. The sequences were subjected to SSR analysis using software tool ssr.exe. The resulting data was pasted in excel sheet and further analyzed for percentage of each type of SSR. Higher nucleotide repeats have been observed in our study. Overall high density of SSRs can enhance antigenic variance of the pathogen population in a strategy that counteracts the host immune response. Frequency of A and T repeats is higher in the chromosome, plasmid and the virulence genes. However, in dinucleotide repeats the frequencies of GC/CG repeats are higher in genome, whereas plasmid has more of AT/TA repeats. Genome has trinucleotide repeats having predominantly G and C whereas plasmid has trinucleotide repeats having predominantly A and T. The repeat number obtained and percentage of repeats is higher in virulence genes as compared to other gene families. Due to the presence of this large number of SSRs, the organism has an enormous potential for generating this genomic and phenotypic diversity.
Collapse
Affiliation(s)
- Batwal Saurabh
- Sinhagad College of Engineering, Wadgaon BK, Pune - 411041
| | | | - Ranade Suvidya
- Department of chemistry, University of Pune, Maharashtra India
| | | | - Bajaj Shailesh
- Department of chemistry, University of Pune, Maharashtra India
| |
Collapse
|
23
|
Strain Typing Using Multiple “Variable Number of Tandem Repeat” Analysis and Genetic Element CRISPR. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Abstract
Verotoxin-producing Escherichia coli (VTEC) is annually incriminated in more than 100,000 cases of enteric foodborne human disease and in losses amounting to $US 2.5 billion every year. A number of genotyping methods have been developed to track VTEC infections and determine diversity and evolutionary relationships among these microorganisms. These methods have facilitated monitoring and surveillance of foodborne VTEC outbreaks and early identification of outbreaks or clusters of outbreaks. Pulsed-field gel electrophoresis (PFGE) has been used extensively to track and differentiate VTEC because of its high discriminatory power, reproducibility and ease of standardization. Multiple-locus variable-number tandem-repeats analysis (MLVA) and microarrays are the latest genotyping methods that have been applied to discriminate VTEC. MLVA, a simpler and less expensive method, is proving to have a discriminatory power comparable to that of PFGE. Microarrays are successfully being applied to differentiate VTEC and make inferences on genome diversification. Novel methods that are being evaluated for subtyping VTEC include the detection of single nucleotide polymorphisms and optical mapping. This review discusses the principles, applications, advantages and disadvantages of genotyping methods that have been used to differentiate VTEC strains. These methods have been mainly used to differentiate strains of O157:H7 VTEC and to a lesser extent non-O157 VTEC.
Collapse
Affiliation(s)
- M Karama
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
25
|
Multilocus variable number tandem repeat analysis for Salmonella enterica subspecies. Eur J Clin Microbiol Infect Dis 2010; 30:465-73. [DOI: 10.1007/s10096-010-1110-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
|
26
|
McCrea KW, Xie J, Marrs CF, Gilsdorf JR. Prevalence of genetic differences in phosphorylcholine expression between nontypeable Haemophilus influenzae and Haemophilus haemolyticus. BMC Microbiol 2010; 10:286. [PMID: 21073698 PMCID: PMC2992063 DOI: 10.1186/1471-2180-10-286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/12/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although non-typeable (NT) Haemophilus influenzae and Haemophilus haemolyticus are closely related human commensals, H. haemolyticus is non-pathogenic while NT H. influenzae is an important cause of respiratory tract infections. Phase-variable phosphorylcholine (ChoP) modification of lipooligosaccharide (LOS) is a NT H. influenzae virulence factor that, paradoxically, may also promote complement activation by binding C-reactive protein (CRP). CRP is known to bind more to ChoP positioned distally than proximally in LOS, and the position of ChoP within LOS is dictated by specific licD alleles (designated here as licDI, licDIII, and licDIV) that are present in a lic1 locus. The lic1 locus contains the licA-licD genes, and ChoP-host interactions may also be influenced by a second lic1 locus that allows for dual ChoP substitutions in the same strain, or by the number of licA gene tetranucleotide repeats (5'-CAAT-3') that reflect phase-variation mutation rates. RESULTS Using dot-blot hybridization, 92% of 88 NT H. influenzae and 42.6% of 109 H. haemolyticus strains possessed a lic1 locus. Eight percent of NT H. influenzae and none of the H. haemolyticus strains possessed dual copies of lic1. The licDIII and licDIV gene alleles were distributed similarly (18-22%) among the NT H. influenzae and H. haemolyticus strains while licDI alleles were present in 45.5% of NT H. influenzae but in less than 1% of H. haemolyticus strains (P < .0001). NT H. influenzae had an average of 26.8 tetranucleotide repeats in licA compared to 14.8 repeats in H. haemolyticus (P < .05). In addition, NT H. influenzae strains that possessed a licDIII allele had increased numbers of repeats compared to NT H. influenzae with other licD alleles (P < .05). CONCLUSIONS These data demonstrate that genetic similarities and differences of ChoP expression exist between NT H. influenzae and H. haemolyticus and strengthen the hypothesis that, at the population level, these differences may, in part, provide an advantage in the virulence of NT H. influenzae.
Collapse
Affiliation(s)
- Kirk W McCrea
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jingping Xie
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109-0244, USA
- Beacon Analytical Systems Inc., Saco, ME 04072, USA
| | - Carl F Marrs
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109-0244, USA
| | - Janet R Gilsdorf
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Akhtar P, Singh S, Bifani P, Kaur S, Srivastava BS, Srivastava R. Variable-number tandem repeat 3690 polymorphism in Indian clinical isolates of Mycobacterium tuberculosis and its influence on transcription. J Med Microbiol 2009; 58:798-805. [PMID: 19429757 DOI: 10.1099/jmm.0.002550-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Variable-number tandem repeat (VNTRs) occur throughout the chromosome of Mycobacterium tuberculosis. Although these polymorphic VNTRs, also known as mycobacterial interspersed repetitive units (MIRUs), have proved to be useful tools in molecular epidemiology, their biological significance is less well understood. This study investigated the polymorphism of the VNTR 3690 locus located in the intergenic region between rv3304 and rv3303c (encoding the gplD2 and lpdA genes, respectively) and its possible function in the regulation of gene expression. The copy number of VNTR 3690 was found to vary among Indian clinical isolates of M. tuberculosis (one to twelve copies), M. tuberculosis H37Rv TMC102 (four copies), M. tuberculosis H37Ra (two to four copies), Mycobacterium bovis BCG (one copy). The expression of lpdA as measured by quantitative RT-PCR was 12-fold higher in M. tuberculosis H37Rv than in M. bovis BCG. Using a GFP reporter system in which the 5'-flanking region of lpdA was fused to the gfp gene, the effect of VNTRs on gene expression was measured in an M. bovis BCG host background by real-time PCR. Compared with one VNTR repeat, a 12.5-fold upregulation of GFP expression was found with a flanking region containing four VNTR 3690 repeats, indicating that there is a good correlation between VNTR copy number and transcription of lpdA.
Collapse
Affiliation(s)
- Parvez Akhtar
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India
| | - Sarman Singh
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pablo Bifani
- Molecular Pathology of Tuberculosis, Pasteur Institute, Brussels, Belgium
| | - Satinder Kaur
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India
| | - Brahm S Srivastava
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India
| | - Ranjana Srivastava
- Microbiology Division, Central Drug Research Institute, Lucknow 226001, India
| |
Collapse
|
28
|
Multiple-locus variable number tandem repeat analysis of Staphylococcus aureus: comparison with pulsed-field gel electrophoresis and spa-typing. PLoS One 2009; 4:e5082. [PMID: 19343175 PMCID: PMC2661140 DOI: 10.1371/journal.pone.0005082] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/03/2009] [Indexed: 11/19/2022] Open
Abstract
Background Molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) is required to study the routes and rates of transmission of this pathogen. Currently available typing techniques are either resource-intensive or have limited discriminatory ability. Multiple-locus variable number tandem repeat analysis (MLVA) may provide an alternative high throughput molecular typing tool with high epidemiological resolution. Methodology/Principal Findings A new MLVA scheme for S. aureus was validated using 1681 S. aureus isolates collected from Dutch patients and 100 isolates from pigs. MLVA using 8 tandem repeat loci was performed in 2 multiplex PCRs and the fluorescently labeled PCR products were accurately sized on an automated DNA sequencer. The assessed number of repeats was used to create MLVA profiles consisting of strings of 8 integers that were used for categorical clustering. MLVA yielded 511 types that clustered into 11 distinct MLVA complexes which appeared to coincide with MLST clonal complexes. MLVA was at least as discriminatory as PFGE and twice as discriminatory as spa-sequence typing. There was considerable congruence between MLVA, spa-sequence typing and PFGE, at the MLVA complex level with group separation values of 95.1% and 89.2%. MLVA could not discriminate between pig-related MRSA strains isolated from humans and pigs, corroborating the high degree of relationship. MLVA was also superior in the grouping of MRSA isolates previously assigned to temporal-spatial clusters with indistinguishable SpaTypes, demonstrating its enhanced epidemiological usefulness. Conclusions The MLVA described in this study is a high throughput, relatively low cost genotyping method for S. aureus that yields discrete and unambiguous data that can be used to assign biological meaningful genotypes and complexes and can be used for interlaboratory comparisons in network accessible databases. Results suggest that MLVA offsets the disadvantages of other high discriminatory typing approaches and represents a promising tool for hospital, national and international molecular epidemiology.
Collapse
|
29
|
Gulati P, Varshney RK, Virdi JS. Multilocus variable number tandem repeat analysis as a tool to discern genetic relationships among strains of Yersinia enterocolitica biovar 1A. J Appl Microbiol 2009; 107:875-84. [PMID: 19320943 DOI: 10.1111/j.1365-2672.2009.04267.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To identify variable number tandem repeat (VNTR)-containing loci, and to use multilocus VNTR (MLVA) to discern genetic relationships among strains of Yersinia enterocolitica biovar 1A isolated from diverse sources. METHODS AND RESULTS The whole genome sequence of Y. enterocolitica 8081 was analysed and eight VNTR loci with repeat sizes between 4 and 9 bp, and each containing more than four repeat copies were selected for MLVA typing of 88 strains of Y. enterocolitica. Of these, four loci were polymorphic and generated 26 MLVA genotypes among 81 strains of Y. enterocolitica biovar 1A. MLVA was found to be quite discriminatory (DI = 0.87). Cluster analysis and population modelling using minimum spanning tree (MST) clearly clustered Y. enterocolitica biovar 1A into two major groups. CONCLUSIONS The MLVA is easy to perform and can be used to discern clonal relationship among strains of Y. enterocolitica. Also the phylogenetic relationships obtained with MLVA genotypes were in good agreement with those established by other typing methods. SIGNIFICANCE AND IMPACT OF THE STUDY The MLVA method reported is relatively more discriminatory than the other genotyping methods and has the potential to be used as an epidemiological tool for the study of strains of Y. enterocolitica biovar 1A.
Collapse
Affiliation(s)
- P Gulati
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
30
|
Power PM, Sweetman WA, Gallacher NJ, Woodhall MR, Kumar GA, Moxon ER, Hood DW. Simple sequence repeats in Haemophilus influenzae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2009; 9:216-28. [PMID: 19095084 PMCID: PMC2651432 DOI: 10.1016/j.meegid.2008.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 02/02/2023]
Abstract
Simple sequence repeat (SSRs) of DNA are subject to high rates of mutation and are important mediators of adaptation in Haemophilus influenzae. Previous studies of the Rd KW20 genome identified the primacy of tetranucleotide SSRs in mediating phase variation (the rapid reversible switching of gene expression) of surface exposed structures such as lipopolysaccharide. The recent sequencing of the genomes of multiple strains of H. influenzae allowed the comparison of the SSRs (repeat units of one to nine nucleotides in length) in detail across four complete H. influenzae genomes and then comparison with a further 12 genomes when they became available. The SSR loci were broadly classified into three groups: (1) those that did not vary; (2) those for which some variation between strains was observed but this could not be linked to variation of gene expression; and (3) those that both varied and were located in regions consistent with mediating phase variable gene expression. Comparative analysis of 988 SSR associated loci confirmed that tetranucleotide repeats were the major mediators of phase variation and extended the repertoire of known tetranucleotide SSR loci by identifying ten previously uncharacterised tetranucleotide SSR loci with the potential to mediate phase variation which were unequally distributed across the H. influenzae pan-genome. Further, analysis of non-tetranucleotide SSR in the 16 strains revealed a number of mononucleotide, dinucleotide, pentanucleotide, heptanucleotide, and octanucleotide SSRs which were consistent with these tracts mediating phase variation. This study substantiates previous findings as to the important role that tetranucleotide SSRs play in H. influenzae biology. Two Brazilian isolates showed the most variation in their complement of SSRs suggesting the possibility of geographic and phenotypic influences on SSR distribution.
Collapse
Affiliation(s)
- Peter M Power
- Molecular Infectious Diseases Group, Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX39DS, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Genotyping of bacteria through typing of loci containing a variable number of tandem repeats (VNTR) might become the gold standard for many pathogens. The development of genome sequencing has shown that such sequences were present in every species analyzed, and that polymorphism exists in at least a fraction of them. The length of these repetitions can vary from a single nucleotide to a few hundreds. This has implications for both the techniques used to measure the repeat number and the level of variability. In addition, tandem repeats can be part of coding regions or be intergenic and may play a direct role in the adaptation to the environment, thus having different observed evolution rates. For these reasons the choice of VNTR when setting a multiple-loci VNTR analysis (MLVA) assay is important. Although reasonable discrimination can be achieved with the typing of six to eight markers, in particular in species with high genomic diversity, it may be necessary to type 20 to 40 markers in monomorphic species or if an evolutionary meaningful assay is needed. Homoplasy (in the present context, two alleles containing the same repeat copy number in spite of a different history) is then compensated by the analysis of multiple markers. Finally, even if the underlying principles are relatively simple, quality standards must be implemented before this approach is widely accepted, and technology issues must be resolved to further lower the typing costs.
Collapse
Affiliation(s)
- Gilles Vergnaud
- DGA/D4S -Mission pour la Recherche et l'Innovation Scientifique (MRIS), Armées, and Department of Genetics and Microbiology, University of Paris XI, Orsay, France
| | | |
Collapse
|
32
|
Coil DA, Vandersmissen L, Ginevra C, Jarraud S, Lammertyn E, Anné J. Intragenic tandem repeat variation between Legionella pneumophila strains. BMC Microbiol 2008; 8:218. [PMID: 19077205 PMCID: PMC2639597 DOI: 10.1186/1471-2180-8-218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022] Open
Abstract
Background Bacterial genomes harbour a large number of tandem repeats, yet the possible phenotypic effects of those found within the coding region of genes are only beginning to be examined. Evidence exists from other organisms that these repeats can be involved in the evolution of new genes, gene regulation, adaptation, resistance to environmental stresses, and avoidance of the immune system. Results In this study, we have investigated the presence and variability in copy number of intragenic tandemly repeated sequences in the genome of Legionella pneumophila, the etiological agent of a severe pneumonia known as Legionnaires' disease. Within the genome of the Philadelphia strain, we have identified 26 intragenic tandem repeat sequences using conservative selection criteria. Of these, seven were "polymorphic" in terms of repeat copy number between a large number of L. pneumophila serogroup 1 strains. These strains were collected from a wide variety of environments and patients in several geographical regions. Within this panel of strains, all but one of these seven genes exhibited statistically different patterns in repeat copy number between samples from different origins (environmental, clinical, and hot springs). Conclusion These results support the hypothesis that intragenic tandem repeats could play a role in virulence and adaptation to different environments. While tandem repeats are an increasingly popular focus of molecular typing studies in prokaryotes, including in L. pneumophila, this study is the first examining the difference in tandem repeat distribution as a function of clinical or environmental origin.
Collapse
Affiliation(s)
- David A Coil
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Mohamad KY, Rekiki A, Myers G, Bavoil PM, Rodolakis A. Identification and characterisation of coding tandem repeat variants inincAgene ofChlamydophila pecorum. Vet Res 2008; 39:56. [DOI: 10.1051/vetres:2008032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 07/23/2008] [Indexed: 12/28/2022] Open
|
34
|
Abstract
Analysis of bacterial genomes revealed a high percentage of DNA consisting of repeats, in which DNA motifs existed in multiple copies. Study of these DNA motifs has resulted in the development of variable number tandem repeat (VNTR) or multilocus variant-repeat analysis (MLVA) assays, which have shown to be valuable bacterial typing methods, especially in relation to disease outbreaks. The VNTR-based assay is based on direct PCR amplification of a specific locus, which is well defined. The range and polymorphism index of each locus can be calculated. This chapter describes the VNTR analysis of Neisseria meningitides-based on separation in low resolution media agarose, and VNTR analysis of Salmonella enterica subsp. enterica serovars Typhimurium-based on high resolution capillary electrophoresis.
Collapse
|
35
|
Miya S, Kimura B, Sato M, Takahashi H, Ishikawa T, Suda T, Takakura C, Fujii T, Wiedmann M. Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains. Int J Food Microbiol 2008; 124:239-49. [PMID: 18457891 DOI: 10.1016/j.ijfoodmicro.2008.03.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 11/20/2022]
Abstract
Listeria monocytogenes serotype 4b strains have been identified as the causative agent in many human listeriosis epidemics as well as in a considerable number of sporadic cases. Due to the genetic homogeneity of serotype 4b isolates, development of rapid subtyping methods with high discriminatory power for serotype 4b isolates is required to allow for improved outbreak detection and source tracking. In this study, multilocus variable-number tandem repeat analysis (MLVA) was developed and used to characterize 60 serotype 4b isolates from various sources. All isolates were also characterized by automated EcoRI ribotyping, single enzyme pulsed-field gel electrophoresis (PFGE) with ApaI, and a multilocus sequence typing (MLST) scheme targeting six virulence and virulence-associated genes. Discriminatory power of MLVA (as determined by Simpson Index of Discrimination) was higher than the discriminatory power of any of the other three methods. MLVA markers targeted were found to be stable and did not change when three isolates were passaged daily for 70 days. Cluster analyses of MLVA, PFGE and MLST consistently grouped the same isolates into three major clusters, each of which includes one of the three major L. monocytogenes epidemic clones (i.e., ECI, ECIa and ECII). We conclude that the MLVA method described here (i) provides for more discriminatory subtyping of L. monocytogenes serotype 4b strains than the other three methods, (ii) identifies three major groups within the serotype 4b, which are consistent with the groups identified by other subtyping methods, and (iii) is easy to interpret. Use of MLVA may thus be recommended for subtyping of serotype 4b isolates, including as a secondary more discriminatory subtyping method that could be used after initial isolate characterization by PFGE or ribotyping.
Collapse
Affiliation(s)
- Satoko Miya
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shekar M, Acharya S, Karunasagar I, Karunasagar I. Variable repeat regions in the genome of Vibrio vulnificus and polymorphism in one of the loci in strains isolated from oysters. Int J Food Microbiol 2008; 123:240-5. [PMID: 18374439 DOI: 10.1016/j.ijfoodmicro.2008.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
Vibrio vulnificus an estuarine bacterium is associated with severe wound infections and fatal septicemia related to consumption of raw shellfish. In this study we screened the two whole genome sequences available for V. vulnificus in GenBank for the presence of variable number of tandem repeat (VNTR) regions. Five potential VNTR loci with unit repeat size ranging from 6-7 nucleotides were identified for V. vulnificus genome. One of the loci designated Vv1 was selected to detect the repeat number present in V. vulnificus strains isolated from oyster samples in India. Twenty six of the thirty samples tested were found to be highly polymorphic for the Vv1 locus. Copy numbers for the hexanucleotide motif ranged from 4-55, giving rise to a total of 17 polymorphic groups. Our analysis, shows that different genotypic variants exist in the environment and the VNTR loci studied can be used as a marker for strain discrimination and in epidemiological study of this organism.
Collapse
Affiliation(s)
- Malathi Shekar
- Department of Fishery Microbiology, Karnataka Veterinary, Animal and Fisheries Sciences University, College of Fisheries , Mangalore 575 002, India
| | | | | | | |
Collapse
|
37
|
Shelenkov A, Korotkov A, Korotkov E. MMsat—a database of potential micro- and minisatellites. Gene 2008; 409:53-60. [DOI: 10.1016/j.gene.2007.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/08/2007] [Accepted: 11/16/2007] [Indexed: 11/28/2022]
|
38
|
Shelenkov AA, Skryabin KG, Korotkov EV. Classification analysis of a latent dinucleotide periodicity of plant genomes. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Gierczyński R, Golubov A, Neubauer H, Pham JN, Rakin A. Development of multiple-locus variable-number tandem-repeat analysis for Yersinia enterocolitica subsp. palearctica and its application to bioserogroup 4/O3 subtyping. J Clin Microbiol 2007; 45:2508-15. [PMID: 17553973 PMCID: PMC1951228 DOI: 10.1128/jcm.02252-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica bioserogroup 4/O3 is the predominant causative agent of yersiniosis in Europe and North America. Multiple-locus variable-number tandem-repeat analysis (MLVA) was developed to improve the resolution power of classical genotyping methods. MLVA based on six loci was able to distinguish 76 genotypes among 91 Y. enterocolitica isolates of worldwide origin and 41 genotypes among 51 nonepidemiologically linked bioserogroup 4/O3 isolates, proving that it has a high resolution power. However, only a slight correlation of the MLVA genotypes and the geographic distribution of the isolates was observed. Although MLVA was also capable of distinguishing strains of Y. enterocolitica subsp. palearctica O9 and O5,27, there was only a minor correlation between the MLVA genotypes and serogroups. MLVA may be a helpful tool for epidemiological investigations of Y. enterocolitica subsp. palearctica outbreaks.
Collapse
Affiliation(s)
- Rafał Gierczyński
- Department of Bacteriology, National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
40
|
Davidsen T, Koomey M, Tønjum T. Microbial genome dynamics in CNS pathogenesis. Neuroscience 2007; 145:1375-87. [PMID: 17367950 DOI: 10.1016/j.neuroscience.2007.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
The balancing act between microbes and their host in commensal and disease states needs to be deciphered in order to fully treat and combat infectious diseases. The elucidation of microbial genome dynamics in each instance is therefore required. In this context, the major bacterial meningitis pathogens are Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae. In prokaryotic CNS pathogenesis both the intact organism as well as its released components can elicit disease, often resulting in neurological sequelae, neurodegeneration or fatal outcome. The study of microbial virulence in CNS disease is expected to generate findings that yield new information on the general mechanisms of brain edema and excitatory neuronal disturbances due to meningitis, with significant potential for discoveries that can directly influence and inspire new strategies for prevention and treatment of this serious disease.
Collapse
Affiliation(s)
- T Davidsen
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Sognsvannsveien 20, NO-0027 Oslo, Norway
| | | | | |
Collapse
|
41
|
Moxon R, Bayliss C, Hood D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 2007; 40:307-33. [PMID: 17094739 DOI: 10.1146/annurev.genet.40.110405.090442] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial pathogens face stringent challenges to their survival because of the many unpredictable, often precipitate, and dynamic changes that occur in the host environment or in the process of transmission from one host to another. Bacterial adaptation to their hosts involves either a mechanism for sensing and responding to external changes or the selection of variants that arise through mutation. Here we review how bacterial pathogens exploit localized hypermutation, through polymerase slippage of simple sequence repeats (SSRs), to generate phenotypic variation and enhanced fitness. These SSRs are located within the reading frame or in the promoter of a subset of genes, often termed contingency loci, whose functions are usually involved in direct interactions with host structures.
Collapse
Affiliation(s)
- Richard Moxon
- Oxford University Department of Paediatrics, Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine Oxford, United Kingdom.
| | | | | |
Collapse
|
42
|
van Belkum A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). ACTA ACUST UNITED AC 2007; 49:22-7. [PMID: 17266711 DOI: 10.1111/j.1574-695x.2006.00173.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All bacterial genomes contain multiple loci of repetitive DNA. Repeat unit sizes and repeat sequences may vary when multiple loci are considered for different isolates of an individual microbial species. Moreover, it has been documented on many occasions that the number of repeat units per locus is a strain-defining parameter. Consequently, there is isolate-specificity in the number of repeats per locus when different strains of a given bacterial species are compared. The experimental assessment of this variability for a number of different loci has been called 'multilocus variable number of tandem repeat analysis' (MLVA). The approach can be supported or extended by locus-specific DNA sequencing for establishing mutations in the individual repeat units, which usually enhances the resolution of the approach considerably. Essentially, MLVA with or without supportive sequencing has been developed for all of the medically relevant bacterial species and can be used effectively for tracing outbreaks or other forms of bacterial dissemination. MLVA is a modern, timely and versatile bacterial typing methodology.
Collapse
Affiliation(s)
- Alex van Belkum
- Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Danin-Poleg Y, Cohen LA, Gancz H, Broza YY, Goldshmidt H, Malul E, Valinsky L, Lerner L, Broza M, Kashi Y. Vibrio cholerae strain typing and phylogeny study based on simple sequence repeats. J Clin Microbiol 2006; 45:736-46. [PMID: 17182751 PMCID: PMC1829105 DOI: 10.1128/jcm.01895-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the etiological agent of cholera. Its natural reservoir is the aquatic environment. To date, practical typing of V. cholerae is mainly serological and requires about 200 antisera. Simple sequence repeats (SSR), also termed VNTR (for variable number of tandem repeats), provide a source of high genomic polymorphism used in bacterial typing. Here we describe an SSR-based typing method that combines the variation in highly mutable SSR loci, with that of shorter, relatively more stable mononucleotide repeat (MNR) loci, for accurate and rapid typing of V. cholerae. In silico screening of the V. cholerae genome revealed thousands of perfect SSR tracts with an average frequency of one SSR every 152 bp. A panel of 32 V. cholerae strains, representing both clinical and environmental isolates, was tested for polymorphism in SSR loci. Two strategies were applied to identify SSR variation: polymorphism of SSR tracts longer than 12 bp (L-SSR) assessed by capillary fragment-size analysis and MNR polymorphism assessed by sequencing. The nine L-SSR loci tested were all polymorphic, displaying 2 to 13 alleles per locus. Sequence analysis of eight MNR-containing loci (MNR-multilocus sequence typing [MLST]) provided information on both variations in the MNR tract itself, and single nucleotide polymorphism (SNP) in their flanking sequences. Phylogenetic analysis of the combined SSR data showed a clear discrimination between the clinical strains belonging to O1 and O139 serogroups, and the environmental isolates. Furthermore, discrimination between 27 strains of the 32 strains was achieved. SSR-based typing methods combining L-SSR and MNR-MLST were found to be efficient for V. cholerae typing.
Collapse
Affiliation(s)
- Yael Danin-Poleg
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Boxrud D, Pederson-Gulrud K, Wotton J, Medus C, Lyszkowicz E, Besser J, Bartkus JM. Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. J Clin Microbiol 2006; 45:536-43. [PMID: 17151203 PMCID: PMC1829081 DOI: 10.1128/jcm.01595-06] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain subtyping is an important tool for detection of outbreaks caused by Salmonella enterica serotype Enteritidis. Current subtyping methods, however, yield less than optimal subtype discrimination. In this study, we describe the development and evaluation of a multiple-locus variable-number tandem repeat analysis (MLVA) method for subtyping Salmonella serotype Enteritidis. The discrimination ability and epidemiological concordance of MLVA were compared with those of pulsed-field gel electrophoresis (PFGE) and phage typing. MLVA provided greater discrimination among non-epidemiologically linked isolates than did PFGE or phage typing. Epidemiologic concordance was evaluated by typing 40 isolates from four food-borne disease outbreaks. MLVA, PFGE, and, to a lesser extent, phage typing exhibited consistent subtypes within an outbreak. MLVA was better able to differentiate isolates between the individual outbreaks than either PFGE or phage typing. The reproducibility of MLVA was evaluated by subtyping sequential isolates from an infected individual and by testing isolates following multiple passages and freeze-thaw cycles. PFGE and MLVA patterns were reproducible for isolates that were frozen and passaged multiple times. However, 2 of 12 sequential isolates obtained from an individual over the course of 36 days had an MLVA type that differed at one locus and one isolate had a different phage type. Overall, MLVA typing of Salmonella serotype Enteritidis had enhanced resolution, good reproducibility, and good epidemiological concordance. These results indicate that MLVA may be a useful tool for detection and investigation of outbreaks caused by Salmonella serotype Enteritidis.
Collapse
Affiliation(s)
- D Boxrud
- Minnesota Department of Health, 601 Robert Street N., P.O. Box 64899, Saint Paul, MN 55164-0899, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Schouls LM, van der Ende A, Damen M, van de Pol I. Multiple-locus variable-number tandem repeat analysis of Neisseria meningitidis yields groupings similar to those obtained by multilocus sequence typing. J Clin Microbiol 2006; 44:1509-18. [PMID: 16597884 PMCID: PMC1448618 DOI: 10.1128/jcm.44.4.1509-1518.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified many variable-number tandem repeat (VNTR) loci in the genomes of Neisseria meningitidis serogroups A, B, and C and utilized a number of these loci to develop a multiple-locus variable-number tandem repeat analysis (MLVA). Eighty-five N. meningitidis serogroup B and C isolates obtained from Dutch patients with invasive meningococcal disease and seven reference strains were analyzed using MLVA and multilocus sequence typing (MLST). MLVA, based on eight VNTR loci with limited variability in the number of repeats, yielded clustering of the strains similar to that obtained by MLST, with congruence between both methods amounting to 69%. The ability to recognize clonal complexes makes MLVA a valuable high-throughput method to serve as a tool complementary to MLST. Four highly variable VNTR loci were used in a second assay to analyze N. meningitidis serogroup C strains collected during an outbreak of meningococcal disease in The Netherlands. Typing based on the latter VNTR loci enabled differentiation of isolates with identical MLST sequence types and grouped epidemiologically related strains.
Collapse
Affiliation(s)
- Leo M Schouls
- Laboratory for Vaccine-Preventable Diseases, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Bayliss CD, Callaghan MJ, Moxon ER. High allelic diversity in the methyltransferase gene of a phase variable type III restriction-modification system has implications for the fitness of Haemophilus influenzae. Nucleic Acids Res 2006; 34:4046-59. [PMID: 16914439 PMCID: PMC1557822 DOI: 10.1093/nar/gkl568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/29/2022] Open
Abstract
Phase variable restriction-modification (R-M) systems are widespread in Eubacteria. Haemophilus influenzae encodes a phase variable homolog of Type III R-M systems. Sequence analysis of this system in 22 non-typeable H.influenzae isolates revealed a hypervariable region in the central portion of the mod gene whereas the res gene was conserved. Maximum likelihood (ML) analysis indicated that most sites outside this hypervariable region experienced strong negative selection but evidence of positive selection for a few sites in adjacent regions. A phylogenetic analysis of 61 Type III mod genes revealed clustering of these H.influenzae mod alleles with mod genes from pathogenic Neisseriae and, based on sequence analysis, horizontal transfer of the mod-res complex between these species. Neisserial mod alleles also contained a hypervariable region and all mod alleles exhibited variability in the repeat tract. We propose that this hypervariable region encodes the target recognition domain (TRD) of the Mod protein and that variability results in alterations to the recognition sequence of this R-M system. We argue that the high allelic diversity and phase variable nature of this R-M system have arisen due to selective pressures exerted by diversity in bacteriophage populations but also have implications for other fitness attributes of these bacterial species.
Collapse
Affiliation(s)
- Christopher D Bayliss
- Molecular Infectious Diseases Group, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | | | | |
Collapse
|
47
|
Erwin AL, Bonthuis PJ, Geelhood JL, Nelson KL, McCrea KW, Gilsdorf JR, Smith AL. Heterogeneity in tandem octanucleotides within Haemophilus influenzae lipopolysaccharide biosynthetic gene losA affects serum resistance. Infect Immun 2006; 74:3408-14. [PMID: 16714571 PMCID: PMC1479228 DOI: 10.1128/iai.01540-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is subject to phase variation mediated by changes in the length of simple sequence repeat regions within several genes, most of which encode either surface proteins or enzymes involved in the synthesis of lipopolysaccharides (LPS). The translational repeat regions that have been described thus far all consist of tandemly repeated tetranucleotides. We describe an octanucleotide repeat region within a putative LPS biosynthetic gene, losA. Approximately 20 percent of nontypeable H. influenzae strains contain copies of losA and losB in a genetic locus flanked by infA and ksgA. Of 30 strains containing losA at this site, 24 contained 2 tandem copies of the octanucleotide CGAGCATA, allowing full-length translation of losA (on), and 6 strains contained 3, 4, 6, or 10 tandem copies (losA off). For a serum-sensitive strain, R3063, with losA off (10 repeat units), selection for serum-resistant variants yielded a heterogeneous population in which colonies with increased serum resistance had losA on (2, 8, or 11 repeat units), and colonies with unchanged sensitivity to serum had 10 repeats. Inactivation of losA in strains R3063 and R2846 (strain 12) by insertion of the cat gene decreased the serum resistance of these strains compared to losA-on variants and altered the electrophoretic mobility of LPS. We conclude that expression of losA, a gene that contributes to LPS structure and affects serum resistance, is determined by octanucleotide repeat variation.
Collapse
Affiliation(s)
- Alice L Erwin
- Bacterial Pathogenesis Program, Seattle Biomedical Research Institute, 307 Westlake Ave. N., Suite 500, Seattle, WA 98109-5219, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Hypermutable tandem repeat sequences (TRSs) are present in the genomes of both prokaryotic and eukaryotic organisms. Numerous studies have been conducted in several laboratories over the past decade to investigate the mechanisms responsible for expansions and contractions of microsatellites (a subset of TRSs with a repeat length of 1-6 nucleotides) in the model prokaryotic organism Escherichia coli. Both the frequency of tandem repeat instability (TRI), and the types of mutational events that arise, are markedly influenced by the DNA sequence of the repeat, the number of unit repeats, and the types of cellular pathways that process the TRS. DNA strand slippage is a general mechanism invoked to explain instability in TRSs. Misaligned DNA sequences are stabilized both by favorable base pairing of complementary sequences and by the propensity of TRSs to form relatively stable secondary structures. Several cellular processes, including replication, recombination and a variety of DNA repair pathways, have been shown to interact with such structures and influence TRI in bacteria. This paper provides an overview of our current understanding of mechanisms responsible for TRI in bacteria, with an emphasis on studies that have been carried out in E. coli. In addition, new experimental data are presented, suggesting that TLS polymerases (PolII, PolIV and PolV) do not contribute significantly to TRI in E. coli.
Collapse
Affiliation(s)
- M Bichara
- Département Intégrité du Génome de l'UMR 7175, PolAP1, Boulevard Sébastien Brant 67400, Strasbourg-Illkirch, France
| | | | | |
Collapse
|
49
|
Svraka S, Toman R, Skultety L, Slaba K, Homan WL. Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 2006; 254:268-74. [PMID: 16445755 DOI: 10.1111/j.1574-6968.2005.00036.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Coxiella burnetii is the causative agent of Q fever. The bacterium is highly infectious and is classified as a category B biological weapon. The tools of molecular biology are of utmost importance in a rapid and unambiguous identification of C. burnetii in naturally occurring Q fever outbreaks, or in cases of a deliberate release of the infectious agent. In this work, development of a multiple locus variable number tandem repeats (VNTR) analysis (MLVA) for the characterization of C. burnetii is described. Sixteen C. burnetii isolates and five passage history/laboratory variants were characterized. The VNTR markers revealed many polymorphisms resulting in nine unique MLVA types that cluster into five different clusters. This proves that the MLVA system is highly discriminatory. The selected VNTR markers were stable. The MLVA method developed in this report is a promising tool for the characterization of C. burnetii isolates and their epidemiological study.
Collapse
Affiliation(s)
- Sanela Svraka
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Gibson A, Brown T, Baker L, Drobniewski F. Can 15-locus mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis provide insight into the evolution of Mycobacterium tuberculosis? Appl Environ Microbiol 2006; 71:8207-13. [PMID: 16332804 PMCID: PMC1317395 DOI: 10.1128/aem.71.12.8207-8213.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phylogeny and evolution of the bacterium Mycobacterium tuberculosis is still poorly understood despite the application of a variety of molecular techniques. We analyzed 469 M. tuberculosis and 49 Mycobacterium bovis isolates to evaluate if the mycobacterial interspersed repetitive units-variable-number tandem repeats (MIRU-VNTR) commonly used for epidemiological studies can define the phylogeny of the M. tuberculosis complex. This population was characterized by previously identified silent single-nucleotide polymorphisms (sSNPs) or by a macroarray based on these sSNPs that was developed in this study. MIRU-VNTR phylogenetic codes capable of differentiating between phylogenetic lineages were identified. Overall, there was 90.9% concordance between the lineages of isolates as defined by the MIRU-VNTR and sSNP analyses. The MIRU-VNTR phylogenetic code was unique to M. bovis and was not observed in any M. tuberculosis isolates. The codes were able to differentiate between different M. tuberculosis strain families such as Beijing, Delhi, and East African-Indian. Discrepant isolates with similar but not identical MIRU-VNTR codes often displayed a stepwise trend suggestive of bidirectional evolution. A lineage-specific panel of MIRU-VNTR can be used to subdivide each lineage for epidemiological purposes. MIRU-VNTR is a valuable tool for phylogenetic studies and could define an evolutionarily uncharacterized population of M. tuberculosis complex organisms.
Collapse
Affiliation(s)
- Andrea Gibson
- Mycobacterium Reference Unit, Health Protection Agency, Barts and The London Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | | | | | | |
Collapse
|