1
|
Salamon K, Linn-Peirano S, Simoni A, Ruiz-Rosado JDD, Becknell B, John P, Schwartz L, Spencer JD. Analysing the influence of dapagliflozin on urinary tract infection vulnerability and kidney injury in mice infected with uropathogenic Escherichia coli. Diabetes Obes Metab 2025; 27:40-53. [PMID: 39344841 PMCID: PMC11620950 DOI: 10.1111/dom.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
AIM Sodium-glucose co-transporter-2 (SGLT2) inhibitors have revolutionized clinical medicine, but their association with urinary tract infection (UTI) risk remains debated. This study investigates the influence of dapagliflozin on UTI outcomes, focusing on kidney injury. MATERIALS AND METHODS Female non-diabetic C57BL/6J and C3H/HeOuJ mice, along with diabetic db/db mice, were orally administered dapagliflozin (1 mg/kg or 10 mg/kg) for 7 days before transurethral uropathogenic Escherichia coli (UPEC) infection. Mice were killed either 24 h after UTI or after six additional days of dapagliflozin treatment. UPEC titers were enumerated, and kidney histopathology, injury, fibrosis and function were assessed. RESULTS Vehicle- and dapagliflozin-treated C57BL/6J mice exhibited similar urine and bladder UPEC titers, with minimal kidney burden 24 h after UTI. In C3H/HeOuJ mice, UPEC burden was comparable in vehicle- and 1 mg/kg dapagliflozin-treated groups both 24 h and 7 days after UTI. However, C3H/HeOuJ mice receiving 10 mg/kg dapagliflozin had increased UPEC titers in the urine, bladder and kidneys at both endpoints. Kidney injury and fibrosis markers, as well as kidney function, were similar in vehicle and dapagliflozin groups. In diabetic db/db mice receiving dapagliflozin, UPEC strain UTI89 titers were reduced 7 days after UTI compared to vehicle-treated mice, but no difference in UPEC titers was observed when mice were infected with UPEC strain CFT073. Kidney injury and fibrosis markers and kidney function remained similar across treatment groups. CONCLUSIONS Dapagliflozin does not consistently influence UTI susceptibility and shows limited impact on kidney injury or fibrosis, suggesting SGLT2 inhibitors have minimal effects on UTI-related kidney complications.
Collapse
Affiliation(s)
- Kristin Salamon
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
| | - Sarah Linn-Peirano
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Veterinary Medicine, Columbus, OH USA
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN USA
| | - Aaron Simoni
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| | - Preeti John
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
| | - Laura Schwartz
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
2
|
Cotzomi-Ortega I, Rosowski EE, Wang X, Sanchez-Zamora YI, Lopez-Torres JM, Sanchez-Orellana G, Han R, Vásquez-Martínez G, Andrade GM, Ballash G, Cortado H, Li B, Ali Y, Rascon R, Robledo-Avila F, Partida-Sanchez S, Pérez-Campos E, Olofsson-Sahl P, Zepeda-Orozco D, Spencer JD, Becknell B, Ruiz-Rosado JDD. Neutrophil NADPH oxidase promotes bacterial eradication and regulates NF-κB-Mediated inflammation via NRF2 signaling during urinary tract infections. Mucosal Immunol 2024:S1933-0219(24)00133-8. [PMID: 39710133 DOI: 10.1016/j.mucimm.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
The precise role of neutrophil-derived reactive oxygen species (ROS) in combating bacterial uropathogens during urinary tract infections (UTI) remains largely unexplored. In this study, we elucidate the antimicrobial significance of NADPH oxidase 2 (NOX2)-derived ROS, as opposed to mitochondrial ROS, in facilitating neutrophil-mediated eradication of uropathogenic Escherichia coli (UPEC), the primary causative agent of UTI. Furthermore, NOX2-derived ROS regulate NF-κB-mediated inflammatory responses in neutrophils against UPEC by inducing the release of nuclear factor erythroid 2-related factor 2 (Nrf2) from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1). Consistently, the absence of NOX2 (Cybb-/-) in mice led to uncontrolled bacterial infection associated with increased NF-κB signaling, heightened neutrophilic inflammation, and increased bladder pathology during cystitis. These findings underscore a dual role for neutrophil NOX2 in both eradicating UPEC and mitigating neutrophil-mediated inflammation in the urinary tract, revealing a previously unrecognized effector and regulatory mechanism in the control of UTI.
Collapse
Affiliation(s)
- Israel Cotzomi-Ortega
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Xin Wang
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yuriko I Sanchez-Zamora
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jeimy M Lopez-Torres
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Gamaliel Sanchez-Orellana
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rachel Han
- Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Division of Neonatology, Indianapolis, IN, USA
| | - Gabriela Vásquez-Martínez
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Center for Research in Medicine, National Autonomous University of Mexico-Autonomous University Benito Juárez of Oaxaca (UNAM-UABJO), Faculty of Medicine and Surgery, Autonomous University Benito Juárez of Oaxaca, Oaxaca 68020, Mexico
| | - Gregory Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Hanna Cortado
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Birong Li
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Yusuf Ali
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Raul Rascon
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | - Peter Olofsson-Sahl
- Pronoxis AB, SE-461 33 Trollhättan, Sweden; University West, Department of Health Sciences, SE-461 86 Trollhättan, Sweden
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - John David Spencer
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Brian Becknell
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH 43215, USA.
| | - Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH 43215, USA.
| |
Collapse
|
3
|
Nhu NTK, Forde BM, Ben Zakour NL, Phan MD, Roberts LW, Beatson SA, Schembri MA. Evolution of the pheV-tRNA integrated genomic island in Escherichia coli. PLoS Genet 2024; 20:e1011459. [PMID: 39446883 PMCID: PMC11537424 DOI: 10.1371/journal.pgen.1011459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/05/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Escherichia coli exhibit extensive genetic diversity at the genome level, particularly within their accessory genome. The tRNA integrated genomic islands (GIs), a part of the E. coli accessory genome, play an important role in pathogenicity. However, studies examining the evolution of GIs have been challenging due to their large size, considerable gene content variation and fragmented assembly in draft genomes. Here we examined the evolution of the GI integrated at pheV-tRNA (GI-pheV), with a primary focus on uropathogenic E. coli (UPEC) and the globally disseminated multidrug resistant ST131 clone. We show the gene content of GI-pheV is highly diverse and arranged in a modular configuration, with the P4 integrase encoding gene intP4 the only conserved gene. Despite this diversity, the GI-pheV gene content displayed conserved features among strains from the same pathotype. In ST131, GI-pheV corresponding to the reference strain EC958 (EC958_GI-pheV) was found in ~90% of strains. Phylogenetic analyses suggested that GI-pheV in ST131 has evolved together with the core genome, with the loss/gain of specific modules (or the entire GI) linked to strain specific events. Overall, we show GI-pheV exhibits a dynamic evolutionary pathway, in which modules and genes have evolved through multiple events including insertions, deletions and recombination.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian M. Forde
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Nouri L. Ben Zakour
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Leah W. Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Morales G, Abelson B, Reasoner S, Miller J, Earl AM, Hadjifrangiskou M, Schmitz J. The Role of Mobile Genetic Elements in Virulence Factor Carriage from Symptomatic and Asymptomatic Cases of Escherichia coli Bacteriuria. Microbiol Spectr 2023; 11:e0471022. [PMID: 37195213 PMCID: PMC10269530 DOI: 10.1128/spectrum.04710-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is extremely diverse genotypically and phenotypically. Individual strains can variably carry diverse virulence factors, making it challenging to define a molecular signature for this pathotype. For many bacterial pathogens, mobile genetic elements (MGEs) constitute a major mechanism of virulence factor acquisition. For urinary E. coli, the total distribution of MGEs and their role in the acquisition of virulence factors is not well defined, including in the context of symptomatic infection versus asymptomatic bacteriuria (ASB). In this work, we characterized 151 isolates of E. coli, derived from patients with either urinary tract infection (UTI) or ASB. For both sets of E. coli, we catalogued the presence of plasmids, prophage, and transposons. We analyzed MGE sequences for the presence of virulence factors and antimicrobial resistance genes. These MGEs were associated with only ~4% of total virulence associated genes, while plasmids contributed to ~15% of antimicrobial resistance genes under consideration. Our analyses suggests that, across strains of E. coli, MGEs are not a prominent driver of urinary tract pathogenesis and symptomatic infection. IMPORTANCE Escherichia coli is the most common etiological agent of urinary tract infections (UTIs), with UTI-associated strains designated "uropathogenic" E. coli or UPEC. Across urinary strains of E. coli, the global landscape of MGEs and its relationship to virulence factor carriage and clinical symptomatology require greater clarity. Here, we demonstrate that many of the putative virulence factors of UPEC are not associated with acquisition due to MGEs. The current work enhances our understanding of the strain-to-strain variability and pathogenic potential of urine-associated E. coli and points toward more subtle genomic differences distinguishing ASB from UTI isolates.
Collapse
Affiliation(s)
- Grace Morales
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin Abelson
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jordan Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Abstract
The use and misuse of antibiotics have resulted in the selection of difficult-to-treat resistant bacteria. Two key parameters that influence the selection of resistant bacteria are the minimal selective concentration (MSC) and the fitness cost of resistance, both of which have been measured during planktonic growth in several studies. However, bacterial growth most often occurs in biofilms, and it is unclear if and how these parameters differ under these two growth conditions. To address this knowledge gap, we compared a selection of several types of antibiotic-resistant Escherichia coli mutants during planktonic and biofilm growth to determine the fitness costs and MSCs. Biofilm-forming Escherichia coli strains are commonly found in catheter-associated and recurrent urinary tract infections. Isogenic strains of a biofilm-forming E. coli strain, differing only in the resistance mechanisms and the fluorescent markers, were constructed, and susceptible and resistant bacteria were grown in head-to-head competitions at various concentrations of antibiotics under planktonic and biofilm conditions. Mutants with resistance to five different antibiotics were studied. The results show that during both planktonic and biofilm growth, selection for the resistant mutants occurred for all antibiotics at sub-MICs far below the MIC of the antibiotic. Even though differences were seen, the MSC values and the fitness costs did not differ systematically between planktonic and biofilm growth, implying that despite the different growth modes, the basic selection parameters are similar. These findings highlight the risk that resistant mutants may, similarly to planktonic growth, also be selected at sub-MICs of antibiotics in biofilms.
Collapse
|
6
|
A Role for the RNA Polymerase Gene Specificity Factor σ 54 in the Uniform Colony Growth of Uropathogenic Escherichia coli. J Bacteriol 2022; 204:e0003122. [PMID: 35357162 PMCID: PMC9017345 DOI: 10.1128/jb.00031-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. Different activator ATPases couple diverse environmental cues to the σ54-RNAP to mediate adaptive changes in gene expression. Hence, the genes that rely upon σ54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by σ54, is not yet exhaustive. By comparing the growth patterns of prototypical enteropathogenic, uropathogenic, and nonpathogenic Escherichia coli strains devoid of σ54, we uncovered that the absence of σ54 results in two differently sized colonies that appear at different times specifically in the uropathogenic E. coli (UPEC) strain. Notably, UPEC bacteria devoid of individual activator ATPases of the σ54-RNAP do not phenocopy the σ54 mutant strain. Thus, it seems that σ54’s role as a determinant of uniform colony appearance in UPEC bacteria represents a putative non-canonical function of σ54 in regulating genetic information flow. IMPORTANCE RNA synthesis is the first step of gene expression. The multisubunit RNA polymerase (RNAP) is the central enzyme responsible for RNA synthesis in bacteria. The dissociable sigma (σ) factor subunit directs the RNAP to different sets of genes to allow their expression in response to various cellular needs. Of the seven σ factors in Escherichia coli and related bacteria, σ54 exists in a class of its own. This study has uncovered that σ54 is a determinant of the uniform growth of uropathogenic E. coli on solid media. This finding suggests a role for this σ54 in gene regulation that extends beyond its known function as an RNAP gene specificity factor.
Collapse
|
7
|
Vera-Mansilla J, Sánchez P, Silva-Valenzuela CA, Molina-Quiroz RC. Isolation and Characterization of Novel Lytic Phages Infecting Multidrug-Resistant Escherichia coli. Microbiol Spectr 2022; 10:e0167821. [PMID: 35171030 PMCID: PMC8849078 DOI: 10.1128/spectrum.01678-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections (UTIs) are the second most frequent bacterial infections worldwide, with Escherichia coli being the main causative agent. The increase of antibiotic-resistance determinants among isolates from clinical samples, including UTIs, makes the development of novel therapeutic strategies a necessity. In this context, the use of bacteriophages as a therapeutic alternative has been proposed, due to their ability to efficiently kill bacteria. In this work, we isolated and characterized three novel bacteriophages, microbes laboratory phage 1 (MLP1), MLP2, and MLP3, belonging to the Chaseviridae, Myoviridae, and Podoviridae families, respectively. These phages efficiently infect and kill laboratory reference strains and multidrug-resistant clinical E. coli isolates from patients with diagnosed UTIs. Interestingly, these phages are also able to infect intestinal pathogenic Escherichia coli strains, such as enteroaggregative E. coli and diffusely adherent E. coli. Our data show that the MLP phages recognize different regions of the lipopolysaccharide (LPS) molecule, an important virulence factor in bacteria that is also highly variable among different E. coli strains. Altogether, our results suggest that these phages may represent an interesting alternative for the treatment of antibiotic-resistant E. coli. IMPORTANCE Urinary tract infections affect approximately 150 million people annually. The current antibiotic resistance crisis demands the development of novel therapeutic alternatives. Our results show that three novel phages, MLP1, MLP2, and MLP3 are able to infect both laboratory and multidrug-resistant clinical isolates of Escherichia coli. Since these phages (i) efficiently kill antibiotic-resistant clinical isolates of uropathogenic Escherichia coli (UPEC), (ii) recognize different portions of the LPS molecule, and (iii) are able to efficiently infect intestinal pathogenic Escherichia coli hosts, we believe that these novel phages are good candidates to be used as a therapeutic alternative to treat antibiotic-resistant E. coli strains generating urinary tract and/or intestinal infections.
Collapse
|
8
|
Zaborskytė G, Wistrand-Yuen E, Hjort K, Andersson DI, Sandegren L. Modular 3D-Printed Peg Biofilm Device for Flexible Setup of Surface-Related Biofilm Studies. Front Cell Infect Microbiol 2022; 11:802303. [PMID: 35186780 PMCID: PMC8851424 DOI: 10.3389/fcimb.2021.802303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023] Open
Abstract
Medical device-related biofilms are a major cause of hospital-acquired infections, especially chronic infections. Numerous diverse models to study surface-associated biofilms have been developed; however, their usability varies. Often, a simple method is desired without sacrificing throughput and biological relevance. Here, we present an in-house developed 3D-printed device (FlexiPeg) for biofilm growth, conceptually similar to the Calgary Biofilm device but aimed at increasing ease of use and versatility. Our device is modular with the lid and pegs as separate units, enabling flexible assembly with up- or down-scaling depending on the aims of the study. It also allows easy handling of individual pegs, especially when disruption of biofilm populations is needed for downstream analysis. The pegs can be printed in, or coated with, different materials to create surfaces relevant to the study of interest. We experimentally validated the use of the device by exploring the biofilms formed by clinical strains of Escherichia coli and Klebsiella pneumoniae, commonly associated with device-related infections. The biofilms were characterized by viable cell counts, biomass staining, and scanning electron microscopy (SEM) imaging. We evaluated the effects of different additive manufacturing technologies, 3D printing resins, and coatings with, for example, silicone, to mimic a medical device surface. The biofilms formed on our custom-made pegs could be clearly distinguished based on species or strain across all performed assays, and they corresponded well with observations made in other models and clinical settings, for example, on urinary catheters. Overall, our biofilm device is a robust, easy-to-use, and relevant assay, suitable for a wide range of applications in surface-associated biofilm studies, including materials testing, screening for biofilm formation capacity, and antibiotic susceptibility testing.
Collapse
|
9
|
Sklavounos AA, Nemr CR, Kelley SO, Wheeler AR. Bacterial classification and antibiotic susceptibility testing on an integrated microfluidic platform. LAB ON A CHIP 2021; 21:4208-4222. [PMID: 34549763 DOI: 10.1039/d1lc00609f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the prevalence of bacterial infections and increasing levels of antibiotic resistance comes the need for rapid and accurate methods for bacterial classification (BC) and antibiotic susceptibility testing (AST). Here we demonstrate the use of the fluid handling technique digital microfluidics (DMF) for automated and simultaneous BC and AST using growth metabolic markers. Custom instrumentation was developed for this application including an integrated heating module and a machine-learning-enabled low-cost colour camera for real-time absorbance and fluorescent sample monitoring on multipurpose devices. Antibiotic dilutions along with sample handling, mixing and incubation at 37 °C were all pre-programmed and processed automatically. By monitoring the metabolism of resazurin, resorufin beta-D-glucuronide and resorufin beta-D-galactopyranoside to resorufin, BC and AST were achieved in under 18 h. AST was validated in two uropathogenic E. coli strains with antibiotics ciprofloxacin and nitrofurantoin. BC was performed independently and simultaneously with ciprofloxacin AST for E. coli, K. pneumoniae, P. mirabilis and S. aureus. Finally, a proof-of-concept multiplexed system for breakpoint testing of two antibiotics, as well as E. coli and coliform classification was investigated with a multidrug-resistant E. coli strain. All bacteria were correctly identified, while AST and breakpoint test results were in essential and category agreement with reference methods. These results show the versatility and accuracy of this all-in-one microfluidic system for analysis of bacterial growth and phenotype.
Collapse
Affiliation(s)
- Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Carine R Nemr
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Department of Pharmaceutical Science, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
10
|
Rahman A, Bhuiyan OF, Sadique A, Afroze T, Sarker M, Momen AMI, Alam J, Hossain A, Khan I, Rahman KF, Kamruzzaman M, Shams F, Ahsan GU, Hossain M. Whole genome sequencing provides genomic insights into three Morganella morganii strains isolated from bovine rectal swabs in Dhaka, Bangladesh. FEMS Microbiol Lett 2021; 367:5780225. [PMID: 32129839 DOI: 10.1093/femsle/fnaa043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Morganella morganii, a gram negative, facultative anaerobic bacterium belonging to the Proteeae tribe of the Morganellaceae family, is an unusual opportunistic pathogen mainly responsible for nosocomial and urinary tract infections. While cattle have long been established as a source of a few zoonotic pathogens, no such data has been recorded for M. morganii despite its ubiquitous presence in nature and a number of animal hosts. In this study, draft genomes were produced of three M. morganii isolates from Bangladeshi cattle. The three isolates, named B2, B3 and B5, possessed an average genome size of 3.9 Mp, a GC% of ∼51% and pan and core genomes of 4637 and 3812 genes, respectively. All strains were bearers of the qnrD1 carrying plasmid Col3M and possessed roughly similar virulence profiles and prophage regions. The strains also carried genes that were unique when compared with other publicly available M. morganii genomes. Many of these genes belonged to metabolic pathways associated with adaptation to environmental stresses and were predicted in silico to be borne in genomic islands. The findings of this study expand on the current understanding of M. morganii''s genomic nature and its adaptation in cattle.
Collapse
Affiliation(s)
- Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Omar Faruk Bhuiyan
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Tamanna Afroze
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Mrinmoy Sarker
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdul Mueed Ibne Momen
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Arman Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Imran Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Kazi Fahmida Rahman
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | | | - Fariza Shams
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Gias U Ahsan
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Public Health, North South University, Dhaka, Bangladesh
| | - Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Tiba MH, McCracken BM, Dickson RP, Nemzek JA, Colmenero CI, Leander DC, Flott TL, Daniels RC, Konopka KE, VanEpps JS, Stringer KA, Ward KR. A comprehensive assessment of multi-system responses to a renal inoculation of uropathogenic E. coli in swine. PLoS One 2020; 15:e0243577. [PMID: 33306742 PMCID: PMC7732124 DOI: 10.1371/journal.pone.0243577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The systemic responses to infection and its progression to sepsis remains poorly understood. Progress in the field has been stifled by the shortcomings of experimental models which include poor replication of the human condition. To address these challenges, we developed and piloted a novel large animal model of severe infection that is capable of generating multi-system clinically relevant data. METHODS Male swine (n = 5) were anesthetized, mechanically ventilated, and surgically instrumented for continuous hemodynamic monitoring and serial blood sampling. Animals were inoculated with uropathogenic E. coli by direct injection into the renal parenchyma and were maintained until a priori endpoints were met. The natural history of the infection was studied. Animals were not resuscitated. Multi-system data were collected hourly to 6 hours; all animals were euthanized at predetermined physiologic endpoints. RESULTS Core body temperature progressively increased from mean (SD) 37.9(0.8)°C at baseline to 43.0(1.2)°C at experiment termination (p = 0.006). Mean arterial pressure did not begin to decline until 6h post inoculation, dropping from 86(9) mmHg at baseline to 28(5) mmHg (p = 0.005) at termination. Blood glucose progressively declined but lactate levels did not elevate until the last hours of the experiment. There were also temporal changes in whole blood concentrations of a number of metabolites including increases in the catecholamine precursors, tyrosine (p = 0.005) and phenylalanine (p = 0.005). Lung, liver, and kidney function parameters worsened as infection progressed and at study termination there was histopathological evidence of injury in these end-organs. CONCLUSION We demonstrate a versatile, multi-system, longitudinal, swine model of infection that could be used to further our understanding of the mechanisms that underlie infection-induced multi-organ dysfunction and failure, optimize resuscitation protocols and test therapeutic interventions. Such a model could improve translation of findings from the bench to the bedside, circumventing a significant obstacle in sepsis research.
Collapse
Affiliation(s)
- Mohamad Hakam Tiba
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brendan M. McCracken
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert P. Dickson
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jean A. Nemzek
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
- Unit of Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carmen I. Colmenero
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Danielle C. Leander
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Flott
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rodney C. Daniels
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pediatrics, Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kristine E. Konopka
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - J. Scott VanEpps
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathleen A. Stringer
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin R. Ward
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
12
|
Hossain M, Tabassum T, Rahman A, Hossain A, Afroze T, Momen AMI, Sadique A, Sarker M, Shams F, Ishtiaque A, Khaleque A, Alam M, Huq A, Ahsan GU, Colwell RR. Genotype-phenotype correlation of β-lactamase-producing uropathogenic Escherichia coli (UPEC) strains from Bangladesh. Sci Rep 2020; 10:14549. [PMID: 32883963 PMCID: PMC7471317 DOI: 10.1038/s41598-020-71213-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is a pathogen commonly encountered in clinical laboratories, and is capable of causing a variety of diseases, both within the intestinal tract (intestinal pathogenic strains) and outside (extraintestinal pathogenic E. coli, or ExPEC). It is associated with urinary tract infections (UTIs), one of the most common infectious diseases in the world. This report represents the first comparative analysis of the draft genome sequences of 11 uropathogenic E. coli (UPEC) strains isolated from two tertiary hospitals located in Dhaka and Sylhet, Bangladesh, and is focused on comparing their genomic characteristics to each other and to other available UPEC strains. Multilocus sequence typing (MLST) confirmed the strains belong to ST59, ST131, ST219, ST361, ST410, ST448 and ST4204, with one of the isolates classified as a previously undocumented ST. De novo identification of the antibiotic resistance genes blaNDM-5, blaNDM-7, blaCTX-M-15 and blaOXA-1 was determined, and phenotypic-genotypic analysis of virulence revealed significant heterogeneity within UPEC phylogroups.
Collapse
Affiliation(s)
- Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Tahmina Tabassum
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Arman Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Tamanna Afroze
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Abdul Mueed Ibne Momen
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh
| | - Mrinmoy Sarker
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Fariza Shams
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Ahmed Ishtiaque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdul Khaleque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Munirul Alam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Gias U Ahsan
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Public Health, North South University, Dhaka, Bangladesh
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA. .,University of Maryland Institute of Advanced Computer Studies, University of Maryland, College Park, MD, USA. .,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Adamus-Białek W, Wawszczak M, Arabski M, Majchrzak M, Gulba M, Jarych D, Parniewski P, Głuszek S. Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Virulence 2020; 10:260-276. [PMID: 30938219 PMCID: PMC6527016 DOI: 10.1080/21505594.2019.1596507] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract.
Collapse
Affiliation(s)
- Wioletta Adamus-Białek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Monika Wawszczak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Michał Arabski
- b Department of Biochemistry & Genetics , Jan Kochanowski University , Kielce , Poland
| | - Michał Majchrzak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Martyna Gulba
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Dariusz Jarych
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Paweł Parniewski
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Stanisław Głuszek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| |
Collapse
|
14
|
Huang WC, Lin CY, Hashimoto M, Wu JJ, Wang MC, Lin WH, Chen CS, Teng CH. The role of the bacterial protease Prc in the uropathogenesis of extraintestinal pathogenic Escherichia coli. J Biomed Sci 2020; 27:14. [PMID: 31900139 PMCID: PMC6941253 DOI: 10.1186/s12929-019-0605-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Extraintestinal pathogenic E. coli (ExPEC) remains one of the most prevalent bacterial pathogens that cause extraintestinal infections, including neonatal meningitis, septicemia, and urinary tract (UT) infections (UTIs). Antibiotic therapy has been the conventional treatment for such infections, but its efficacy has decreased due to the emergence of antibiotic-resistant bacteria. Identification and characterization of bacterial factors that contribute to the severity of infection would facilitate the development of novel therapeutic strategies. The ExPEC periplasmic protease Prc contributes to the pathogen’s ability to evade complement-mediated killing in the serum. Here, we further investigated the role of the Prc protease in ExPEC-induced UTIs and the underlying mechanism. Methods The uropathogenic role of Prc was determined in a mouse model of UTIs. Using global quantitative proteomic analyses, we revealed that the expression of FliC and other outer membrane-associated proteins was altered by Prc deficiency. Comparative transcriptome analyses identified that Prc deficiency affected expression of the flagellar regulon and genes that are regulated by five extracytoplasmic signaling systems. Results A mutant ExPEC with a prc deletion was attenuated in bladder and kidney colonization. Global quantitative proteomic analyses of the prc mutant and wild-type ExPEC strains revealed significantly reduced flagellum expression in the absence of Prc, consequently impairing bacterial motility. The prc deletion triggered downregulation of the flhDC operon encoding the master transcriptional regulator of flagellum biogenesis. Overexpressing flhDC restored the prc mutant’s motility and ability to colonize the UT, suggesting that the impaired motility is responsible for attenuated UT colonization of the mutant. Further comparative transcriptome analyses revealed that Prc deficiency activated the σE and RcsCDB signaling pathways. These pathways were responsible for the diminished flhDC expression. Finally, the activation of the RcsCDB system was attributed to the intracellular accumulation of a known Prc substrate Spr in the prc mutant. Spr is a peptidoglycan hydrolase and its accumulation destabilizes the bacterial envelope. Conclusions We demonstrated for the first time that Prc is essential for full ExPEC virulence in UTIs. Our results collectively support the idea that Prc is essential for bacterial envelope integrity, thus explaining how Prc deficiency results in an attenuated ExPEC.
Collapse
Affiliation(s)
- Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Maddux JT, Stromberg ZR, Curtiss Iii R, Mellata M. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli. Front Immunol 2017; 8:1280. [PMID: 29062318 PMCID: PMC5640888 DOI: 10.3389/fimmu.2017.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 01/21/2023] Open
Abstract
Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an immune response to E. coli and Salmonella antigens in some mice, provide significant protection in some internal organs during ExPEC challenge, and thus this study is a promising initial step toward developing a vaccine for prevention of ExPEC infections. Future studies should optimize the ExPEC antigens displayed by the RASV strain for a more robust immune response and enhanced protection against ExPEC infection.
Collapse
Affiliation(s)
- Jacob T Maddux
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Roy Curtiss Iii
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Melha Mellata
- The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Abstract
Uropathogenic Escherichia coli (UPEC) are opportunistic human pathogens that primarily circulate as part of commensal intestinal microbiota. Though they have the ability to survive and proliferate in various urinary tract compartments, the urinary tract is a transient, occasional habitat for UPEC. Because of this, most of the UPEC traits have originally evolved to serve in intestinal colonization and transmission. Some of these bacterial traits serve as virulence factors - they are critical to or assist in survival of UPEC as pathogens, and the structure and/or function may be specialized for the infection. Other traits could serve as anti-virulence factors - they represent liability in the urinary tract and are under selection to be lost or inactivated during the infection. Inactivation, variation, or other changes of the bacterial genes that increase the pathogen's fitness during the infection are called pathoadaptive mutations. This chapter describes examples of pathoadaptive mutations in UPEC and provides rationale for their further in-depth study.
Collapse
|
17
|
Stromberg ZR, Johnson JR, Fairbrother JM, Kilbourne J, Van Goor A, Curtiss R, Mellata M. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PLoS One 2017; 12:e0180599. [PMID: 28671990 PMCID: PMC5495491 DOI: 10.1371/journal.pone.0180599] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/16/2017] [Indexed: 11/18/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to poultry and consumers.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
| | - James R Johnson
- Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota, United States of America
| | - John M Fairbrother
- OIE Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Jacquelyn Kilbourne
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
| | - Roy Curtiss
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, United States of America
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
18
|
Breland EJ, Eberly AR, Hadjifrangiskou M. An Overview of Two-Component Signal Transduction Systems Implicated in Extra-Intestinal Pathogenic E. coli Infections. Front Cell Infect Microbiol 2017; 7:162. [PMID: 28536675 PMCID: PMC5422438 DOI: 10.3389/fcimb.2017.00162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Extra-intestinal pathogenic E. coli (ExPEC) infections are common in mammals and birds. The predominant ExPEC types are avian pathogenic E. coli (APEC), neonatal meningitis causing E. coli/meningitis associated E. coli (NMEC/MAEC), and uropathogenic E. coli (UPEC). Many reviews have described current knowledge on ExPEC infection strategies and virulence factors, especially for UPEC. However, surprisingly little has been reported on the regulatory modules that have been identified as critical in ExPEC pathogenesis. Two-component systems (TCSs) comprise the predominant method by which bacteria respond to changing environments and play significant roles in modulating bacterial fitness in diverse niches. Recent studies have highlighted the potential of manipulating signal transduction systems as a means to chemically re-wire bacterial pathogens, thereby reducing selective pressure and avoiding the emergence of antibiotic resistance. This review begins by providing a brief introduction to characterized infection strategies and common virulence factors among APEC, NMEC, and UPEC and continues with a comprehensive overview of two-component signal transduction networks that have been shown to influence ExPEC pathogenesis.
Collapse
Affiliation(s)
- Erin J Breland
- Department of Pharmacology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA.,Department of Urology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
19
|
Mohanty S, Kamolvit W, Zambrana S, Sandström C, Gonzales E, Östenson CG, Brauner A. Extract of Clinopodium bolivianum protects against E. coli invasion of uroepithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:214-220. [PMID: 28087472 DOI: 10.1016/j.jep.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium bolivianum is a South American plant with anti-inflammatory and anti-infective activities. The increasing antibiotic resistance urges for alternative therapy. Based on its use in traditional medicine, we investigated the effect of C. bolivianum on the ability to defend bladder epithelial cells from E. coli infection. MATERIALS AND METHODS The extract was analyzed by LC-MS. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli No. 12, its isogenic mutant WE16 csgBA bscA::Cm and CFT073 were used to investigate the effect of C. bolivianum on uroepithelial infection. Bacterial adherence and invasion to cells treated with C. bolivianum were analyzed. Expression of uroplakin 1a, β1 integrin, caveolin-1, IL-8 and antimicrobial peptides in response to C. bolivianum treatment was assessed using RT-PCR. Protein expression was confirmed by Western blot analysis or ELISA. The antimicrobial effects of C. bolivianum on bacteria and fungus were investigated using minimum inhibitory concentration. Furthermore, the formation of biofilm was investigated with crystal violet assay. RESULTS C. bolivianum extract consisted of more than 70 different types of phytochemicals including sugars and phenolic compounds. The extract decreased the uroplakin 1a expression and E. coli adhesion and invasion of uroepithelial cells while up-regulated caveolin-1. In uninfected C. bolivianum treated cells, IL-8 was lower than in non-treated cells. In infected cells, however, no difference was observed between treated and non-treated cells. Further, C. bolivianum treatment reduced uropathogenic E. coli (UPEC) biofilms but did not inhibit bacterial growth. CONCLUSIONS Our results show that C. bolivianum has a protective role on bladder epithelial cells against UPEC infection by decreasing the bacterial adhesion, invasion and biofilm formation.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumour and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumour and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden; Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Corine Sandström
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Eduardo Gonzales
- Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumour and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
20
|
Li B, Haridas B, Jackson AR, Cortado H, Mayne N, Kohnken R, Bolon B, McHugh KM, Schwaderer AL, Spencer JD, Ching CB, Hains DS, Justice SS, Partida-Sanchez S, Becknell B. Inflammation drives renal scarring in experimental pyelonephritis. Am J Physiol Renal Physiol 2017; 312:F43-F53. [PMID: 27760770 PMCID: PMC5283888 DOI: 10.1152/ajprenal.00471.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022] Open
Abstract
Acquired renal scarring occurs in a subset of patients following febrile urinary tract infections and is associated with hypertension, proteinuria, and chronic kidney disease. Limited knowledge of histopathology, immune cell recruitment, and gene expression changes during pyelonephritis restricts the development of therapies to limit renal scarring. Here, we address this knowledge gap using immunocompetent mice with vesicoureteral reflux. Transurethral inoculation of uropathogenic Escherichia coli in C3H/HeOuJ mice leads to renal mucosal injury, tubulointerstitial nephritis, and cortical fibrosis. The extent of fibrosis correlates most significantly with inflammation at 7 and 28 days postinfection. The recruitment of neutrophils and inflammatory macrophages to infected kidneys is proportional to renal bacterial burden. Transcriptome analysis reveals molecular signatures associated with renal ischemia-reperfusion injury, immune cell chemotaxis, and leukocyte activation. This murine model recapitulates the cardinal histopathological features observed in humans with acquired renal scarring following pyelonephritis. The integration of histopathology, quantification of cellular immune influx, and unbiased transcriptional profiling begins to define potential mechanisms of tissue injury during pyelonephritis in the context of an intact immune response. The clear relationship between inflammatory cell recruitment and fibrosis supports the hypothesis that acquired renal scarring arises as a consequence of excessive host inflammation and suggests that immunomodulatory therapies should be investigated to reduce renal scarring in patients with pyelonephritis.
Collapse
Affiliation(s)
- Birong Li
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Babitha Haridas
- Department of Neurology, State University of New York at Buffalo, Buffalo, New York
| | - Ashley R Jackson
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Hanna Cortado
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Nicholas Mayne
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Rebecca Kohnken
- College of Veterinary Medicine and Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| | | | - Kirk M McHugh
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Anatomy, The Ohio State University College of Allied Health Sciences, Columbus, Ohio
| | - Andrew L Schwaderer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - John David Spencer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Christina B Ching
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Division of Urology, Department of Surgery, The Ohio State University, Columbus, Ohio
| | - David S Hains
- Children's Research Foundation Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; and
| | - Sheryl S Justice
- Division of Urology, Department of Surgery, The Ohio State University, Columbus, Ohio
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Brian Becknell
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio;
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
21
|
Stephenson SAM, Brown PD. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli. Front Public Health 2016; 4:131. [PMID: 27446897 PMCID: PMC4921776 DOI: 10.3389/fpubh.2016.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of Dam inhibitors against UPEC or dam-deficient UPEC strains as attenuated live vaccines. However, further investigations are necessary to determine the post-transcriptional influence of dam on the regulatory network of virulence genes central to pathogenesis.
Collapse
Affiliation(s)
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of West Indies , Jamaica
| |
Collapse
|
22
|
Small Intestine Early Innate Immunity Response during Intestinal Colonization by Escherichia coli Depends on Its Extra-Intestinal Virulence Status. PLoS One 2016; 11:e0153034. [PMID: 27096607 PMCID: PMC4838251 DOI: 10.1371/journal.pone.0153034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/22/2016] [Indexed: 11/19/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains live as commensals in the digestive tract of the host, but they can also initiate urinary tract infections. The aim of this work was to determine how a host detects the presence of a new UPEC strain in the digestive tract. Mice were orally challenged with UPEC strains 536 and CFT073, non-pathogenic strain K12 MG1655, and ΔPAI-536, an isogenic mutant of strain 536 lacking all 7 pathogenicity islands whose virulence is drastically attenuated. Intestinal colonization was measured, and cytokine expression was determined in various organs recovered from mice after oral challenge. UPEC strain 536 efficiently colonized the mouse digestive tract, and prior Enterobacteriaceae colonization was found to impact strain 536 colonization efficiency. An innate immune response, detected as the production of TNFα, IL-6 and IL-10 cytokines, was activated in the ileum 48 hours after oral challenge with strain 536, and returned to baseline within 8 days, without a drop in fecal pathogen load. Although inflammation was detected in the ileum, histology was normal at the time of cytokine peak. Comparison of cytokine secretion 48h after oral gavage with E. coli strain 536, CFT073, MG1655 or ΔPAI-536 showed that inflammation was more pronounced with UPECs than with non-pathogenic or attenuated strains. Pathogenicity islands also seemed to be involved in host detection, as IL-6 intestinal secretion was increased after administration of E. coli strain 536, but not after administration of ΔPAI-536. In conclusion, UPEC colonization of the mouse digestive tract activates acute phase inflammatory cytokine secretion but does not trigger any pathological changes, illustrating the opportunistic nature of UPECs. This digestive tract colonization model will be useful for studying the factors controlling the switch from commensalism to pathogenicity.
Collapse
|
23
|
Müller A, Stephan R, Nüesch-Inderbinen M. Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:667-672. [PMID: 26437344 DOI: 10.1016/j.scitotenv.2015.09.135] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 05/11/2023]
Abstract
In this study, extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli isolates recovered from the following sources were characterized with regard to the occurrence and distribution of uropathogenic and enteric pathogenic virulence factors: surface waters (rivers and lakes, n=60), the intestines of freshwater fish (n=33), fresh vegetables (n=26), retail poultry meat (n=13) and the fecal samples of livestock (n=28), healthy humans (n=34) and primary care patients (n=13). Among the 207 isolates, 82% tested positive by PCR for one or more of the virulence factors (VF) that predict uropathogenicity, TraT, fyuA, chuA, PAI, yfcv or vat. Uropathogenic E. coli (UPEC) were detected in each of the analyzed sources. Regarding virulence factors for intestinal pathogenic E. coli, these were found more rarely and predominantly associated with the aquatic environment, with aagR (EAEC) found in isolates from surface waters and STp (porcine heat stable enterotoxin) and LT (heat-labile enterotoxin) associated with isolates from fish. Aggregate VF scores (the number of unique virulence factors detected for each isolate) were lowest among isolates belonging to phylogenetic group B1 and highest among group B2. Clustering of the isolates by phylogenetic group, multilocus sequence type (MLST) and ESBL-types revealed clonal overlaps of A:ST10(CTX-M-1) and D:ST350(CTX-M-1) between the sources of livestock, poultry meat and healthy humans, suggesting livestock, in particular poultry, represents a potential reservoir for these particular UPEC clones. The clones A:ST10(CTX-M-55) and B2:ST131(CTX-M-27), harboring uropathogenic virulence factors were significantly associated with fresh vegetables and with fish, respectively. Further clonal complexes with source overlaps included D:ST38(CTX-M-14), D:ST69(CTX-M-15), D:ST405(CTX-M-15) and D:ST648(CTX-M-15), which were found in surface water and healthy humans. Identifying potential reservoirs of UPEC in the environment, animals, food and humans is important in order to assess routes of transmission and risk factors for acquiring UPEC.
Collapse
Affiliation(s)
- Andrea Müller
- Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland.
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland.
| | - Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Spencer JD, Jackson AR, Li B, Ching CB, Vonau M, Easterling RS, Schwaderer AL, McHugh KM, Becknell B. Expression and Significance of the HIP/PAP and RegIIIγ Antimicrobial Peptides during Mammalian Urinary Tract Infection. PLoS One 2015; 10:e0144024. [PMID: 26658437 PMCID: PMC4675559 DOI: 10.1371/journal.pone.0144024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
Recent evidence indicates that antimicrobial peptides (AMPs) serve key roles in defending the urinary tract against invading uropathogens. To date, the individual contribution of AMPs to urinary tract host defense is not well defined. In this study, we identified Regenerating islet-derived 3 gamma (RegIIIγ) as the most transcriptionally up-regulated AMP in murine bladder transcriptomes following uropathogenic Escherichia coli (UPEC) infection. We confirmed induction of RegIIIγ mRNA during cystitis and pyelonephritis by quantitative RT-PCR. Immunoblotting demonstrates increased bladder and urinary RegIIIγ protein levels following UPEC infection. Immunostaining localizes RegIIIγ protein to urothelial cells of infected bladders and kidneys. Human patients with UTI have increased urine concentrations of the orthologous Hepatocarcinoma-Intestine-Pancreas / Pancreatitis Associated Protein (HIP/PAP) compared to healthy controls. Recombinant RegIIIγ protein does not demonstrate bactericidal activity toward UPEC in vitro, but does kill Staphylococcus saprophyticus in a dose-dependent manner. Kidney and bladder tissue from RegIIIγ knockout mice and wild-type mice contain comparable bacterial burden following UPEC and Gram-positive UTI. Our results demonstrate that RegIIIγ and HIP/PAP expression is induced during human and murine UTI. However, their specific function in the urinary tract remains uncertain.
Collapse
Affiliation(s)
- John David Spencer
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Ashley R. Jackson
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Birong Li
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Christina B. Ching
- Division of Urology, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Martin Vonau
- Department of Pediatrics and Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | | | - Andrew L. Schwaderer
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Kirk M. McHugh
- Department of Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Molecular and Human Genetics, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| | - Brian Becknell
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Research Institute at Nationwide Children’s, Columbus, Ohio, United States of America
| |
Collapse
|
25
|
Didar TF, Cartwright MJ, Rottman M, Graveline AR, Gamini N, Watters AL, Leslie DC, Mammoto T, Rodas MJ, Kang JH, Waterhouse A, Seiler BT, Lombardo P, Qendro EI, Super M, Ingber DE. Improved treatment of systemic blood infections using antibiotics with extracorporeal opsonin hemoadsorption. Biomaterials 2015; 67:382-92. [DOI: 10.1016/j.biomaterials.2015.07.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
|
26
|
Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Appl Environ Microbiol 2014; 81:1177-87. [PMID: 25480753 DOI: 10.1128/aem.03524-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening.
Collapse
|
27
|
Differences in extended-spectrum beta-lactamase producing Escherichia coli virulence factor genes in the Baltic Sea region. BIOMED RESEARCH INTERNATIONAL 2014; 2014:427254. [PMID: 25250320 PMCID: PMC4164513 DOI: 10.1155/2014/427254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/19/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study was to compare the prevalence of different virulence factor (VF) genes in extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strains isolated from the Baltic Sea region. A total of 432 strains of phenotypically ESBL positive E. coli were collected from 20 institutions located in Estonia, Latvia, Lithuania, and the region of St. Petersburg in Russia from January to May 2012 and analyzed for phylogenetic group and prevalence of 23 VF genes. The strains were collected from clinical material (urine, blood, wound, and respiratory tract). Bacterial isolates were compared according to phylogenetic group, clinical material, and geographical origin. Most of the VF genes were concentrated within phylogenetic group B2 and/or D. When comparing strains isolated from different countries, it was found that strains originating from Estonia and Latvia belonged mainly to group B2 and strains from Lithuania and Russia mainly to groups B2 and D. The P-fimbrial adhesin gene papEF was more prevalent in Russian strains, colicin gene cvaC in Lithuanian strains, and capsular gene kpsMTII in Latvian strains; serum resistant gene traT was less prevalent in Estonian strains. The regional differences of VF genes remained statistically significant after taking into account the phylogenetic distribution in the countries.
Collapse
|
28
|
PafR, a novel transcription regulator, is important for pathogenesis in uropathogenic Escherichia coli. Infect Immun 2014; 82:4241-52. [PMID: 25069986 DOI: 10.1128/iai.00086-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metV genomic island in the chromosome of uropathogenic Escherichia coli (UPEC) encodes a putative transcription factor and a sugar permease of the phosphotransferase system (PTS), which are predicted to compose a Bgl-like sensory system. The presence of these two genes, hereby termed pafR and pafP, respectively, has been previously shown to correlate with isolates causing clinical syndromes. We show here that deletion of both genes impairs the ability of the resulting mutant to infect the CBA/J mouse model of ascending urinary tract infection compared to that of the parent strain, CFT073. Expressing the two genes in trans in the two-gene knockout mutant complemented full virulence. Deletion of either gene individually generated the same phenotype as the double knockout, indicating that both pafR and pafP are important to pathogenesis. We screened numerous environmental conditions but failed to detect expression from the promoter that precedes the paf genes in vitro, suggesting that they are in vivo induced (ivi). Although PafR is shown here to be capable of functioning as a transcriptional antiterminator, its targets in the UPEC genome are not known. Using microarray analysis, we have shown that expression of PafR from a heterologous promoter in CFT073 affects expression of genes related to bacterial virulence, biofilm formation, and metabolism. Expression of PafR also inhibits biofilm formation and motility. Taken together, our results suggest that the paf genes are implicated in pathogenesis and that PafR controls virulence genes, in particular biofilm formation genes.
Collapse
|
29
|
Lorenz SC, Son I, Maounounen-Laasri A, Lin A, Fischer M, Kase JA. Prevalence of hemolysin genes and comparison of ehxA subtype patterns in Shiga toxin-producing Escherichia coli (STEC) and non-STEC strains from clinical, food, and animal sources. Appl Environ Microbiol 2013; 79:6301-11. [PMID: 23934487 PMCID: PMC3811216 DOI: 10.1128/aem.02200-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/30/2013] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) belonging to certain serogroups (e.g., O157 and O26) can cause serious conditions like hemolytic-uremic syndrome (HUS), but other strains might be equally pathogenic. While virulence factors, like stx and eae, have been well studied, little is known about the prevalence of the E. coli hemolysin genes (hlyA, ehxA, e-hlyA, and sheA) in association with these factors. Hemolysins are potential virulence factors, and ehxA and hlyA have been associated with human illness, but the significance of sheA is unknown. Hence, 435 E. coli strains belonging to 62 different O serogroups were characterized to investigate gene presence and phenotypic expression of hemolysis. We further investigated ehxA subtype patterns in E. coli isolates from clinical, animal, and food sources. While sheA and ehxA were widely distributed, e-hlyA and hlyA were rarely found. Most strains (86.7%) were hemolytic, and significantly more hemolytic (95%) than nonhemolytic strains (49%) carried stx and/or eae (P < 0.0001). ehxA subtyping, as performed by using PCR in combination with restriction fragment length polymorphism analysis, resulted in six closely related subtypes (>94.2%), with subtypes A/D being eae-negative STECs and subtypes B, C, E, and F eae positive. Unexpectedly, ehxA subtype patterns differed significantly between isolates collected from different sources (P < 0.0001), suggesting that simple linear models of exposure and transmission need modification; animal isolates carried mostly subtypes A/C (39.3%/42.9%), food isolates carried mainly subtype A (81.9%), and clinical isolates carried mainly subtype C (66.4%). Certain O serogroups correlated with particular ehxA subtypes: subtype A with O104, O113, and O8; B exclusively with O157; C with O26, O111, and O121.
Collapse
Affiliation(s)
- Sandra C. Lorenz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, Hamburg, Germany
| | - Insook Son
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
| | - Anna Maounounen-Laasri
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
| | - Andrew Lin
- U.S. Food and Drug Administration, San Francisco District Laboratory, Alameda, California, USA
| | - Markus Fischer
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, Hamburg, Germany
| | - Julie A. Kase
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, Maryland, USA
| |
Collapse
|
30
|
Chaturvedi S, Yuen DA, Bajwa A, Huang YW, Sokollik C, Huang L, Lam GY, Tole S, Liu GY, Pan J, Chan L, Sokolskyy Y, Puthia M, Godaly G, John R, Wang C, Lee WL, Brumell JH, Okusa MD, Robinson LA. Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. J Am Soc Nephrol 2013; 24:1274-87. [PMID: 23766538 DOI: 10.1681/asn.2012090890] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.
Collapse
Affiliation(s)
- Swasti Chaturvedi
- Division of Nephrology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wiles TJ, Norton JP, Smith SN, Lewis AJ, Mobley HLT, Casjens SR, Mulvey MA. A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia. PLoS Pathog 2013; 9:e1003175. [PMID: 23459509 PMCID: PMC3573123 DOI: 10.1371/journal.ppat.1003175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022] Open
Abstract
In bacteria, laterally acquired genes are often concentrated within chromosomal regions known as genomic islands. Using a recently developed zebrafish infection model, we set out to identify unique factors encoded within genomic islands that contribute to the fitness and virulence of a reference urosepsis isolate—extraintestinal pathogenic Escherichia coli strain CFT073. By screening a series of deletion mutants, we discovered a previously uncharacterized gene, neaT, that is conditionally required by the pathogen during systemic infections. In vitro assays indicate that neaT can limit bacterial interactions with host phagocytes and alter the aggregative properties of CFT073. The neaT gene is localized within an integrated P2-like bacteriophage in CFT073, but was rarely found within other proteobacterial genomes. Sequence-based analyses revealed that neaT homologues are present, but discordantly conserved, within a phyletically diverse set of bacterial species. In CFT073, neaT appears to be unameliorated, having an exceptionally A+T-rich composition along with a notably altered codon bias. These data suggest that neaT was recently brought into the proteobacterial pan-genome from an extra-phyletic source. Interestingly, even in G+C-poor genomes, as found within the Firmicutes lineage, neaT-like genes are often unameliorated. Sequence-level features of neaT homologues challenge the common supposition that the A+T-rich nature of many recently acquired genes reflects the nucleotide composition of their genomes of origin. In total, these findings highlight the complexity of the evolutionary forces that can affect the acquisition, utilization, and assimilation of rare genes that promote the niche-dependent fitness and virulence of a bacterial pathogen. Bacterial pathogens, even those belonging to the same species, can be incredibly diverse with regard to the genes they carry. However, the design of vaccines and antibiotics typically relies upon identification of general molecular features shared by the targeted organisms. Thus, we have traditionally focused on broadly conserved characteristics of pathogenic bacteria, often ignoring the genes that account for their individuality. In this article we report the discovery of a unique gene, neaT, that promotes the fitness of a pathogenic Escherichia coli isolate in zebrafish and mouse models of systemic blood infections. Surprisingly, neaT is rarely found in other related strains of E. coli and appears to have been recently acquired from distant lineages of bacteria via a process known as ‘lateral gene transfer’ that is used by microbes to swap genetic material. Expression of the neaT gene appears to help pathogens avoid interactions with host immune cells, possibly by altering bacterial surface structures. This work provides an interesting example of how the lateral acquisition of a rare gene can impact the niche-specific virulence properties of a pathogen, shedding light on the mechanisms that drive pathogen evolution and diversity.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - J. Paul Norton
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
32
|
Olsen RH, Christensen H, Bisgaard M. Comparative genomics of multiple plasmids from APEC associated with clonal outbreaks demonstrates major similarities and identifies several potential vaccine-targets. Vet Microbiol 2012; 158:384-93. [DOI: 10.1016/j.vetmic.2012.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
33
|
Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates. J Bacteriol 2012; 194:2846-53. [PMID: 22467781 DOI: 10.1128/jb.06375-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.
Collapse
|
34
|
Li Z, Bouckaert J, Deboeck F, De Greve H, Hernalsteens JP. Nicotinamide dependence of uropathogenic Escherichia coli UTI89 and application of nadB as a neutral insertion site. Microbiology (Reading) 2012; 158:736-745. [DOI: 10.1099/mic.0.052043-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Zhaoli Li
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, HVRI, Harbin 150001, PR China
- Viral Genetics Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionelle, UMR8576 du CNRS, Université de Lille 1, Avenue Mendeleiev, 59655 Villeneuve d’Ascq, France
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Francine Deboeck
- Viral Genetics Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Henri De Greve
- Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | |
Collapse
|
35
|
Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect Immun 2012; 80:1554-62. [PMID: 22311928 DOI: 10.1128/iai.06388-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli sequence type ST131 (O25b:H4) has emerged over the past decade as a globally disseminated, multidrug-resistant pathogen. Unlike traditional antimicrobial-resistant E. coli, ST131 derives from virulence-associated phylogenetic group B2 and exhibits extraintestinal virulence factors. This, plus preliminary evidence of virulence in experimental animals, has suggested that ST131's epidemic emergence may be due to high virulence potential, compared with other E. coli types. To test this hypothesis, we compared a large number of matched ST131 and non-ST131 E. coli clinical isolates, both fluoroquinolone resistant and susceptible, plus isolates from classic extraintestinal pathogenic E. coli (ExPEC) sequence types (STs) and case report ST131 household transmission isolates, for virulence in a mouse subcutaneous sepsis model. Overall, in mice, the study isolates produced a wide range of lethality and clinical illness. However, neither ST131 status nor fluoroquinolone phenotype correlated with this diversity of illness severity, which occurred within each of the 6 study groups. In contrast, multiple known or suspected ExPEC virulence genes, including pap (P fimbriae), vat (vacuolating toxin), kpsM II (group 2 capsule), ibeA (invasion of brain endothelium), and clbB/N (colibactin synthesis), plus molecularly defined ExPEC status, were significantly associated with virulence. These findings point away from ST131 isolates as having higher virulence potential compared with other E. coli types in causing invasive extraintestinal infections and suggest instead that ST131's epidemiological success may reflect enhanced fitness for upstream steps in pathogenesis or in colonization and transmission. Additionally, the extensive within-ST virulence diversity suggests an opportunity to compare closely related strains to identify the responsible genetic determinants.
Collapse
|
36
|
Murase K, Ooka T, Iguchi A, Ogura Y, Nakayama K, Asadulghani M, Islam MR, Hiyoshi H, Kodama T, Beutin L, Hayashi T. Haemolysin E- and enterohaemolysin-derived haemolytic activity of O55/O157 strains and other Escherichia coli lineages. MICROBIOLOGY-SGM 2011; 158:746-758. [PMID: 22194351 DOI: 10.1099/mic.0.054775-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Among three haemolysins identified thus far in Escherichia coli, alpha-haemolysin (HlyA) is encoded on the pathogenicity islands of extraintestinal pathogenic strains, while enterohaemolysin (EhxA) is encoded on the virulence plasmids of enterohaemorrhagic E. coli (EHEC) strains. In contrast, the gene for haemolysin E (HlyE) is located on the E. coli chromosome backbone and is therefore widely distributed among E. coli strains. However, because hlyE gene expression is repressed by the H-NS protein and because the gene has been disrupted in many strains, its haemolytic activity cannot be detected in wild-type strains by routine screening on blood agar plates. In this study, we found that the HlyE-derived haemolytic activity of enteropathogenic E. coli (EPEC) O55 : H7 can be detected after anaerobic cultivation on a washed blood agar plate (EHX plate) that is used to detect the production of EhxA. We also found that the haemolytic activity of EHEC O157 : H7 observed on EHX plates under aerobic and anaerobic growth conditions is derived from EhxA and HlyE, respectively; this differential expression of the two haemolysins occurs at the transcriptional level. Our analysis of 60 E. coli strains of various pathotypes and phylogenies for their repertoires of haemolysin genes, haemolytic phenotypes and hlyE gene sequences revealed that HlyE activity can generally be detected on EHX plates under anaerobic growth conditions if the gene is intact. Furthermore, our results indicate that hlyE gene inactivation occurred in three of the five E. coli lineages (phylogroups A, B1 and B2), which demonstrates phylogroup-specific gene disruption patterns.
Collapse
Affiliation(s)
- Kazunori Murase
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Tadasuke Ooka
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Atsushi Iguchi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Yoshitoshi Ogura
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan.,Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Keisuke Nakayama
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Md Asadulghani
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Md Rakibul Islam
- Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| | - Hirotaka Hiyoshi
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lothar Beutin
- National Reference Laboratory for Escherichia coli, Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Tetsuya Hayashi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan.,Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
37
|
Peng H, Wang X, Barnes PF, Tang H, Townsend JC, Samten B. The Mycobacterium tuberculosis early secreted antigenic target of 6 kDa inhibits T cell interferon-γ production through the p38 mitogen-activated protein kinase pathway. J Biol Chem 2011; 286:24508-18. [PMID: 21586573 DOI: 10.1074/jbc.m111.234062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We reported previously that the early secreted antigenic target of 6 kDa (ESAT-6) from Mycobacterium tuberculosis directly inhibits human T cell IFN-γ production and proliferation in response to stimulation with anti-CD3 and anti-CD28. To determine the mechanism of this effect, we treated T cells with kinase inhibitors before stimulation with ESAT-6. Only the p38 MAPK inhibitor, SB203580, abrogated ESAT-6-mediated inhibition of IFN-γ production in a dose-dependent manner. SB203580 did not reverse ESAT-6-mediated inhibition of IL-17 and IL-10 production, suggesting a specific effect of SB203580 on IFN-γ production. SB203580 did not act through inhibition of AKT (PKB) as an AKT inhibitor did not affect ESAT-6 inhibition of T cell IFN-γ production and proliferation. ESAT-6 did not reduce IFN-γ production by expanding FoxP3(+) T regulatory cells. Incubation of T cells with ESAT-6 induced phosphorylation and increased functional p38 MAPK activity, but not activation of ERK or JNK. Incubation of peripheral blood mononuclear cells with ESAT-6 induced activation of p38 MAPK, and inhibition of p38 MAPK with SB203580 reversed ESAT-6 inhibition of M. tuberculosis-stimulated IFN-γ production by peripheral blood mononuclear cells from subjects with latent tuberculosis infection. Silencing of p38α MAPK with siRNA rendered T cells resistant to ESAT-6 inhibition of IFN-γ production. Taken together, our results demonstrate that ESAT-6 inhibits T cell IFN-γ production in a p38 MAPK-dependent manner.
Collapse
Affiliation(s)
- Hui Peng
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas 75708, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pathogenicity island markers, virulence determinants malX and usp, and the capacity of Escherichia coli to persist in infants' commensal microbiotas. Appl Environ Microbiol 2011; 77:2303-8. [PMID: 21317254 DOI: 10.1128/aem.02405-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Virulence-associated genes in bacteria are often located on chromosomal regions, termed pathogenicity islands (PAIs). Several PAIs are found in Escherichia coli strains that cause extraintestinal infections, but their role in commensal bowel colonization is unknown. Resident strains are enriched in adhesins (P fimbriae and type 1 fimbriae), capsular antigens (K1 and K5), hemolysin, and aerobactin and mostly belong to phylogenetic group B2. Here, we investigated whether six pathogenicity islands and the virulence determinants malX and usp are associated with fitness of E. coli in the infant bowel microbiota. E. coli strains isolated from stools of 130 Swedish infants during the first year of life were examined for their carriage of PAI markers, malX, and usp by PCR. Carriage was related to strain persistence: long-term colonizers (≥12 months) carried significantly more of PAI II from strain CFT703 (II(CFT703)), IV(536,) and II(J96) and malX and usp than intermediate colonizers (1 to 11 months) and transient strains (<3 weeks). The accumulation of PAI markers in each individual strain correlated positively with its time of persistence in the colon. Phylogenetic group B2 accounted for 69% of long-term colonizers, 46% of intermediate colonizers and 14% of transient strains. These results support the hypothesis that some bacterial traits contributing to extraintestinal infections have in fact evolved primarily because they increase the fitness of E. coli in its natural niche, the colon; accordingly, they may be regarded as fitness islands in the gut.
Collapse
|
39
|
Vishnoi A, Roy R, Prasad HK, Bhattacharya A. Anchor-based whole genome phylogeny (ABWGP): a tool for inferring evolutionary relationship among closely related microorganisms [corrected]. PLoS One 2010; 5:e14159. [PMID: 21152403 PMCID: PMC2994773 DOI: 10.1371/journal.pone.0014159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/21/2010] [Indexed: 12/03/2022] Open
Abstract
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.
Collapse
Affiliation(s)
- Anchal Vishnoi
- School of Information Technology, Center for Computational Biology and Bioinformatics, Jawaharlal Nehru University, New Delhi, India
| | - Rahul Roy
- Indian Statistical Institute, New Delhi, India
| | - Hanumanthappa K. Prasad
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alok Bhattacharya
- School of Information Technology, Center for Computational Biology and Bioinformatics, Jawaharlal Nehru University, New Delhi, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
40
|
Yadav M, Zhang J, Fischer H, Huang W, Lutay N, Cirl C, Lum J, Miethke T, Svanborg C. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLoS Pathog 2010; 6:e1001120. [PMID: 20886104 PMCID: PMC2944809 DOI: 10.1371/journal.ppat.1001120] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 08/25/2010] [Indexed: 01/22/2023] Open
Abstract
Toll-like receptor signaling requires functional Toll/interleukin-1 (IL-1) receptor (TIR) domains to activate innate immunity. By producing TIR homologous proteins, microbes inhibit host response induction and improve their own survival. The TIR homologous protein TcpC was recently identified as a virulence factor in uropathogenic Escherichia coli (E. coli), suppressing innate immunity by binding to MyD88. This study examined how the host MyD88 genotype modifies the in vivo effects of TcpC and whether additional, TIR-domain containing proteins might be targeted by TcpC. In wild type mice (wt), TcpC enhanced bacterial virulence, increased acute mortality, bacterial persistence and tissue damage after infection with E. coli CFT073 (TcpC+), compared to a ΔTcpC deletion mutant. These effects were attenuated in Myd88(-/-) and Tlr4(-/-) mice. Transcriptomic analysis confirmed that TcpC inhibits MYD88 dependent gene expression in CFT073 infected human uroepithelial cells but in addition the inhibitory effect included targets in the TRIF and IL-6/IL-1 signaling pathways, where MYD88 dependent and independent signaling may converge. The effects of TcpC on bacterial persistence were attenuated in Trif (-/-) or Il-1β (-/-) mice and innate immune responses to ΔTcpC were increased, confirming that Trif and Il-1β dependent targets might be involved in vivo, in addition to Myd88. Furthermore, soluble TcpC inhibited Myd88 and Trif dependent TLR signaling in murine macrophages. Our results suggest that TcpC may promote UTI-associated pathology broadly, through inhibition of TIR domain signaling and downstream pathways. Dysregulation of the host response by microbial TcpC thus appears to impair the protective effects of innate immunity, while promoting inflammation and tissue damage.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Biomarkers/metabolism
- Blotting, Western
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Epithelial Cells/microbiology
- Escherichia coli/pathogenicity
- Escherichia coli Infections/immunology
- Escherichia coli Infections/metabolism
- Escherichia coli Infections/microbiology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Female
- Gene Expression Profiling
- Humans
- Immunity, Innate
- Immunoenzyme Techniques
- Interleukin-1beta/physiology
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/microbiology
- Macrophages/cytology
- Macrophages/metabolism
- Macrophages/microbiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88/physiology
- Oligonucleotide Array Sequence Analysis
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Toll-Like Receptor 4/physiology
- Toll-Like Receptors/antagonists & inhibitors
- Toll-Like Receptors/genetics
- Toll-Like Receptors/metabolism
- Virulence/genetics
- Virulence Factors/genetics
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sweden
| | - Jingyao Zhang
- Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), Immunos, BIOPOLIS, Singapore, Singapore
| | - Hans Fischer
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sweden
| | - Wen Huang
- Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), Immunos, BIOPOLIS, Singapore, Singapore
| | - Nataliya Lutay
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sweden
| | - Christine Cirl
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), Immunos, BIOPOLIS, Singapore, Singapore
| | - Thomas Miethke
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, München, Germany
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sweden
- Singapore Immunology Network (SIgN), Biomedical Sciences Institutes, Agency for Science, Technology, and Research (A*STAR), Immunos, BIOPOLIS, Singapore, Singapore
- * E-mail:
| |
Collapse
|
41
|
Burgos Y, Beutin L. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC Microbiol 2010; 10:193. [PMID: 20637130 PMCID: PMC2918590 DOI: 10.1186/1471-2180-10-193] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha (alpha)-hemolysin is a pore forming cytolysin and serves as a virulence factor in intestinal and extraintestinal pathogenic strains of E. coli. It was suggested that the genes encoding alpha-hemolysin (hlyCABD) which can be found on the chromosome and plasmid, were acquired through horizontal gene transfer. Plasmid-encoded alpha-hly is associated with certain enterotoxigenic (ETEC), shigatoxigenic (STEC) and enteropathogenic E. coli (EPEC) strains. In uropathogenic E. coli (UPEC), the alpha-hly genes are located on chromosomal pathogenicity islands. Previous work suggested that plasmid and chromosomally encoded alpha-hly may have evolved independently. This was explored in our study. RESULTS We have investigated 11 alpha-hly plasmids from animal and human ETEC, STEC and EPEC strains. The size of alpha-hly plasmids ranges from 48-157 kb and eight plasmids are conjugative. The regulatory gene (hlyR) located upstream of the hlyCABD gene operon and an IS911 element located downstream of hlyD are conserved. Chromosomally-encoded alpha-hly operons lack the hlyR and IS911 elements. The DNA sequence of hlyC and hlyA divided the plasmid- and chromosomally-encoded alpha-hemolysins into two clusters. The plasmid-encoded alpha-hly genes could be further divided into three groups based on the insertion of IS1 and IS2 in the regulatory region upstream of the alpha-hly operon. Transcription of the hlyA gene was higher than the housekeeping icdA gene in all strains (rq 4.8 to 143.2). Nucleotide sequence analysis of a chromosomally located alpha-hly determinant in Enterobacter cloacae strain indicates that it originates from an E. coli alpha-hly plasmid. CONCLUSION Our data indicate that plasmids encoding alpha-hly in E. coli descended from a common ancestor independent of the plasmid size and the origin of the strains. Conjugative plasmids could contribute to the spread of the alpha-hly determinant to Enterobacter cloacae. The presence of IS-elements flanking the plasmid-encoded alpha-hly indicate that they might be mobile genetic elements.
Collapse
Affiliation(s)
- Ylanna Burgos
- Federal Institute for Risk Assessment, Berlin, Germany
| | | |
Collapse
|
42
|
Gunasekera TS, Herre AH, Crowder MW. Absence of ZnuABC-mediated zinc uptake affects virulence-associated phenotypes of uropathogenic Escherichia coli CFT073 under Zn(II)-depleted conditions. FEMS Microbiol Lett 2009; 300:36-41. [PMID: 19765083 DOI: 10.1111/j.1574-6968.2009.01762.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In an effort to uncover the role of the high-affinity Zn(II) uptake system in uropathogenic Escherichia coli CFT073, we deleted the znuB gene, which encodes for the transmembrane component of the ZnuABC transporter system. The null mutant for znuB did not grow on minimal medium unless supplemented with excess Zn(II) (50 muM ZnCl(2)). In contrast, the E. coli K-12 DeltaznuB cell line grew well on minimal medium that was not supplemented with Zn(II). The DeltaznuB mutant was significantly deficient in the formation of biofilm under static conditions and also showed a substantially reduced migration front of swarm cells. Because motility and biofilm formation are important for E. coli CFT073 pathogenicity, we propose that the high-affinity Zn(II) uptake system may contribute to the virulence of this pathogen in the urinary tract.
Collapse
|
43
|
Abstract
The urinary tract is among the most common sites of bacterial infection, and Escherichia coli is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. E. coli that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. E. coli strains that cause UTIs are termed uropathogenic E. coli (UPEC). In general, UPEC strains differ from commensal E. coli strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the E. coli CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic E. coli.Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.
Collapse
|
44
|
Contributions of O island 48 to adherence of enterohemorrhagic Escherichia coli O157:H7 to epithelial cells in vitro and in ligated pig ileal loops. Appl Environ Microbiol 2009; 75:5779-86. [PMID: 19633120 DOI: 10.1128/aem.00507-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
O island 48 (OI-48) of Escherichia coli consists of three functional gene clusters that encode urease, tellurite resistance (Te(r)), and putative adhesins Iha and AIDA-1. The functions of these clusters in enterohemorrhagic E. coli (EHEC) O157:H7 infection are unknown. Deletion mutants for these three regions were constructed and evaluated for their ability to adhere to epithelial cells in vitro and in ligated pig ileal loops. Deletion of the Te(r) gene cluster reduced the ability of the organism to adhere to and form large clusters on IPEC-J2 and HEp-2 cells. Complementation of the mutation by introducing the wild-type ter genes restored adherence and large-cluster formation. Tests in ligated pig ileal loops showed a decrease in colonization by the Te(r)-negative mutant, but the difference was not significant compared to colonization by the wild type (26.4% +/- 21.2% versus 40.1% +/- 19.1%; P = 0.168). The OI-48 aidA gene deletion had no effect on adherence in vitro or in vivo. Deletion of the iha and ureC genes had no effect on adherence in vitro but significantly reduced the colonization of EHEC O157:H7 in the ligated pig intestine. These data suggest that Te(r), Iha, and urease may contribute to EHEC O157:H7 pathogenesis by promoting adherence of the pathogen to the host intestinal epithelium.
Collapse
|
45
|
The DNA Sequence of the Escherichia coli O22 O-Antigen Gene Cluster and Detection of Pathogenic Strains Belonging to E. coli Serogroups O22 and O91 by Multiplex PCR Assays Targeting Virulence Genes and Genes in the Respective O-Antigen Gene Clusters. FOOD ANAL METHOD 2008. [DOI: 10.1007/s12161-008-9046-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect Immun 2008; 76:4833-41. [PMID: 18710869 DOI: 10.1128/iai.00630-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Motility and adherence are two integral aspects of bacterial pathogenesis. Adherence, often mediated by fimbriae, permits bacteria to attach to host cells and establish infection, whereas flagellum-driven motility allows bacteria to disseminate to sites more advantageous for colonization. Both fimbriae and flagella have been proven important for virulence of uropathogenic Escherichia coli (UPEC). Reciprocal regulation is one mechanism by which bacteria may reconcile the contradictory actions of adherence and motility. PapX, a P fimbrial gene product of UPEC strain CFT073, is a functional homolog of MrpJ of Proteus mirabilis; ectopic expression of papX in P. mirabilis reduces motility. To define the connection between P fimbria expression and motility in UPEC, the role of papX in the regulation of motility of strain CFT073 was examined. Overexpression of papX decreased motility of CFT073, which correlated with both a significant reduction in flagellin protein synthesized and flagella assembled on the cell surface. Conversely, an increase in motility and flagellin production was seen in an isogenic papX deletion mutant of CFT073. Microarray and quantitative reverse transcription-PCR analysis indicated that repression of motility of CFT073 by PapX appears to occur at the transcriptional level; expression of many motility-associated genes, including flhDC, the master regulator of motility, is decreased when papX is overexpressed. Transcription of motility genes is increased in the papX mutant compared to wild type. Electrophoretic mobility gel shift analysis revealed that PapX binds to the flhD promoter. We conclude that synthesis of P fimbriae regulates flagellum synthesis to repress motility via PapX.
Collapse
|
47
|
Kariyawasam S, Scaccianoce JA, Nolan LK. Common and specific genomic sequences of avian and human extraintestinal pathogenic Escherichia coli as determined by genomic subtractive hybridization. BMC Microbiol 2007; 7:81. [PMID: 17760980 PMCID: PMC2031896 DOI: 10.1186/1471-2180-7-81] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 08/30/2007] [Indexed: 11/13/2022] Open
Abstract
Background Suppression subtractive hybridization (SSH) strategy was used with extraintestinal pathogenic Escherichia coli (EXPEC) that cause avian colibacillosis (avian pathogenic E. coli or APEC) and human urinary tract infections (uropathogenic E. coli or UPEC) to determine if they possessed genes that were host and/or niche specific. Both APEC and UPEC isolates were used as tester and driver strains in 4 different SSHs in order to obtain APEC- and UPEC-specific subtraction fragments (SFs). Results These procedures yielded a total of 136 tester-specific SFs of which 85 were APEC-derived and 51 were UPEC-derived. Most of the APEC-derived SFs were associated with plasmids; whereas, the majority of UPEC-derived sequences matched to the bacterial chromosome. We further determined the distribution of these tester-derived sequences in a collection of UPEC and APEC isolates using polymerase chain reaction techniques. Plasmid-borne, APEC-derived sequences (tsh, cvaB, traR, traC and sopB) were predominantly present in APEC, as compared to UPEC. Of the UPEC-derived SFs, those encoding hemolysin D and F1C major and minor fimbrial subunits were present only in UPEC. However, two UPEC-derived SFs that showed strong similarity to the uropathgenic-specific protein gene (usp) occurred in APEC, demonstrating that usp is not specific to UPEC. Conclusion This study provides evidence of the genetic variability of ExPEC as well as genomic similarities between UPEC and APEC; it did not identify any single marker that would dictate host and/or niche specificity in APEC or UPEC. However, further studies on the genes that encode putative or hypothetical proteins might offer important insight into the pathogenesis of disease, as caused by these two ExPEC.
Collapse
Affiliation(s)
- Subhashinie Kariyawasam
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1802 Elwood Drive, VMRI #2, Iowa State University, Ames, IA 50011, USA
| | - Jennifer A Scaccianoce
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1802 Elwood Drive, VMRI #2, Iowa State University, Ames, IA 50011, USA
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1802 Elwood Drive, VMRI #2, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
48
|
Abstract
Fimbria-mediated interaction with the host elicits both innate and adaptive immune responses, and thus their expression may not always be beneficial in vivo. Furthermore, the metabolic drain of producing fimbriae is significant. It is not surprising, therefore, to find that fimbrial production in Escherichia coli and Salmonella enterica is under extensive environmental regulation. In many instances, fimbrial expression is regulated by phase variation, in which individual cells are capable of switching between fimbriate and afimbriate states to produce a mixed population. Mechanisms of phase variation vary considerably between different fimbriae and involve both genetic and epigenetic processes. Notwithstanding this, fimbrial expression is also sometimes controlled at the posttranscriptional level. In this chapter, we review key features of the regulation of fimbrial gene expression in E. coli and Salmonella. The occurrence and distribution of fimbrial operons vary significantly among E. coli pathovars and even among the many Salmonella serovars. Therefore, general principles are presented on the basis of detailed discussion of paradigms that have been extensively studied, including Pap, type 1 fimbriae, and curli. The roles of operon specific regulators like FimB or CsgD and of global regulatory proteins like Lrp, CpxR, and the histone-like proteins H-NS and IHF are reviewed as are the roles of sRNAs and of signalling nucleotide cyclic-di-GMP. Individual examples are discussed in detail to illustrate how the regulatory factors cooperate to allow tight control of expression of single operons. Molecular networks that allow coordinated expression between multiple fimbrial operons and with flagella in a single isolate are also presented. This chapter illustrates how adhesin expression is controlled, and the model systems also illustrate general regulatory principles germane to our overall understanding of bacterial gene regulation.
Collapse
|
49
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
50
|
Mamlouk K, Boutiba-Ben Boubaker I, Gautier V, Vimont S, Picard B, Ben Redjeb S, Arlet G. Emergence and outbreaks of CTX-M beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains in a Tunisian hospital. J Clin Microbiol 2006; 44:4049-56. [PMID: 16957046 PMCID: PMC1698301 DOI: 10.1128/jcm.01076-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sixty-two isolates of Enterobacteriaceae (35 Escherichia coli and 27 Klebsiella pneumoniae isolates) producing CTX-M-type beta-lactamases were collected between March 2000 and June 2003 in different wards of Charles Nicolle Hospital in Tunis (Tunisia). Sequencing identified the bla(CTX-M-15) determinant in 55 isolates and bla(CTX-M-16) in 7 isolates. The CTX-M-15-producing strains were isolated in several wards and consisted mainly of two successive clonal groups of E. coli and a major clonal group of K. pneumoniae. The second clonal group of E. coli belonged to phylogenetic group B2 and harbored more virulence factors than the first clonal group. Among the 22 transconjugants or electroporants obtained with selected E. coli and K. pneumoniae CTX-M-15-producing strains, a predominant plasmid restriction pattern was obtained with 17 isolates. The four CTX-M-16-producing strains of E. coli yielded the same pulsed-field gel electrophoresis (PFGE) pattern, while the three CTX-M-16-producing strains of K. pneumoniae yielded two different PFGE patterns. All of the CTX-M-16-producing isolates were recovered in the pediatric ward and had the same plasmid restriction pattern.
Collapse
Affiliation(s)
- Kelthoum Mamlouk
- Laboratoire Résistance aux Antibiotiques, Département de Microbiologie, Faculté de Medecine, Tunis, Tunisia
| | | | | | | | | | | | | |
Collapse
|