1
|
Duangsri J, Potisap C, Techawiwattanaboon T, Patarakul K, Sermswan RW, Wongratanacheewin S. Hamster and mouse CD25 +CD4 + T cell responses to the C-terminal of leptospiral Ig-like protein A. Vet Immunol Immunopathol 2025; 283:110920. [PMID: 40121947 DOI: 10.1016/j.vetimm.2025.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Leptospirosis is a major public health problem in humans and animals worldwide. The variable carboxy-terminal domain 7-13 of LigA (LigAc) is currently the most promising immunogen for the leptospirosis subunit vaccine. Its protective evidence was investigated in susceptible hamsters whose immunity was mostly based on the knowledge of resistant mice. The difference in immunity of these two animals might be an obstacle to successful vaccine development. The protective immunity induced by LigAc was reported to be specific antibodies while T-cell-mediated immunity has never been investigated. We reported for the first time that hamsters and mice gave dissimilar T-cell responses. Mice and hamsters were divided into 3 groups: an adjuvant plus recombinant LigAc (rLigAc) immunized, an adjuvant-injected, and a negative control group. Immunizations were done three times at 2-week intervals. The rLigAc-specific IgG antibody titers in rLigAc immunized mice and hamsters were significantly higher than in the control groups but no significant difference between the animals. The percentages of hamster CD4+ T cells were significantly higher than those of mice. Mouse CD25+CD4+ T cells responded to rLigAc significantly higher than hamsters. Interestingly, the rLigAc significantly reduced the percentage of IFN-γ+CD4+ cells in mice (≅30 %) and more decrease (≅70 %) was found in hamsters. Remarkably, it also reduced considerably hamster IL-4+CD4+ T cells (≅80 %) but an extremely low decrease in mice (≅20 %). Our result indicated that mice and hamsters gave different responses to leptospiral antigens which might be the possible key that plays a role in the outcome of disease.
Collapse
Affiliation(s)
- Jittima Duangsri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Chotima Potisap
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Rasana W Sermswan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | |
Collapse
|
2
|
Vaghasia V, Lata KS, Patel S, Das J. Epitopes mapping for identification of potential cross-reactive peptide against leptospirosis. J Biomol Struct Dyn 2025; 43:20-35. [PMID: 37948196 DOI: 10.1080/07391102.2023.2279285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Leptospira, the pathogenic helical spirochetes that cause leptospirosis, is an emerging zoonotic disease with effective dissemination tactics in the host and can infect humans and animals with moderate or severe illnesses. Thus, peptide-based vaccines may be the most effective strategy to manage the immune response against Leptospira to close these gaps. In the current investigation, highly immunogenic proteins from the proteome of Leptospira interorgan serogroup Icterohaemorrhagie serovar Lai strain 56601 were identified using immunoinformatic methods. It was discovered that the conserved and most immunogenic outer membrane Lepin protein was both antigenic and non-allergenic by testing 15 linear B-cells and the ten best T-cell (Helper-lymphocyte (HTL) with the most significant number of HLA-DR binding alleles and the eight cytotoxic T lymphocyte (CTL)) epitopes. Furthermore, a 3D structural model of CTL epitopes was created using the Pep-Fold3 platform. Using the Autodock 4.2 docking server, research was conducted to determine how well the top-ranked CTL peptide models attach to HLA-A*0201 (PDB ID: 4U6Y). With HLA-A*0201, the epitope SSGTGNLHV binds with a binding energy of -1.29 kcal/mol. Utilizing molecular dynamics modeling, the projected epitope-allele docked complex structure was optimized, and the stability of the complex system was assessed. Therefore, this epitope can trigger an immunological response and produce effective Leptospira vaccine candidates. Overall, this study offers a unique vaccination candidate and may encourage additional research into leptospirosis vaccines.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vibhisha Vaghasia
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | - Kumari Snehkant Lata
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts management, Gujarat University, Ahmedabad, India
| | | |
Collapse
|
3
|
Nakornpakdee Y, Techawiwattanaboon T, Prasai S, Komanee P, Sangkanjanavanich N, Boonkea S, Patarakul K. In silico prediction and experimental evaluation of LIP3228 of pathogenic Leptospira as a potential subunit vaccine target against leptospirosis. Biochem Biophys Res Commun 2024; 745:151229. [PMID: 39724687 DOI: 10.1016/j.bbrc.2024.151229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
A protein subunit vaccine comprising conserved surface-exposed outer membrane proteins (SE-OMPs) is considered a promising platform for leptospirosis vaccine. The search for novel vaccine candidates that confer high protective efficacy against leptospirosis is ongoing. The LIP3228 protein was previously identified as a conserved and abundant SE-OMP with the potential to serve as an effective vaccine candidate. However, it is crucial to explore the immunological properties of this vaccine antigen before proceeding with animal experiments. This study aimed to assess the immunological characteristics of LIP3228 through in silico prediction and to validate its immunogenicity and protective efficacy in a hamster model of acute leptospirosis. The LIP3228 vaccine candidate was predicted in silico to be immunogenic, with strong binding B-cell and T-cell epitopes. In the immune simulator, it demonstrated stable interactions with Toll-like receptors 2 (TLR2) and 4 (TLR4) and induced immune responses, potentially stimulating host immune responses in vivo. The animal experiment showed that immunization with recombinant LIP3228 protein, formulated with AddaVax adjuvant, induced high and specific IgG responses in hamsters, with IgG2 being the predominant subclass. Although no significant improvement in survival was observed compared to the negative control after a homologous challenge with virulent leptospires, the vaccinated hamsters showed a reduction in histopathological changes and severity of lesions in target organs compared to unvaccinated hamsters. These results suggest that the immunoinformatic prediction is effective in predicting immunogenicity but not protective efficacy. Therefore, LIP3228 could be considered a potential vaccine candidate for mitigating severe tissue damage. These findings may have significant implications for the development of subunit vaccines in the future.
Collapse
Affiliation(s)
- Yaowarin Nakornpakdee
- Department of Pathobiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Teerasit Techawiwattanaboon
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Saowaros Prasai
- Department of Pathobiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Pat Komanee
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok, 10400, Thailand
| | | | - Sukon Boonkea
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok, 10400, Thailand
| | - Kanitha Patarakul
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Bettin EB, Grassmann AA, Dellagostin OA, Gogarten JP, Caimano MJ. Leptospira interrogans encodes a canonical BamA and three novel noNterm Omp85 outer membrane protein paralogs. Sci Rep 2024; 14:19958. [PMID: 39198480 PMCID: PMC11358297 DOI: 10.1038/s41598-024-67772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
The Omp85 family of outer membrane proteins are ubiquitously distributed among diderm bacteria and play essential roles in outer membrane (OM) biogenesis. The majority of Omp85 orthologs are bipartite and consist of a conserved OM-embedded 16-stranded beta-barrel and variable periplasmic functional domains. Here, we demonstrate that Leptospira interrogans encodes four distinct Omp85 proteins. The presumptive leptospiral BamA, LIC11623, contains a noncanonical POTRA4 periplasmic domain that is conserved across Leptospiraceae. The remaining three leptospiral Omp85 proteins, LIC12252, LIC12254 and LIC12258, contain conserved beta-barrels but lack periplasmic domains. Two of the three 'noNterm' Omp85-like proteins were upregulated by leptospires in urine from infected mice compared to in vitro and/or following cultivation within rat peritoneal cavities. Mice infected with a L. interrogans lic11254 transposon mutant shed tenfold fewer leptospires in their urine compared to mice infected with the wild-type parent. Analyses of pathogenic and saprophytic Leptospira spp. identified five groups of noNterm Omp85 paralogs, including one pathogen- and two saprophyte-specific groups. Expanding our analysis beyond Leptospira spp., we identified additional noNterm Omp85 orthologs in bacteria isolated from diverse environments, suggesting a potential role for these previously unrecognized noNterm Omp85 proteins in physiological adaptation to harsh conditions.
Collapse
Affiliation(s)
- Everton B Bettin
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - André A Grassmann
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA
| | - Odir A Dellagostin
- Biotechnology Unit, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Department of Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030-3715, USA.
- Department of Pediatrics, University of Connecticut Health, Farmington, CT, USA.
- Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
5
|
Phukan H, Sarma A, Rex DAB, Christie SAD, Sabu SK, Hariharan S, Prasad TSK, Madanan MG. Physiological Temperature and Osmotic Changes Drive Dynamic Proteome Alterations in the Leptospiral Outer Membrane and Enhance Protein Export Systems. J Proteome Res 2023; 22:3447-3463. [PMID: 37877620 DOI: 10.1021/acs.jproteome.3c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Leptospirosis, a remerging zoonosis, has no effective vaccine or an unambiguous early diagnostic reagent. Proteins differentially expressed (DE) under pathogenic conditions will be useful candidates for antileptospiral measures. We employed a multipronged approach comprising high-resolution TMT-labeled LC-MS/MS-based proteome analysis coupled with bioinformatics on leptospiral proteins following Triton X-114 subcellular fractionation of leptospires treated under physiological temperature and osmolarity that mimic infection. Although there were significant changes in the DE proteins at the level of the entire cell, there were notable changes in proteins at the subcellular level, particularly on the outer membrane (OM), that show the significance of subcellular proteome analysis. The detergent-enriched proteins, representing outer membrane proteins (OMPs), exhibited a dynamic nature and upregulation under various physiological conditions. It was found that pathogenic proteins showed a higher proportion of upregulation compared to the nonpathogenic proteins in the OM. Further analysis identified 17 virulent proteins exclusively upregulated in the outer membrane during infection that could be useful for vaccine and diagnostic targets. The DE proteins may aid in metabolic adaptation and are enriched in pathways related to signal transduction and antibiotic biosynthesis. Many upregulated proteins belong to protein export systems such as SEC translocase, T2SSs, and T1SSs, indicating their sequential participation in protein transport to the outer leaflet of the OM. Further studies on OM-localized proteins may shed light on the pathogenesis of leptospirosis and serve as the basis for effective countermeasures.
Collapse
Affiliation(s)
- Homen Phukan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Abhijit Sarma
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Sarath Kizhakkemuriyil Sabu
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Suneetha Hariharan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | | | | |
Collapse
|
6
|
Azevedo IR, Amamura TA, Isaac L. Human leptospirosis: In search for a better vaccine. Scand J Immunol 2023; 98:e13316. [PMID: 39008520 DOI: 10.1111/sji.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/17/2024]
Abstract
Leptospirosis is a neglected disease caused by bacteria of the genus Leptospira and is more prevalent in tropical and subtropical countries. This pathogen infects humans and other animals, responsible for the most widespread zoonosis in the world, estimated to be responsible for 60 000 deaths and 1 million cases per year. To date, commercial vaccines against human leptospirosis are available only in some countries such as Japan, China, Cuba and France. These vaccines prepared with inactivated Leptospira (bacterins) induce a short-term and serovar-specific immune response, with strong adverse side effects. To circumvent these limitations, several research groups are investigating new experimental vaccines in order to ensure that they are safe, efficient, and protect against several pathogenic Leptospira serovars, inducing sterilizing immunity. Most of these protocols use attenuated cultures, preparations after LPS removal, recombinant proteins or DNA from pathogenic Leptospira spp. The aim of this review was to highlight several promising vaccine candidates, considering their immunogenicity, presence in different pathogenic Leptospira serovars, their role in virulence or immune evasion and other factors.
Collapse
Affiliation(s)
- Isabela Resende Azevedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Akemi Amamura
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Fernandes LGV, Teixeira AF, Nascimento ALTO. Evaluation of Leptospira interrogans knockdown mutants for LipL32, LipL41, LipL21, and OmpL1 proteins. Front Microbiol 2023; 14:1199660. [PMID: 37426019 PMCID: PMC10326724 DOI: 10.3389/fmicb.2023.1199660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Leptospirosis is a worldwide zoonosis caused by pathogenic and virulent species of the genus Leptospira, whose pathophysiology and virulence factors remain widely unexplored. Recently, the application of CRISPR interference (CRISPRi) has allowed the specific and rapid gene silencing of major leptospiral proteins, favoring the elucidation of their role in bacterial basic biology, host-pathogen interaction and virulence. Episomally expressed dead Cas9 from the Streptococcus pyogenes CRISPR/Cas system (dCas9) and single-guide RNA recognize and block transcription of the target gene by base pairing, dictated by the sequence contained in the 5' 20-nt sequence of the sgRNA. Methods In this work, we tailored plasmids for silencing the major proteins of L. interrogans serovar Copenhageni strain Fiocruz L1-130, namely LipL32, LipL41, LipL21 and OmpL1. Double- and triple-gene silencing by in tandem sgRNA cassettes were also achieved, despite plasmid instability. Results OmpL1 silencing resulted in a lethal phenotype, in both L. interrogans and saprophyte L. biflexa, suggesting its essential role in leptospiral biology. Mutants were confirmed and evaluated regarding interaction with host molecules, including extracellular matrix (ECM) and plasma components, and despite the dominant abundance of the studied proteins in the leptospiral membrane, protein silencing mostly resulted in unaltered interactions, either because they intrinsically display low affinity to the molecules assayed or by a compensation mechanism, where other proteins could be upregulated to fill the niche left by protein silencing, a feature previously described for the LipL32 mutant. Evaluation of the mutants in the hamster model confirms the augmented virulence of the LipL32 mutant, as hinted previously. The essential role of LipL21 in acute disease was demonstrated, since the LipL21 knockdown mutants were avirulent in the animal model, and even though mutants could still colonize the kidneys, they were found in markedly lower numbers in the animals' liver. Taking advantage of higher bacterial burden in LipL32 mutant-infected organs, protein silencing was demonstrated in vivo directly in leptospires present in organ homogenates. Discussion CRISPRi is now a well-established, attractive genetic tool that can be applied for exploring leptospiral virulence factors, leading to the rational for designing more effective subunit or even chimeric recombinant vaccines.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, São Paulo, Brazil
| |
Collapse
|
8
|
Ávila-Nieto C, Pedreño-López N, Mitjà O, Clotet B, Blanco J, Carrillo J. Syphilis vaccine: challenges, controversies and opportunities. Front Immunol 2023; 14:1126170. [PMID: 37090699 PMCID: PMC10118025 DOI: 10.3389/fimmu.2023.1126170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Syphilis is a sexually or vertically (mother to fetus) transmitted disease caused by the infection of Treponema pallidum subspecie pallidum (TPA). The incidence of syphilis has increased over the past years despite the fact that this bacterium is an obligate human pathogen, the infection route is well known, and the disease can be successfully treated with penicillin. As complementary measures to preventive campaigns and early treatment of infected individuals, development of a syphilis vaccine may be crucial for controlling disease spread and/or severity, particularly in countries where the effectiveness of the aforementioned measures is limited. In the last century, several vaccine prototypes have been tested in preclinical studies, mainly in rabbits. While none of them provided protection against infection, some prototypes prevented bacteria from disseminating to distal organs, attenuated lesion development, and accelerated their healing. In spite of these promising results, there is still some controversy regarding the identification of vaccine candidates and the characteristics of a syphilis-protective immune response. In this review, we describe what is known about TPA immune response, and the main mechanisms used by this pathogen to evade it. Moreover, we emphasize the importance of integrating this knowledge, in conjunction with the characterization of outer membrane proteins (OMPs), to expedite the development of a syphilis vaccine that can protect against TPA infection.
Collapse
Affiliation(s)
- Carlos Ávila-Nieto
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | | | - Oriol Mitjà
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Department, Germans Trias i Pujol Hospital, Badalona, Spain
- Fight Infections Foundation, Germans Trias i Pujol Hospital, Badalona, Catalonia, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Fight Infections Foundation, Germans Trias i Pujol Hospital, Badalona, Catalonia, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Catalonia, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, Instituto de Salut Carlos III (ISCIII), Madrid, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Catalonia, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, Instituto de Salut Carlos III (ISCIII), Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBERINFEC, Instituto de Salut Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
10
|
Prapong S, Tansiri Y, Sritrakul T, Sripattanakul S, Sopitthummakhun A, Katzenmeier G, Hsieh CL, McDonough SP, Prapong T, Chang YF. Leptospira borgpetersenii Leucine-Rich Repeat Proteins Provide Strong Protective Efficacy as Novel Leptospiral Vaccine Candidates. Trop Med Infect Dis 2022; 8:tropicalmed8010006. [PMID: 36668913 PMCID: PMC9863753 DOI: 10.3390/tropicalmed8010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Leucine-rich repeat (LRR) proteins are advocated for being assessed in vaccine development. Leptospiral LRR proteins were identified recently in silico from the genome of Leptospira borgpetersenii serogroup Sejroe, the seroprevalence of leptospiral infections of cattle in Thailand. Two LRR recombinant proteins, rKU_Sej_LRR_2012M (2012) and rhKU_Sej_LRR_2271 (2271), containing predicted immunogenic epitopes, were investigated for their cross-protective efficacies in an acute leptospirosis model with heterologous Leptospira serovar Pomona, though, strains from serogroup Sejroe are host-adapted to bovine, leading to chronic disease. Since serovar Pomona is frequently reported as seropositive in cattle, buffaloes, pigs, and dogs in Thailand and causes acute and severe leptospirosis in cattle by incidental infection, the serogroup Sejroe LRR proteins were evaluated for their cross-protective immunity. The protective efficacies were 37.5%, 50.0%, and 75.0% based on the survival rate for the control, 2012, and 2271 groups, respectively. Sera from 2012-immunized hamsters showed weak bactericidal action compared to sera from 2271-immunized hamsters (p < 0.05). Therefore, bacterial tissue clearances, inflammatory responses, and humoral and cell-mediated immune (HMI and CMI) responses were evaluated only in 2271-immunized hamsters challenged with virulent L. interrogans serovar Pomona. The 2271 protein induced prompt humoral immune responses (p < 0.05) and leptospiral tissue clearance, reducing tissue inflammation in immunized hamsters. In addition, protein 2271 and its immunogenic peptides stimulated splenocyte lymphoproliferation and stimulated both HMI and CMI responses by activating Th1 and Th2 cytokine gene expression in vaccinated hamsters. Our data suggest that the immunogenic potential renders rhKU_Sej_LRR_2271 protein a promising candidate for the development of a novel cross-protective vaccine against animal leptospirosis.
Collapse
Affiliation(s)
- Siriwan Prapong
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- The Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-871-264-148
| | - Yada Tansiri
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tepyuda Sritrakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen Campus, Nakorn Pathom 73140, Thailand
| | - Sineenat Sripattanakul
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- The Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Aukkrimapann Sopitthummakhun
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok 10900, Thailand
| | - Gerd Katzenmeier
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chin-Lin Hsieh
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sean P. McDonough
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Teerasak Prapong
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Sripattanakul S, Prapong T, Kamlangdee A, Katzenmeier G, Haltrich D, Hongprayoon R, Prapong S. Leptospira borgpetersenii Leucine-Rich Repeat Proteins and Derived Peptides in an Indirect ELISA Development for the Diagnosis of Canine Leptospiral Infections. Trop Med Infect Dis 2022; 7:311. [PMID: 36288052 PMCID: PMC9610812 DOI: 10.3390/tropicalmed7100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Domestic and stray dogs can be frequently infected by Leptospira, and thus may represent a source for transmission of this zoonotic disease in Thailand. Here, we have used peptides derived from a recombinant leucine-rich repeat (LRR) protein of Leptospira, rKU_Sej_LRR_2012M, for the development of an indirect enzyme-linked immunosorbent assay (ELISA) aimed at detecting antibodies against Leptospira interrogans, L. borgpetersenii, and L. biflexa, the three major seroprevalences in Thai dogs. The rKU_Sej_LRR_2012M protein is recognized by hyperimmune sera against several leptospiral serovars. The epitope peptides of the rKU_Sej_LRR_2012M showed binding affinities with lower IC50 values than peptides of known antigenic protein LipL32. Four peptides, 2012-3T, 2012-4B, 2012-5B and pool 2012-B, were specifically recognized by rabbit hyperimmune sera against nine serovars from three Leptospira spp. The indirect peptide-based ELISAs with these four peptides were evaluated with the LipL32 ELISA by using a receiver-operator curve (ROC) analysis. All peptides had an area under the curve of ROC (AUC) greater than 0.8, and the sum of sensitivity and specificity for each peptide was greater than 1.5. The degree of agreement of 2012-3T and pool 2012-B and 2012-4B and 2012-5B peptides were in moderate-to-good levels with kappa values of 0.41-0.60 and 0.61-0.80, when compared with LipL32, respectively. This finding would suggest an excellent capability of the 2012-4B and 2012-5B peptide-based ELISAs assay for the diagnosis of canine leptospiral infections.
Collapse
Affiliation(s)
- Sineenat Sripattanakul
- The Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Teerasak Prapong
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One-Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Attapon Kamlangdee
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen Campus, Nakorn Pathom 73140, Thailand
| | - Gerd Katzenmeier
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One-Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Dietmar Haltrich
- Department of Food Sciences and Technology, University of Natural Resources and Life Sciences,1180 Vienna, Austria
| | - Ratchanee Hongprayoon
- The Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Siriwan Prapong
- The Interdisciplinary Graduate Program in Genetic Engineering, The Graduate School, Kasetsart University, Bangkok 10900, Thailand
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One-Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
12
|
Varma VP, Kadivella M, Kumar A, Kavela S, Faisal SM. LigA formulated in AS04 or Montanide ISA720VG induced superior immune response compared to alum, which correlated to protective efficacy in a hamster model of leptospirosis. Front Immunol 2022; 13:985802. [PMID: 36300125 PMCID: PMC9590693 DOI: 10.3389/fimmu.2022.985802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a zoonotic disease of global importance. The current vaccine provides serovar-specific and short-term immunity and does not prevent bacterial shedding in infected animals. Subunit vaccines based on surface proteins have shown to induce protection in an animal model. However, these proteins were tested with non-clinical adjuvants and induced low to moderate protective efficacy. We formulated a variable region of Leptospira immunoglobulin-like protein A (LAV) in clinical adjuvants, AS04 and Montanide ISA720VG, and then evaluated the immune response in mice and protective efficacy in a hamster model. Our results show that animals immunized with LAV-AS04 and LAV-Montanide ISA720VG (LAV-M) induced significantly higher levels of LAV-specific antibodies than LAV-Alum. While LAV-Alum induced Th2 response with the induction of IgG1 and IL-4, AS04 and LAV-M induced a mixed Th1/Th2 response with significant levels of both IgG1/IL-4 and IgG2c/IFN-γ. Both LAV-AS04 and LAV-M induced the generation of a significantly higher number of cytotoxic T cells (CTLs). The immune response in LAV-AS04- and LAV-M-immunized animals was maintained for a long period (>180 days) with the generation of a significant level of B- and T-cell memory. The strong immune response by both vaccines correlated to enhanced recruitment and activation of innate immune cells particularly DCs at draining lymph nodes and the formation of germinal centers (GCs). Furthermore, the immune response generated in mice correlated to protective efficacy in the hamster model of leptospirosis. These results indicate that LAV-AS04 and LAV-M are promising vaccines and can be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Vivek P. Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mohammad Kadivella
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
- *Correspondence: Syed M. Faisal,
| |
Collapse
|
13
|
Maia MAC, Bettin EB, Barbosa LN, de Oliveira NR, Bunde TT, Pedra ACK, Rosa GA, da Rosa EEB, Seixas Neto ACP, Grassmann AA, McFadden J, Dellagostin OA, McBride AJA. Challenges for the development of a universal vaccine against leptospirosis revealed by the evaluation of 22 vaccine candidates. Front Cell Infect Microbiol 2022; 12:940966. [PMID: 36275031 PMCID: PMC9586249 DOI: 10.3389/fcimb.2022.940966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a neglected disease of man and animals that affects nearly half a million people annually and causes considerable economic losses. Current human vaccines are inactivated whole-cell preparations (bacterins) of Leptospira spp. that provide strong homologous protection yet fail to induce a cross-protective immune response. Yearly boosters are required, and serious side-effects are frequently reported so the vaccine is licensed for use in humans in only a handful of countries. Novel universal vaccines require identification of conserved surface-exposed epitopes of leptospiral antigens. Outer membrane β-barrel proteins (βb-OMPs) meet these requirements and have been successfully used as vaccines for other diseases. We report the evaluation of 22 constructs containing protein fragments from 33 leptospiral βb-OMPs, previously identified by reverse and structural vaccinology and cell-surface immunoprecipitation. Three-dimensional structures for each leptospiral βb-OMP were predicted by I-TASSER. The surface-exposed epitopes were predicted using NetMHCII 2.2 and BepiPred 2.0. Recombinant constructs containing regions from one or more βb-OMPs were cloned and expressed in Escherichia coli. IMAC-purified recombinant proteins were adsorbed to an aluminium hydroxide adjuvant to produce the vaccine formulations. Hamsters (4-6 weeks old) were vaccinated with 2 doses containing 50 – 125 μg of recombinant protein, with a 14-day interval between doses. Immunoprotection was evaluated in the hamster model of leptospirosis against a homologous challenge (10 – 20× ED50) with L. interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-130. Of the vaccine formulations, 20/22 were immunogenic and induced significant humoral immune responses (IgG) prior to challenge. Four constructs induced significant protection (100%, P < 0.001) and sterilizing immunity in two independent experiments, however, this was not reproducible in subsequent evaluations (0 – 33.3% protection, P > 0.05). The lack of reproducibility seen in these challenge experiments and in other reports in the literature, together with the lack of immune correlates and commercially available reagents to characterize the immune response, suggest that the hamster may not be the ideal model for evaluation of leptospirosis vaccines and highlight the need for evaluation of alternative models, such as the mouse.
Collapse
Affiliation(s)
- Mara A. C. Maia
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Everton B. Bettin
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Liana N. Barbosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Natasha R. de Oliveira
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tiffany T. Bunde
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Carolina K. Pedra
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Guilherme A. Rosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Elias E. B. da Rosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Amilton C. P. Seixas Neto
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Odir A. Dellagostin
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alan J. A. McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: Alan J. A. McBride,
| |
Collapse
|
14
|
Kumar P, Shiraz M, Akif M. Multi-epitope-based vaccine design by exploring antigenic potential among leptospiral lipoproteins using comprehensive immunoinformatics and structure-based approaches. Biotechnol Appl Biochem 2022; 70:670-687. [PMID: 35877991 DOI: 10.1002/bab.2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/17/2022] [Indexed: 11/08/2022]
Abstract
Leptospirosis is a tropical and globally neglected zoonotic disease caused by pathogenic spirochetes, leptospira. Although the disease has been studied for decades, a potent or effective vaccine is not available so far. Efforts are being made to design an efficient vaccine candidate using different approaches. Immunoinformatics approaches have been proven to be promising in terms of time and cost. Here, we used immunoinformatics and structure-based approaches to evaluate antigenic B and T-cell epitopes present on the Leptospiral lipoproteins (LipL). The promiscuous overlapping epitopes (B-cell, T-cell, IFN- γ positive and non-allergens), which can induce humoral, cell-mediated, and innate immunity, were selected to generate a multi-epitope chimeric vaccine. To enhance the vaccine immunogenicity, a TLR agonist was fused to the vaccine with a suitable linker. The chimeric vaccine structure was predicted for molecular docking studies with immune receptors. Moreover, the stability of the vaccine-immune receptor complexes was analyzed by normal mode analysis (NMA). The potency of the vaccine construct was predicted by the immune simulation tool. The study provides additional information towards constructing a peptide-based chimeric vaccine effort against Leptospira. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, INDIA
| | - Mohd Shiraz
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, INDIA
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, INDIA
| |
Collapse
|
15
|
Comparative proteomic analysis of Leptospira interrogans serogroup Icterohaemorrhagiae human vaccine strain and epidemic isolate from China. Arch Microbiol 2022; 204:460. [DOI: 10.1007/s00203-022-02987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/02/2022]
|
16
|
Chaurasia R, Salovey A, Guo X, Desir G, Vinetz JM. Vaccination With Leptospira interrogans PF07598 Gene Family-Encoded Virulence Modifying Proteins Protects Mice From Severe Leptospirosis and Reduces Bacterial Load in the Liver and Kidney. Front Cell Infect Microbiol 2022; 12:926994. [PMID: 35837473 PMCID: PMC9274288 DOI: 10.3389/fcimb.2022.926994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular and cellular pathogenesis of leptospirosis remains poorly understood. Based on comparative bacterial genomics data, we recently identified the hypothetical PF07598 gene family as encoding secreted exotoxins (VM proteins) that mediate cytotoxicity in vitro. To address whether VM proteins mediate in vivo leptospirosis pathogenesis, we tested the hypothesis that VM protein immunization of mice would protect against lethal challenge infection and reduce bacterial load in key target organs. C3H/HeJ mice were immunized with recombinant E. coli-produced, endotoxin-free, leptospiral VM proteins (derived from L. interrogans serovar Lai) in combination with the human-compatible adjuvant, glucopyranoside lipid A/squalene oil-in-water. Mice receiving full length recombinant VM proteins were protected from lethal challenge infection by L. interrogans serovar Canicola and had a 3-4 log10 reduction in bacterial load in the liver and kidney. These experiments show that immunization with recombinant VM proteins prevents leptospirosis clinical pathogenesis and leads to markedly reduced key target organ infection in this animal model. These data support the role of leptospiral VM proteins as virulence factors and suggest the possibility that a VM protein-based, serovar-independent, pan-leptospirosis vaccine may be feasible.
Collapse
Affiliation(s)
- Reetika Chaurasia
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aryeh Salovey
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xiaojia Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Gary Desir
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Joseph M. Vinetz,
| |
Collapse
|
17
|
Some like it hot, some like it cold; proteome comparison of Leptospira borgpetersenii serovar Hardjo strains propagated at different temperatures. J Proteomics 2022; 262:104602. [DOI: 10.1016/j.jprot.2022.104602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
|
18
|
Barazzone GC, Teixeira AF, Azevedo BOP, Damiano DK, Oliveira MP, Nascimento ALTO, Lopes APY. Revisiting the Development of Vaccines Against Pathogenic Leptospira: Innovative Approaches, Present Challenges, and Future Perspectives. Front Immunol 2022; 12:760291. [PMID: 35046936 PMCID: PMC8761801 DOI: 10.3389/fimmu.2021.760291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Human vaccination against leptospirosis has been relatively unsuccessful in clinical applications despite an expressive amount of vaccine candidates has been tested over years of research. Pathogenic Leptospira encompass a great number of serovars, most of which do not cross-react, and there has been a lack of genetic tools for many years. These obstacles have hampered the understanding of the bacteria's biology and, consequently, the identification of an effective antigen. Thus far, many approaches have been used in an attempt to find a cost-effective and broad-spectrum protective antigen(s) against the disease. In this extensive review, we discuss several strategies that have been used to develop an effective vaccine against leptospirosis, starting with Leptospira-inactivated bacterin, proteins identified in the genome sequences of pathogenic Leptospira, including reverse vaccinology, plasmid DNA, live vaccines, chimeric multi-epitope, and toll- and nod-like receptors agonists. This overview should be able to guide scientists working in the field to select potential antigens and to choose the appropriate formulation to administer the candidates.
Collapse
Affiliation(s)
- Giovana C. Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marcos P. Oliveira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
19
|
Techawiwattanaboon T, Thaibankluay P, Kreangkaiwal C, Sathean-Anan-Kun S, Khaenam P, Makjaroen J, Pisitkun T, Patarakul K. Surface proteomics and label-free quantification of Leptospira interrogans serovar Pomona. PLoS Negl Trop Dis 2021; 15:e0009983. [PMID: 34843470 PMCID: PMC8659334 DOI: 10.1371/journal.pntd.0009983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis is a re-emerging zoonosis with a global distribution. Surface-exposed outer membrane proteins (SE-OMPs) are crucial for bacterial-host interactions. SE-OMPs locate and expose their epitope on cell surface where is easily accessed by host molecules. This study aimed to screen for surface-exposed proteins and their abundance profile of pathogenic Leptospira interrogans serovar Pomona. Two complementary approaches, surface biotinylation and surface proteolytic shaving, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS) were employed to identify SE-OMPs of intact leptospires. For quantitative comparison, in-depth label-free analysis of SE-OMPs obtained from each method was performed using MaxQuant. The total number of proteins identified was 1,001 and 238 for surface biotinylation and proteinase K shaving, respectively. Among these, 39 were previously known SE-OMPs and 68 were predicted to be localized on the leptospiral surface. Based on MaxQuant analysis for relative quantification, six known SE-OMPs including EF- Tu, LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-OMPs, LipL71 were found in the 20 most abundant proteins, in which LipL41 was the highest abundant SE-OMP. Moreover, uncharacterized LIC14011 protein (LIP3228 ortholog in serovar Pomona) was identified as a novel predicted surface βb-OMP. High-abundance leptospiral SE-OMPs identified in this study may play roles in virulence and infection and are potential targets for development of vaccine or diagnostic tests for leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Praparat Thaibankluay
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Medical Science, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Chahya Kreangkaiwal
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Suwitra Sathean-Anan-Kun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Prasong Khaenam
- Center for Standardization and Product Validation, Faculty of Medical Technology, Mahidol University, Bangkok-Noi, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
20
|
Identification of leptospiral protein antigens recognized by WC1 + γδ T cell subsets as target for development of recombinant vaccines. Infect Immun 2021; 90:e0049221. [PMID: 34694919 DOI: 10.1128/iai.00492-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component in the optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ ???? T-cell respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.
Collapse
|
21
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
22
|
Tansiri Y, Sritrakul T, Saparpakorn P, Boondamnern T, Chimprasit A, Sripattanakul S, Hannongbua S, Prapong S. New potent epitopes from Leptospira borgpetersenii for the stimulation of humoral and cell-mediated immune responses: Experimental and theoretical studies. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Llanos Salinas SP, Castillo Sánchez LO, Castañeda Miranda G, Rodríguez Reyes EA, Ordoñez López L, Mena Bañuelos R, Alcaraz Sosa LE, Núñez Carrera MG, José Manuel RO, Carmona Gasca CA, Matsunaga J, Haake DA, Candanosa Aranda IE, de la Peña-Moctezuma A. GspD, The Type II Secretion System Secretin of Leptospira, Protects Hamsters against Lethal Infection with a Virulent L. interrogans Isolate. Vaccines (Basel) 2020; 8:vaccines8040759. [PMID: 33327369 PMCID: PMC7768463 DOI: 10.3390/vaccines8040759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The wide variety of pathogenic Leptospira serovars and the weak protection offered by the available vaccines encourage the search for protective immunogens against leptospirosis. We found that the secretin GspD of the type II secretion system (T2S) of Leptospira interrogans serovar Canicola was highly conserved amongst pathogenic serovars and was expressed in vivo during infection, as shown by immunohistochemistry. Convalescent sera of hamsters, dogs, and cows showed the presence of IgG antibodies, recognizing a recombinant version of this protein expressed in Escherichia coli (rGspDLC) in Western blot assays. In a pilot vaccination study, a group of eight hamsters was immunized on days zero and 14 with 50 µg of rGspDLC mixed with Freund’s incomplete adjuvant (FIA). On day 28 of the study, 1,000 LD50 (Lethal Dose 50%) of a virulent strain of Leptospira interrogans serovar Canicola (LOCaS46) were inoculated by an intraoral submucosal route (IOSM). Seventy-five percent protection against disease (p = 0.017573, Fisher’s exact test) and 50% protection against infection were observed in this group of vaccinated hamsters. In contrast, 85% of non-vaccinated hamsters died six to nine days after the challenge. These results suggest the potential usefulness of the T2S secretin GspD of Leptospira as a protective recombinant vaccine against leptospirosis.
Collapse
Affiliation(s)
- Samantha Paulina Llanos Salinas
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
| | - Luz Olivia Castillo Sánchez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Tepic 63155, Mexico; (L.O.C.S.); (C.A.C.G.)
| | - Giselle Castañeda Miranda
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
| | | | - Liliana Ordoñez López
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
| | - Rodrigo Mena Bañuelos
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
| | - Luz Elena Alcaraz Sosa
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Tlalpan 14387, Mexico;
| | - María Guadalupe Núñez Carrera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Centro Histórico 72000, Mexico;
| | - Ramírez Ortega José Manuel
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
| | - Carlos Alfredo Carmona Gasca
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Tepic 63155, Mexico; (L.O.C.S.); (C.A.C.G.)
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.M.); (D.A.H.)
| | - David A. Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA; (J.M.); (D.A.H.)
| | - Irma Eugenia Candanosa Aranda
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
| | - Alejandro de la Peña-Moctezuma
- Teaching, Research and Extension Center for Animal Production in High Plateau, School of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Queretaro 76795, Mexico; (S.P.L.S.); (G.C.M.); (I.E.C.A.)
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico; (L.O.L.); (R.M.B.); (R.O.J.M.)
- Correspondence: ; Tel.:+52-414-291-8100
| |
Collapse
|
24
|
Felix CR, Siedler BS, Barbosa LN, Timm GR, McFadden J, McBride AJA. An overview of human leptospirosis vaccine design and future perspectives. Expert Opin Drug Discov 2019; 15:179-188. [PMID: 31777290 DOI: 10.1080/17460441.2020.1694508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: It's been 20 years since the first report of a recombinant vaccine that protected against leptospirosis. Since then, numerous recombinant vaccines have been evaluated; however, no recombinant vaccine candidate has advanced to clinical trials. With the ever-increasing burden of leptospirosis, there is an urgent need for a universal vaccine against leptospirosis.Areas covered: This review covers the most promising vaccine candidates that induced significant, reproducible, protection and how advances in the field of bioinformatics has led to the discovery of hundreds of novel protein targets. The authors also discuss the most recent findings regarding the innate immune response and host-pathogen interactions and their impact on the discovery of novel vaccine candidates. In addition, the authors have identified what they believe are the most challenging problems for the discovery and development of a universal vaccine and their potential solutions.Expert opinion: A universal vaccine for leptospirosis will likely only be achieved using a recombinant vaccine as the bacterins are of limited use due to the lack of a cross-protective immune response. Although there are hundreds of novel targets, due to the lack of immune correlates and the need for more research into the basic microbiology of Leptospira spp., a universal vaccine is 10-15 years away.
Collapse
Affiliation(s)
- Carolina R Felix
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Bianca S Siedler
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil.,School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Liana N Barbosa
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Gabriana R Timm
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alan J A McBride
- Biotechnology Department, Centre for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
25
|
Suphatpahirapol C, Nguyen TH, Tansiri Y, Yingchutrakul Y, Roytrakul S, Nitipan S, Wajjwalku W, Haltrich D, Prapong S, Keawsompong S. Expression of a leptospiral leucine-rich repeat protein using a food-grade vector in Lactobacillus plantarum, as a strategy for vaccine delivery. 3 Biotech 2019; 9:324. [PMID: 31406646 DOI: 10.1007/s13205-019-1856-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/01/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, a first food-grade mucosal vaccine against leptospirosis was developed without the use of antibiotic resistance gene. This expression system is based on a food-grade host/vector system of Lactobacillus plantarum and a new vaccine candidate antigen, a leucine-rich repeat (LRR) protein of Leptospira borgpetersenii. The LRR of interest from serovar Sejroe is encoded by two overlapping genes and these genes were fused together by site-directed mutagenesis. The mutant gene thus obtained could be successfully expressed in this system as was shown by western blot analysis and liquid chromatography-mass spectrometry (LC-MS/MS) analysis. In addition, this analysis showed that the mutant LRR protein fused to a homologous signal peptide of L. plantarum could be exported to the cell surface as a result of the native LPXAG motif of the heterologous LRR protein, which presumably is responsible for anchoring the protein to the cell wall of L. plantarum. This new strategy could be an essential tool for further studies of leptospirosis mucosal vaccine delivery.
Collapse
Affiliation(s)
- Chattip Suphatpahirapol
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Thu-Ha Nguyen
- 3Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yada Tansiri
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- 5National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 5National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supachai Nitipan
- 6Department of Biology, Faculty of Sciences, Thaksin University, Phatthalung Campus, Phatthalung, Thailand
| | - Worawidh Wajjwalku
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Dietmar Haltrich
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 3Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siriwan Prapong
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Suttipun Keawsompong
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- 7Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
26
|
Techawiwattanaboon T, Barnier-Quer C, Palaga T, Jacquet A, Collin N, Sangjun N, Komanee P, Piboonpocanun S, Patarakul K. Reduced Renal Colonization and Enhanced Protection by Leptospiral Factor H Binding Proteins as a Multisubunit Vaccine Against Leptospirosis in Hamsters. Vaccines (Basel) 2019; 7:vaccines7030095. [PMID: 31443566 PMCID: PMC6789851 DOI: 10.3390/vaccines7030095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Subunit vaccines conferring complete protection against leptospirosis are not currently available. The interactions of factor H binding proteins (FHBPs) on pathogenic leptospires and host factor H are crucial for immune evasion by inhibition of complement-mediated killing. The inhibition of these interactions may be a potential strategy to clear leptospires in the host. This study aimed to evaluate a multisubunit vaccine composed of four known leptospiral FHBPs: LigA domain 7–13 (LigAc), LenA, LcpA, and Lsa23, for its protective efficacy in hamsters. The mono and multisubunit vaccines formulated with LMQ adjuvant, a combination of neutral liposome, monophosphoryl lipid A, and Quillaja saponaria fraction 21, induced high and comparable specific antibody (IgG) production against individual antigens. Hamsters immunized with the multisubunit vaccine showed 60% survival following the challenge by 20× LD50 of Leptospira interrogans serovar Pomona. No significant difference in survival rate and pathological findings of target organs was observed after vaccinations with multisubunit or mono-LigAc vaccines. However, the multisubunit vaccine significantly reduced leptospiral burden in surviving hamsters in comparison with the monosubunit vaccines. Therefore, the multisubunit vaccine conferred partial protection and reduced renal colonization against virulence Leptospira infection in hamsters. Our multisubunit formulation could represent a promising vaccine against leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alain Jacquet
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Nicolas Collin
- Vaccine Formulation Laboratory (VFL), University of Lausanne, 1066 Epalinges, Switzerland
| | - Noppadon Sangjun
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Pat Komanee
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Surapon Piboonpocanun
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
27
|
Teixeira AF, Fernandes LG, Cavenague MF, Takahashi MB, Santos JC, Passalia FJ, Daroz BB, Kochi LT, Vieira ML, Nascimento AL. Adjuvanted leptospiral vaccines: Challenges and future development of new leptospirosis vaccines. Vaccine 2019; 37:3961-3973. [DOI: 10.1016/j.vaccine.2019.05.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
|
28
|
da Cunha CEP, Bettin EB, Bakry AFAAY, Seixas Neto ACP, Amaral MG, Dellagostin OA. Evaluation of different strategies to promote a protective immune response against leptospirosis using a recombinant LigA and LigB chimera. Vaccine 2019; 37:1844-1852. [PMID: 30826147 DOI: 10.1016/j.vaccine.2019.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022]
Abstract
Leptospirosis is a zoonosis of worldwide distribution, caused by infection with pathogenic Leptospira species. The vaccines that are currently available are bacterins, with limited human use, that confer short-term, serovar-specific immunity. Lig proteins are considered to be the best vaccine candidates to date. Here, we aimed to construct a recombinant Lig chimera (LC) comprised of LigAni and LigBrep fragments, and to evaluate it as subunit or DNA vaccine using different administration strategies. Vaccines were formulated with 50 µg of recombinant LC associated with different adjuvants or with 100 µg of pTARGET/LC. Four-week-old hamsters received two doses of vaccine with different strategies and were challenged with 5 × DL50Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130. The immune response generated by Lig chimera conferred 100% protection to hamsters treated with at least one dose of recombinant LC. Despite the high levels of antibodies that vaccinated animals produced, a sterilizing immunity was not achieved. The lack of a sterilizing immunity could indicate the importance of a mixed humoral and cellular immune response. The present study generated insights that will be useful in the future development of improved subunit vaccines against leptospirosis.
Collapse
Affiliation(s)
| | | | | | | | - Marta Gonçalves Amaral
- Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Odir Antonio Dellagostin
- Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil.
| |
Collapse
|
29
|
Sabarinath T, Behera S, Deneke Y, Atif Ali S, Kaur G, Kumar A, Kumar GR, Kumar KS, Sinha D, Verma M, Srivastava S, Chaudhuri P. Serological evidence of anti-Leptospira antibodies in goats in various agro climatic zones of India. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Abstract
Considerable progress has been made in the field of leptospiral vaccines development since its first use as a killed vaccine in guinea pigs. Despite the fact that the immunity conferred is restricted to serovars with closely related lipopolysaccharide antigen, certain vaccines have remained useful, especially in endemic regions, for the protection of high-risk individuals. Other conventional vaccines such as the live-attenuated vaccine and lipopolysaccharide (LPS) vaccine have not gained popularity due to the reactive response that follows their administration and the lack of understanding of the pathogenesis of leptospirosis. With the recent breakthrough and availability of complete genome sequences of Leptospira, development of novel vaccine including recombinant protein vaccine using reverse vaccinology approaches has yielded encouraging results. However, factors hindering the development of effective leptospiral vaccines include variation in serovar distribution from region to region, establishment of renal carrier status following vaccination and determination of the dose and endpoint titres acceptable as definitive indicators of protective immunity. In this review, advancements and progress made in LPS-based vaccines, killed- and live-attenuated vaccines, recombinant peptide vaccines and DNA vaccines against leptospirosis are highlighted.
Collapse
Affiliation(s)
- Garba Bashiru
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
31
|
Garba B, Bahaman AR, Zakaria Z, Bejo SK, Mutalib AR, Bande F, Suleiman N. Antigenic potential of a recombinant polyvalent DNA vaccine against pathogenic leptospiral infection. Microb Pathog 2018; 124:136-144. [PMID: 30138761 DOI: 10.1016/j.micpath.2018.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/02/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022]
Abstract
Leptospirosis is a serious epidemic disease caused by pathogenic Leptospira species. The disease is endemic in most tropical and sub-tropical regions of the world. Currently, there is no effective polyvalent vaccine for prevention against most of the circulating serovars. Moreover, development of an efficient leptospiral vaccine capable of stimulating cross-protective immune responses against a wide range of serovars remains a daunting challenge. This, in part, is associated with the extensive diversity and variation of leptospiral serovars from region to region. In this study, a multi-epitope DNA vaccine encoding highly immunogenic epitopes from LipL32 and LipL41 was designed using in-silico approach. The DNA encoding antigenic epitopes was constructed from conserved pathogenic Leptospira genes (LipL32 and LipL41). Immunization of golden Syrian hamsters with the multi-epitope chimeric DNA vaccine resulted in the production of both agglutinating and neutralizing antibodies as evidence by MAT and in-vitro growth inhibition tests respectively. The antibodies produced reacted against eight different serovars and significantly reduced renal colonization following in vivo challenge. The vaccine was also able to significantly reduce renal colonization which is a very important factor responsible for persistence of leptospires among susceptible and reservoir animal hosts. In conclusion, the leptospiral multi-epitope chimeric DNA vaccine can serve as a potentially effective and safe vaccine against infection with different pathogenic leptospiral serovars.
Collapse
Affiliation(s)
- Bashiru Garba
- Veterinary Public Health Lab, Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria; Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Abdul Rani Bahaman
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Zunita Zakaria
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Khairani Bejo
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abdul Rahim Mutalib
- Department of Veterinary Laboratory Diagnostics Services Unit, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faruku Bande
- Bacteriology Lab, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Veterinary Services, Ministry of Animal Health and Fisheries Development, Usman Faruk Secretariat Complex, 840245, Sokoto State, Nigeria
| | - Nasiru Suleiman
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
32
|
Lata KS, Kumar S, Vaghasia V, Sharma P, Bhairappanvar SB, Soni S, Das J. Exploring Leptospiral proteomes to identify potential candidates for vaccine design against Leptospirosis using an immunoinformatics approach. Sci Rep 2018; 8:6935. [PMID: 29720698 PMCID: PMC5932004 DOI: 10.1038/s41598-018-25281-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
Leptospirosis is the most widespread zoonotic disease, estimated to cause severe infection in more than one million people each year, particularly in developing countries of tropical areas. Several factors such as variable and nonspecific clinical manifestation, existence of large number of serovars and asymptomatic hosts spreading infection, poor sanitation and lack of an effective vaccine make prophylaxis difficult. Consequently, there is an urgent need to develop an effective vaccine to halt its spread all over the world. In this study, an immunoinformatics approach was employed to identify the most vital and effective immunogenic protein from the proteome of Leptospira interrogans serovar Copenhageni strain L1-130 that may be suitable to stimulate a significant immune response aiding in the development of peptide vaccine against leptospirosis. Both B-cell and T-cell (Helper T-lymphocyte (HTL) and cytotoxic T lymphocyte (CTL)) epitopes were predicted for the conserved and most immunogenic outer membrane lipoprotein. Further, the binding interaction of CTL epitopes with Major Histocompatibility Complex class I (MHC-I) was evaluated using docking techniques. A Molecular Dynamics Simulation study was also performed to evaluate the stability of the resulting epitope-MHC-I complexes. Overall, this study provides novel vaccine candidates and may prompt further development of vaccines against leptospirosis.
Collapse
Affiliation(s)
- Kumari Snehkant Lata
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Swapnil Kumar
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Vibhisha Vaghasia
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Priyanka Sharma
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Shivarudrappa B Bhairappanvar
- Gujarat Institute of Bioinformatics, Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Subhash Soni
- Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India
| | - Jayashankar Das
- Gujarat State Biotechnology Mission, Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India. .,Gujarat Biotechnology Research Centre (GBRC), Department of Science & Technology, Government of Gujarat, Gandhinagar, 382011, India.
| |
Collapse
|
33
|
In Silico B Cell and T Cell Epitopes Evaluation of lipL32 and OmpL1 Proteins for Designing a Recombinant Multi-Epitope Vaccine Against Leptospirosis. ACTA ACUST UNITED AC 2018. [DOI: 10.5812/iji.63255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Ghazaei C. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence. Open Vet J 2018; 8:13-24. [PMID: 29445617 PMCID: PMC5806663 DOI: 10.4314/ovj.v8i1.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- Department of Microbiology, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
35
|
Abstract
The present incidence of leptospirosis in China is significantly lower than past rates, although small localized outbreaks continue to occur in epidemic regions. Improvements in sanitation, as well as vaccination of high-risk populations, have played crucial roles in reducing the disease burden. Several types of human leptospirosis vaccines have been developed, including inactivated whole-cell, outer-envelope, and recombinant vaccines. Of these, only a multivalent inactivated leptospirosis vaccine is available in China, which was added to the Chinese Expanded Program on Immunization in 2007. However, this vaccine elicits serogroup-specific immunity, and serogroup epidemiology should continue to be monitored to enhance vaccine coverage and distribution. On the other hand, the efficiency of the inactivated vaccine should be further improved by optimizing the formulation, and by expanding the target population. More importantly, additional investments should be made to develop universal recombinant vaccines.
Collapse
Affiliation(s)
- Yinghua Xu
- a Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Bio-pharmaceutical Industrial Base , Daxing District, Beijing , People's Republic of China
| | - Qiang Ye
- a Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Bio-pharmaceutical Industrial Base , Daxing District, Beijing , People's Republic of China
| |
Collapse
|
36
|
Evangelista KV, Lourdault K, Matsunaga J, Haake DA. Immunoprotective properties of recombinant LigA and LigB in a hamster model of acute leptospirosis. PLoS One 2017; 12:e0180004. [PMID: 28704385 PMCID: PMC5509140 DOI: 10.1371/journal.pone.0180004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/05/2017] [Indexed: 12/05/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis and is considered a major public health problem worldwide. Currently, there is no widely available vaccine against leptospirosis for use in humans. A purified, recombinant subunit vaccine that includes the last six immunoglobulin-like (Ig-like) domains of the leptospiral protein LigA (LigA7'-13) protects against lethal infection but not renal colonization after challenge by Leptospira interrogans. In this study, we examined whether the addition of the first seven Ig-like domains of LigB (LigB0-7) to LigA7'-13, can enhance immune protection and confer sterilizing immunity in the Golden Syrian hamster model of acute leptospirosis. Hamsters were subcutaneously immunized with soluble, recombinant LigA7'-13, LigB0-7, or a combination of LigA7'-13 and LigB0-7 in Freund's adjuvant. Immunization with Lig proteins generated a strong humoral immune response with high titers of IgG that recognized homologous protein, and cross-reacted with the heterologous protein as assessed by ELISA. LigA7'-13 alone, or in combination with LigB0-7, protected all hamsters from intraperitoneal challenge with a lethal dose of L. interrogans serovar Copenhageni strain Fiocruz L1-130. However, bacteria were recovered from the kidneys of all animals. Of eight animals immunized with LigB0-7, only three survived Leptospira challenge, one of which lacked renal colonization and had antibodies to native LigB by immunoblot. In addition, sera from two of the three LigB0-7 immunized survivors cross-reacted with LigA11-13, a region of LigA that is sufficient for protection. In summary, we confirmed that LigA7'-13 protects hamsters from death but not infection, and immunization with LigB0-7, either alone or in combination with LigA7'-13, did not confer sterilizing immunity.
Collapse
Affiliation(s)
- Karen V. Evangelista
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Kristel Lourdault
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - James Matsunaga
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - David A. Haake
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California, United States of America
| |
Collapse
|
37
|
Fernandes LG, Teixeira AF, Filho AF, Souza GO, Vasconcellos SA, Heinemann MB, Romero EC, Nascimento AL. Immune response and protective profile elicited by a multi-epitope chimeric protein derived from Leptospira interrogans. Int J Infect Dis 2017; 57:61-69. [DOI: 10.1016/j.ijid.2017.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
|
38
|
Christodoulides A, Boyadjian A, Kelesidis T. Spirochetal Lipoproteins and Immune Evasion. Front Immunol 2017; 8:364. [PMID: 28424696 PMCID: PMC5372817 DOI: 10.3389/fimmu.2017.00364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment.
Collapse
Affiliation(s)
- Alexei Christodoulides
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ani Boyadjian
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
39
|
LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis. PLoS Negl Trop Dis 2017; 11:e0005441. [PMID: 28301479 PMCID: PMC5370146 DOI: 10.1371/journal.pntd.0005441] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/28/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022] Open
Abstract
Neglected tropical diseases, including zoonoses such as leptospirosis, have a major impact on rural and poor urban communities, particularly in developing countries. This has led to major investment in antipoverty vaccines that focus on diseases that influence public health and thereby productivity. While the true, global, impact of leptospirosis is unknown due to the lack of adequate laboratory diagnosis, the WHO estimates that incidence has doubled over the last 15 years to over 1 million cases that require hospitalization every year. Leptospirosis is caused by pathogenic Leptospira spp. and is spread through direct contact with infected animals, their urine or contaminated water and soil. Inactivated leptospirosis vaccines, or bacterins, are approved in only a handful of countries due to the lack of heterologous protection (there are > 250 pathogenic Leptospira serovars) and the serious side-effects associated with vaccination. Currently, research has focused on recombinant vaccines, a possible solution to these problems. However, due to a lack of standardised animal models, rigorous statistical analysis and poor reproducibility, this approach has met with limited success. We evaluated a subunit vaccine preparation, based on a conserved region of the leptospiral immunoglobulin-like B protein (LigB(131–645)) and aluminium hydroxide (AH), in the hamster model of leptospirosis. The vaccine conferred significant protection (80.0–100%, P < 0.05) against mortality in vaccinated animals in seven independent experiments. The efficacy of the LigB(131–645)/AH vaccine ranged from 87.5–100% and we observed sterile immunity (87.5–100%) among the vaccinated survivors. Significant levels of IgM and IgG were induced among vaccinated animals, although they did not correlate with immunity. A mixed IgG1/IgG2 subclass profile was associated with the subunit vaccine, compared to the predominant IgG2 profile seen in bacterin vaccinated hamsters. These findings suggest that LigB(131–645) is a vaccine candidate against leptospirosis with potential ramifications to public and veterinary health. Leptospirosis, also known as Weil’s disease, is spread by contact with infected animals or with water and soil containing pathogenic spirochaetes belonging to the Leptospira genus. Leptospirosis is a serious public health problem that can cause kidney failure, pulmonary complications and can be fatal. Due to its similarity to other tropical fevers, leptospirosis is difficult to diagnose. It occurs mainly in developing countries with tropical climates and the WHO considers it one of the most widespread zoonotic diseases in the world. Existing vaccines, known as bacterins, are not recommended for general use and cause serious side-effects. Advances in the field of leptospirosis research have identified leptospiral proteins for use in a recombinant vaccine. However, evaluations using animal models reported mixed success and this has raised doubts as to their usefulness. The current study reports, for the first time, the evaluation of a subunit vaccine that reproducibly protected hamsters against leptospirosis and that induced sterile immunity among survivors. Significant antibody levels were induced in vaccinated animals and the antibody profile was characterised and found to be different to that induced by a bacterin vaccine. These observations suggest that we have identified a potential vaccine candidate for human an animal leptospirosis.
Collapse
|
40
|
Grassmann AA, Souza JD, McBride AJA. A Universal Vaccine against Leptospirosis: Are We Going in the Right Direction? Front Immunol 2017; 8:256. [PMID: 28337203 PMCID: PMC5343615 DOI: 10.3389/fimmu.2017.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis in the world and a neglected tropical disease estimated to cause severe infection in more than one million people worldwide every year that can be combated by effective immunization. However, no significant progress has been made on the leptospirosis vaccine since the advent of bacterins over 100 years. Although protective against lethal infection, particularly in animals, bacterin-induced immunity is considered short term, serovar restricted, and the vaccine can cause serious side effects. The urgent need for a new vaccine has motivated several research groups to evaluate the protective immune response induced by recombinant vaccines. Significant protection has been reported with several promising outer membrane proteins, including LipL32 and the leptospiral immunoglobulin-like proteins. However, efficacy was variable and failed to induce a cross-protective response or sterile immunity among vaccinated animals. As hundreds of draft genomes of all known Leptospira species are now available, this should aid novel target discovery through reverse vaccinology (RV) and pangenomic studies. The identification of surface-exposed vaccine candidates that are highly conserved among infectious Leptospira spp. is a requirement for the development of a cross-protective universal vaccine. However, the lack of immune correlates is a major drawback to the application of RV to Leptospira genomes. In addition, as the protective immune response against leptospirosis is not fully understood, the rational use of adjuvants tends to be a process of trial and error. In this perspective, we discuss current advances, the pitfalls, and possible solutions for the development of a universal leptospirosis vaccine.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Brazil
| |
Collapse
|
41
|
Silveira MM, Conceição FR, Mendonça M, Moreira GMSG, Da Cunha CEP, Conrad NL, Oliveira PDD, Hartwig DD, De Leon PMM, Moreira ÂN. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis. J Med Microbiol 2017; 66:184-190. [DOI: 10.1099/jmm.0.000414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Marcelle Moura Silveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Garanhuns, Avenida Bom Pastor, S/N, Boa Vista, 55292-270 Garanhuns, PE, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Gustavo Marçal Schmidt Garcia Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Carlos Eduardo Pouey Da Cunha
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Patrícia Diaz de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Priscila Marques Moura De Leon
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil
- Departamento de Nutrição, Faculdade de Nutrição, Universidade Federal de Pelotas, Campus Porto/Anglo, Rua Gomes Carneiro, 01 – Centro, Caixa Postal 354, 96010-610 Pelotas, RS, Brazil
| |
Collapse
|
42
|
Dellagostin OA, Grassmann AA, Rizzi C, Schuch RA, Jorge S, Oliveira TL, McBride AJA, Hartwig DD. Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates. Int J Mol Sci 2017; 18:ijms18010158. [PMID: 28098813 PMCID: PMC5297791 DOI: 10.3390/ijms18010158] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/01/2022] Open
Abstract
Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins) are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV) has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis.
Collapse
Affiliation(s)
- Odir A Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - André A Grassmann
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Caroline Rizzi
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Rodrigo A Schuch
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Sérgio Jorge
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Thais L Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Alan J A McBride
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| | - Daiane D Hartwig
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas RS 96100-000, Brazil.
| |
Collapse
|
43
|
Abstract
Lipoproteins are lipid-modified proteins that dominate the spirochetal proteome. While found in all bacteria, spirochetal lipoproteins have unique features and play critical roles in spirochete biology. For this reason, considerable effort has been devoted to determining how the lipoproteome is generated. Essential features of the structural elements of lipoproteins are now understood with greater clarity, enabling greater confidence in identification of lipoproteins from genomic sequences. The journey from the ribosome to the outer membrane, and in some cases, to the cellular surface has been defined, including secretion, lipidation, sorting, and export across the outer membrane. Given their abundance and importance, it is not surprising that spirochetes have developed a number of strategies for regulating the spatiotemporal expression of lipoproteins. In some cases, lipoprotein expression is tied to various environmental cues, while in other cases, it is linked to growth rate. This regulation enables spirochetes to express certain lipoproteins at high levels in one phase of the spirochete lifecycle, while dramatically downregulating the same lipoproteins in other phases. The mammalian host has developed specialized mechanisms for recognizing lipoproteins and triggering an immune response. Evasion of that immune response is essential for spirochete persistence. For this reason, spirochetes have developed mechanisms for altering lipoproteins. Lipoproteins recognized by antibodies formed during infection are key serodiagnostic antigens. In addition, lipoprotein vaccines have been developed for generating an immune response to control or prevent a spirochete infection. This chapter summarizes our current understanding of lipoproteins in interactions of spirochetes with their hosts.
Collapse
|
44
|
Lindow JC, Wunder EA, Popper SJ, Min JN, Mannam P, Srivastava A, Yao Y, Hacker KP, Raddassi K, Lee PJ, Montgomery RR, Shaw AC, Hagan JE, Araújo GC, Nery N, Relman DA, Kim CC, Reis MG, Ko AI. Cathelicidin Insufficiency in Patients with Fatal Leptospirosis. PLoS Pathog 2016; 12:e1005943. [PMID: 27812211 PMCID: PMC5094754 DOI: 10.1371/journal.ppat.1005943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis causes significant morbidity and mortality worldwide; however, the role of the host immune response in disease progression and high case fatality (>10-50%) is poorly understood. We conducted a multi-parameter investigation of patients with acute leptospirosis to identify mechanisms associated with case fatality. Whole blood transcriptional profiling of 16 hospitalized Brazilian patients with acute leptospirosis (13 survivors, 3 deceased) revealed fatal cases had lower expression of the antimicrobial peptide, cathelicidin, and chemokines, but more abundant pro-inflammatory cytokine receptors. In contrast, survivors generated strong adaptive immune signatures, including transcripts relevant to antigen presentation and immunoglobulin production. In an independent cohort (23 survivors, 22 deceased), fatal cases had higher bacterial loads (P = 0.0004) and lower anti-Leptospira antibody titers (P = 0.02) at the time of hospitalization, independent of the duration of illness. Low serum cathelicidin and RANTES levels during acute illness were independent risk factors for higher bacterial loads (P = 0.005) and death (P = 0.04), respectively. To investigate the mechanism of cathelicidin in patients surviving acute disease, we administered LL-37, the active peptide of cathelicidin, in a hamster model of lethal leptospirosis and found it significantly decreased bacterial loads and increased survival. Our findings indicate that the host immune response plays a central role in severe leptospirosis disease progression. While drawn from a limited study size, significant conclusions include that poor clinical outcomes are associated with high systemic bacterial loads, and a decreased antibody response. Furthermore, our data identified a key role for the antimicrobial peptide, cathelicidin, in mounting an effective bactericidal response against the pathogen, which represents a valuable new therapeutic approach for leptospirosis.
Collapse
Affiliation(s)
- Janet C. Lindow
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Stephen J. Popper
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jin-na Min
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Praveen Mannam
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Anup Srivastava
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yi Yao
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kathryn P. Hacker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Patty J. Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ruth R. Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jose E. Hagan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Guilherme C. Araújo
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Nivison Nery
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Charles C. Kim
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Mitermayer G. Reis
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Bahia, Brazil
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, Bahia, Brazil
| |
Collapse
|
45
|
Velineni S, Timoney JF. Preliminary evaluation of a dual antigen ELISA to distinguish vaccinated from Leptospira infected horses. Vet Rec 2016; 179:574. [PMID: 27650465 DOI: 10.1136/vr.103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 11/04/2022]
Abstract
Immunogenic proteins of Leptospira interrogans serovar Pomona type kennewicki (Lk) including Sph1, LigA, Hsp15 and LipL45 (Qlp42) are up-regulated in infected horses but are undetectable or expressed in trace amounts on cultured organisms. In contrast, LipL32 is abundant on cultured Lk and elicits infection antibody responses. The aim of this study was to develop an ELISA based on LipL32 or Lk sonicate and host-induced proteins to differentiate vaccine from infection serum antibody. IgG specific for recombinant Sph1, LigA, Lk90 (LigA; 379-1225 a.a), Hsp15, LipL45 and LipL32 of Lk were assayed in sera of horses infected naturally with Lk and before and after immunisation with serovar Pomona bacterin. Infection but not vaccine sera reacted strongly with Sph1, LigA and Lk90. LipL45 and Hsp15 reacted moderately with infection sera and weakly with vaccine sera. Lk sonicate and LipL32 reacted strongly with both infection and vaccine sera. As expected, culture-based vaccine failed to stimulate antibody to host-induced proteins. Therefore a dual antigen ELISA based on Lk sonicate or LipL32 combined with host-induced Sph1 and Lk90 will be valuable in differentiating infection from vaccine responses.
Collapse
Affiliation(s)
- S Velineni
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - J F Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
46
|
Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms. mSphere 2016; 1:mSphere00042-16. [PMID: 27303713 PMCID: PMC4863578 DOI: 10.1128/msphere.00042-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth in a member of the genus Leptospira. As many pathogenic species of this genus can survive inside the host but also persist in environmental water, mostly forming biofilms, identifying the molecular basis of this capacity can impact the understanding of how leptospires are able to fulfill a complete life cycle that alternates between adaptation to the host and adaptation to hostile external environmental conditions. We identified several genes and regulatory networks that can be the kickoff for deepening understanding of the molecular mechanisms involving bacterial persistence via biofilm formation; understanding this is important for the future development of tools for controlling leptospirosis. The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth in a member of the genus Leptospira. As many pathogenic species of this genus can survive inside the host but also persist in environmental water, mostly forming biofilms, identifying the molecular basis of this capacity can impact the understanding of how leptospires are able to fulfill a complete life cycle that alternates between adaptation to the host and adaptation to hostile external environmental conditions. We identified several genes and regulatory networks that can be the kickoff for deepening understanding of the molecular mechanisms involving bacterial persistence via biofilm formation; understanding this is important for the future development of tools for controlling leptospirosis.
Collapse
|
47
|
Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L, Berg DE, Bulach D, Buschiazzo A, Chang YF, Galloway RL, Haake DA, Haft DH, Hartskeerl R, Ko AI, Levett PN, Matsunaga J, Mechaly AE, Monk JM, Nascimento ALT, Nelson KE, Palsson B, Peacock SJ, Picardeau M, Ricaldi JN, Thaipandungpanit J, Wunder EA, Yang XF, Zhang JJ, Vinetz JM. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis 2016; 10:e0004403. [PMID: 26890609 PMCID: PMC4758666 DOI: 10.1371/journal.pntd.0004403] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/03/2016] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
Collapse
Affiliation(s)
- Derrick E. Fouts
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael A. Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Haritha Adhikarla
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Clayton, Australia
| | - Luciane Amorim-Santos
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Douglas E. Berg
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Alejandro Buschiazzo
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
- Institut Pasteur, Department of Structural Biology and Chemistry, Paris, France
| | - Yung-Fu Chang
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Renee L. Galloway
- Centers for Disease Control and Prevention (DHHS, CDC, OID, NCEZID, DHCPP, BSPB), Atlanta, Georgia, United States of America
| | - David A. Haake
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rudy Hartskeerl
- WHO/FAO/OIE and National Collaborating Centre for Reference and Research on Leptospirosis, KIT Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - Paul N. Levett
- Government of Saskatchewan, Disease Control Laboratory Regina, Canada
| | - James Matsunaga
- VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ariel E. Mechaly
- Institut Pasteur de Montevideo, Laboratory of Molecular and Structural Microbiology, Montevideo, Uruguay
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ana L. T. Nascimento
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
- Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, National Reference Centre and WHO Collaborating Center for Leptospirosis, Paris, France
| | - Jessica N. Ricaldi
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz/MS, Salvador, Bahia, Brazil
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Instituto de Medicina Tropical Alexander von Humboldt; Facultad de Medicina Alberto Hurtado, Universidd Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
48
|
Haake DA. The Miller Hypothesis. ACTA ACUST UNITED AC 2016; 7:167-174. [PMID: 30701122 DOI: 10.1615/forumimmundisther.2017020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The immune response is a cornerstone in the body's struggle against microbial pathogens. In ways that we do not yet completely understand, the mammalian immune response has evolved to identify proteins of pathogens that are either important virulence factors or key immunoprotective targets. Professor James N. Miller suggested that one way to discover such proteins is to harness the power of the immune system in the laboratory.This general concept, referred to here as the Miller Hypothesis, took several different manifestations in the discovery of some of the best known and widely studied leptospiral proteins: The porin OmpL1 was identified by surface immunoprecipitation, leptospiral immunoglobulin-like proteins were uncovered by screening a genomic library with sera from leptospirosis patients, and the major outer-membrane lipoprotein LipL32 was recognized through immunoblot studies. Such approaches will continue to bear fruit for both the leptospiral research field and research on other invasive pathogens.
Collapse
Affiliation(s)
- David A Haake
- Division of Infectious Diseases, 111F, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073; and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Tel.: 310-268-3814; ,
| |
Collapse
|
49
|
Fernandes LG, Siqueira GH, Teixeira ARF, Silva LP, Figueredo JM, Cosate MR, Vieira ML, Nascimento ALTO. Leptospira spp.: Novel insights into host-pathogen interactions. Vet Immunol Immunopathol 2015; 176:50-7. [PMID: 26727033 DOI: 10.1016/j.vetimm.2015.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Aline R F Teixeira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Jupciana M Figueredo
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Maria R Cosate
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
50
|
Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:965-73. [PMID: 26108285 DOI: 10.1128/cvi.00285-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen.
Collapse
|