1
|
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are important human pathogens that have evolved to bind the major negative regulator of the complement system, complement factor H (CFH). However, little is known about the interaction of pathogens with CFH-related proteins (CFHRs) which are structurally similar to CFH but lack the main complement regulatory domains found in CFH. Insights into the role of CFHRs have been hampered by a lack of specific reagents. We generated a panel of CFHR-specific monoclonal antibodies and demonstrated that CFHR5 was bound by both pathogenic Neisseria spp. We showed that CFHR5 bound to PorB expressed by both pathogens in the presence of sialylated lipopolysaccharide and enhanced complement activation on the surface of N. gonorrhoeae. Our study furthered our understanding of the interactions of CFHRs with bacterial pathogens and revealed that CFHR5 bound the meningococcus and gonococcus via similar mechanisms.
Collapse
|
2
|
Tran NT, Vo LK, Komatsu M, Shiozaki K. Involvement of N-acetylneuraminate cytidylyltransferase in Edwardsiella piscicida pathogenicity. FISH & SHELLFISH IMMUNOLOGY 2022; 124:534-542. [PMID: 35477099 DOI: 10.1016/j.fsi.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Edwardsiella piscicida is a gram-negative bacterium that causes Edwardsiellosis in cultured fish. Edwardsiellosis is accompanied by symptoms such as skin lesions, hemorrhage, and necrosis in fish organs, which leads to significant economic losses in the aquaculture industry. Recently, we found that bacterial sialoglycoconjugates may be involved in the infectivity of E. piscicida. The more infectious strains of E. piscicida contain more sialic acid in the bacterial body, and the mRNA level of putative CMP-Neu5Ac synthase (css) is upregulated compared to that in the non-pathogenic strain. However, this putative css gene is yet to be cloned, and the involvement of CSS in E. piscicida pathogenicity remains unclear. Here, we cloned and transferred the css gene from E. piscicida into the FPC498 strain. CSS promoted infection in cultured cells originating from different fish species, and enhanced the mortality of E. piscicida-infected zebrafish larvae. CSS enhanced cell attachment and motility in E. piscicida, which differs from the decreased bacterial growth observed with the sialic acid-supplemented M9 medium. Both fractions (chloroform-methanol)-soluble and -insoluble fraction) prepared from E. piscicida pellet exhibited the increment of sialo-conjugates induced by CSS. Further, lectin blotting revealed the increment of Sia α2-3- and α2-6-, but not α2-8-, -linked glycoprotein in CSS-overexpressing E. piscicida. Overall, these findings indicate the physiological significance of CSS and the role of sialylation in E. piscicida pathogenicity.
Collapse
Affiliation(s)
- Nhung Thi Tran
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Linh Khanh Vo
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
3
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
4
|
Di Lorenzo F, De Castro C, Silipo A, Molinaro A. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol Rev 2019; 43:257-272. [DOI: 10.1093/femsre/fuz002] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055 Portici, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
5
|
Vinogradov E, St Michael F, Homma K, Sharma A, Cox AD. Structure of the LPS O-chain from Fusobacterium nucleatum strain 10953, containing sialic acid. Carbohydr Res 2017; 440-441:38-42. [PMID: 28199859 DOI: 10.1016/j.carres.2017.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/09/2023]
Abstract
Fusobacterium nucleatum is an anaerobic bacterium found in the human mouth where it causes periodontitis. Recently, it has been gaining attention as a potential causative agent for colorectal cancer and is strongly linked with pregnancy complications including pre-term and still births. Little is known about virulence factors of this organism and thus we have initiated studies to examine the bacterial surface glycochemistry. Consistent with a recent paper suggesting that F. nucleatum strain 10593 can synthesize sialic acid, a staining technique identified sialic acid on the bacterial surface. We isolated lipopolysaccharide from this F. nucleatum strain and performed structural analysis on the O-antigen. Our studies identified a trisaccharide repeating unit of the O-antigen with the following structure: -[→4)-α-Neup5Ac-(2 → 4)-β-d-Galp-(1 → 3)-α-d-FucpNAc4NAc-(1-]- where Ac indicates 4-N-acetylation of ∼30% FucNAc4N residues. The presence of sialic acid as a constituent of the O-antigen is consistent with recent data identifying de novo sialic acid synthesis in this strain.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada.
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| | - Kiyonobu Homma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14214, USA
| | - Ashu Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14214, USA
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
6
|
Brandtzaeg P, Bjerre A, Øvstebø R, Brusletto B, Joø GB, Kierulf P. Invited review: Neisseria meningitidis lipopolysaccharides in human pathology. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070060401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neisseria meningitidis causes meningitis, fulminant septicemia or mild meningococcemia attacking mainly children and young adults. Lipopolysaccharides (LPS) consist of a symmetrical hexa-acyl lipid A and a short oligosaccharide chain and are classified in 11 immunotypes. Lipid A is the primary toxic component of N. meningitidis . LPS levels in plasma and cerebrospinal fluid as determined by Limulus amebocyte lysate (LAL) assay are quantitatively closely associated with inflammatory mediators, clinical symptoms, and outcome. Patients with persistent septic shock, multiple organ failure, and severe coagulopathy reveal extraordinarily high levels of LPS in plasma. The cytokine production is compartmentalized to either the circulation or to the subarachnoid space. Mortality related to shock increases from 0% to > 80% with a 10-fold increase of plasma LPS from 10 to 100 endotoxin units/ml. Hemorrhagic skin lesions and thrombosis are caused by up-regulation of tissue factor which induces coagulation, and by inhibition of fibrinolysis by plasminogen activator inhibitor 1 (PAI-1). Effective antibiotic treatment results in a rapid decline of plasma LPS (half-life 1—3 h) and cytokines, and reduced generation of thrombin, and PAI-1. Early antibiotic treatment is mandatory. Three intervention trials to block lipid A have not significantly reduced the mortality of meningococcal septicemia.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway,
| | - Anna Bjerre
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway, Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Berit Brusletto
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Gun Britt Joø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Peter Kierulf
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
α-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. mBio 2015; 6:mBio.02465-14. [PMID: 25650401 PMCID: PMC4324315 DOI: 10.1128/mbio.02465-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae modify the terminal lacto-N-neotetraose moiety of their lipooligosaccharide (LOS) with sialic acid. N. gonorrhoeae LOS sialylation blocks killing by complement, which is mediated at least in part by enhanced binding of the complement inhibitor factor H (FH). The role of LOS sialylation in resistance of N. meningitidis to serum killing is less well defined. Sialylation in each species is catalyzed by the enzyme LOS α-2,3-sialyltransferase (Lst). Previous studies have shown increased Lst activity in N. gonorrhoeae compared to N. meningitidis due to an ~5-fold increase in lst transcription. Using isogenic N. gonorrhoeae strains engineered to express gonococcal lst from either the N. gonorrhoeae or N. meningitidislst promoter, we show that decreased expression of lst (driven by the N. meningitidis promoter) reduced LOS sialylation as determined by less incorporation of tritium-labeled cytidine monophospho-N-acetylneuraminic acid (CMP-NANA; the donor molecule for sialic acid). Diminished LOS sialylation resulted in reduced rates of FH binding and increased pathway activation compared to N. gonorrhoeae promoter-driven lst expression. The N. meningitidislst promoter generated sufficient Lst to sialylate N. gonorrhoeae LOS in vivo, and the level of sialylation after 24 h in the mouse genital tract was sufficient to mediate resistance to human serum ex vivo. Despite demonstrable LOS sialylation in vivo, gonococci harboring the N. meningitidislst promoter were outcompeted by those with the N. gonorrhoeaelst promoter during coinfection of the vaginal tract of estradiol-treated mice. These data highlight the importance of high lst expression levels for gonococcal pathogenesis. Neisseria gonorrhoeae has become resistant to nearly every therapeutic antibiotic used and is listed as an “urgent threat” by the Centers for Disease Control and Prevention. Novel therapies are needed to combat drug-resistant N. gonorrhoeae. Gonococci express an α-2,3-sialyltransferase (Lst) that can scavenge sialic acid from the host and use it to modify lipooligosaccharide (LOS). Sialylation of gonococcal LOS converts serum-sensitive strains to serum resistance, decreases antibody binding, and combats killing by neutrophils and antimicrobial peptides. Mutant N. gonorrhoeae that lack Lst (cannot sialylate LOS) are attenuated in a mouse model. Lst expression levels differ among N. gonorrhoeae strains, and N. gonorrhoeae typically expresses more Lst than Neisseria meningitidis. Here we examined the significance of differential lst expression levels and determined that the level of LOS sialylation is critical to the ability of N. gonorrhoeae to combat the immune system and survive in an animal model. LOS sialylation may be an ideal target for novel therapies.
Collapse
|
8
|
Agarwal S, Vasudhev S, DeOliveira RB, Ram S. Inhibition of the classical pathway of complement by meningococcal capsular polysaccharides. THE JOURNAL OF IMMUNOLOGY 2014; 193:1855-63. [PMID: 25015832 DOI: 10.4049/jimmunol.1303177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Almost all invasive Neisseria meningitidis isolates express capsular polysaccharide. Ab is required for complement-dependent killing of meningococci. Although alternative pathway evasion has received considerable attention, little is known about classical pathway (CP) inhibition by meningococci, which forms the basis of this study. We engineered capsulated and unencapsulated isogenic mutant strains of groups A, B, C, W, and Y meningococci to express similar amounts of the same factor H-binding protein (fHbp; a key component of group B meningococcal vaccines) molecule. Despite similar anti-fHbp mAb binding, significantly less C4b was deposited on all five encapsulated mutants compared with their unencapsulated counterparts (p < 0.01) when purified C1 and C4 were used to deposit C4b. Reduced C4b deposition was the result of capsule-mediated inhibition of C1q engagement by Ab. C4b deposition correlated linearly with C1q engagement by anti-fHbp. Whereas B, C, W, and Y capsules limited CP-mediated killing by anti-fHbp, the unencapsulated group A mutant paradoxically was more resistant than its encapsulated counterpart. Strains varied considerably in their susceptibility to anti-fHbp and complement despite similar Ab binding, which may have implications for the activity of fHbp-based vaccines. Capsule also limited C4b deposition by anti-porin A mAbs. Capsule expression decreased binding of an anti-lipooligosaccharide IgM mAb (∼ 1.2- to 2-fold reduction in fluorescence). Akin to observations with IgG, capsule also decreased IgM-mediated C4b deposition when IgM binding to the mutant strain pairs was normalized. In conclusion, we show that capsular polysaccharide, a critical meningococcal virulence factor, inhibits the CP of complement.
Collapse
Affiliation(s)
- Sarika Agarwal
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Shreekant Vasudhev
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester MA 01605
| |
Collapse
|
9
|
Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model. Infect Immun 2014; 82:2574-84. [PMID: 24686052 DOI: 10.1128/iai.01517-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats.
Collapse
|
10
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
11
|
Hussain MRM, Asfour H, Yasir M, Khan A, Mohamoud HSA, Al-Aama JY. The Microbial Pathology of Neu5Ac and Gal Epitopes. J Carbohydr Chem 2013. [DOI: 10.1080/07328303.2013.793773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Li C, Kurniyati, Hu B, Bian J, Sun J, Zhang W, Liu J, Pan Y, Li C. Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. Infect Immun 2012; 80:3-13. [PMID: 22025518 PMCID: PMC3255687 DOI: 10.1128/iai.05773-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/27/2023] Open
Abstract
The oral bacterium Porphyromonas gingivalis is a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide. P. gingivalis exhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence of P. gingivalis remain elusive. In this report, we found that P. gingivalis encodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed that PG0352 is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPg is an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that the PG0352 deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type, in vitro studies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement. In vivo studies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPg is an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity of P. gingivalis, and it can potentially serve as a new target for developing therapeutic agents against P. gingivalis infection.
Collapse
Affiliation(s)
- Chen Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Kurniyati
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Jiang Bian
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Jianlan Sun
- Department of Pathology and Anatomical Sciences
| | - Weiyan Zhang
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Chunhao Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| |
Collapse
|
13
|
Abstract
Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.
Collapse
Affiliation(s)
- Hongzhi Cao
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, CA 95616, USA
| |
Collapse
|
14
|
Enhanced bacteremia in human factor H transgenic rats infected by Neisseria meningitidis. Infect Immun 2011; 80:643-50. [PMID: 22104107 DOI: 10.1128/iai.05604-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis binds the complement downregulating protein, factor H (fH), which enables the organism to evade host defenses. Two fH ligands, fHbp and NspA, are known to bind specifically to human fH. We developed a human fH transgenic infant rat model to investigate the effect of human fH on meningococcal bacteremia. At 18 h after intraperitoneal challenge with 560 CFU of group B strain H44/76, all 19 human fH-positive rats had positive blood cultures compared to 0 of 7 human fH-negative control littermates (P < 0.0001). Human fH-positive infant rats also developed bacteremia after challenge with isogenic mutants of H44/76 in which genes encoding fHbp and NspA (ΔfHbp ΔNspA mutant) or the lipooligosaccharide sialyltransferase (Δlst mutant) had been inactivated. A fully encapsulated ΔfHbp ΔNspA Δlst mutant unable to sialylate lipooligosaccharide or bind human fH via the known fH ligands did not cause bacteremia, which argued against global susceptibility to bacteremia resulting from random integration of the transgene into the rat genome. In vitro, the wild-type and ΔfHbp ΔNspA mutant strains were killed by as little as 20% wild-type infant rat serum. The addition of 3 μg of human fH/ml permitted survival of the wild-type strain in up to 60% infant rat serum, whereas ≥33 μg of human fH/ml was required to rescue the ΔfHbp ΔNspA mutant. The ability of meningococci lacking expression of fHbp and NspA to cause invasive disease in human fH transgenic rats and to survive in wild-type infant rat serum supplemented with human fH indicates an additional human fH-dependent mechanism of evasion of innate immunity.
Collapse
|
15
|
Ram S, Lewis LA, Agarwal S. Meningococcal group W-135 and Y capsular polysaccharides paradoxically enhance activation of the alternative pathway of complement. J Biol Chem 2011; 286:8297-8307. [PMID: 21245150 DOI: 10.1074/jbc.m110.184838] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although capsular polysaccharide (CPS) is critical for meningococcal virulence, the molecular basis of alternative complement pathway (AP) regulation by meningococcal CPSs remains unclear. Using serum with only the AP active, the ability of strains to generate C3a (a measure of C3 activation) and subsequently deposit C3 fragments on bacteria was studied in encapsulated group A, B, C, W-135, and Y strains and their isogenic unencapsulated mutants. To eliminate confounding AP regulation by membrane-bound factor H (fH; AP inhibitor) and lipooligosaccharide sialic acid, the meningococcal fH ligands (fHbp and NspA) and lipooligosaccharide sialylation were deleted in all strains. Group A CPS expression did not affect C3a generation or C3 deposition. C3a generated by encapsulated and unencapsulated group B and C strains was similar, but CPS expression was associated with reduced C3 deposition, suggesting that these CPSs blocked C3 deposition on membrane targets. Paradoxically, encapsulated W-135 and Y strains (including the wild-type parent strains) enhanced C3 activation and showed marked C3 deposition as early as 10 min; at this time point C3 was barely activated by the unencapsulated mutants. W-135 and Y CPSs themselves served as a site for C3 deposition; this observation was confirmed using immobilized purified CPSs. Purified CPSs bound to unencapsulated meningococci, simulated findings with naturally encapsulated strains. These data highlight the heterogeneity of AP activation on the various meningococcal serogroups that may contribute to differences in their pathogenic mechanisms.
Collapse
Affiliation(s)
- Sanjay Ram
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| | - Lisa A Lewis
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sarika Agarwal
- From the Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
16
|
Lewis LA, Ngampasutadol J, Wallace R, Reid JEA, Vogel U, Ram S. The meningococcal vaccine candidate neisserial surface protein A (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog 2010; 6:e1001027. [PMID: 20686663 PMCID: PMC2912398 DOI: 10.1371/journal.ppat.1001027] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022] Open
Abstract
Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a ∼17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components. Neisseria meningitidis is an important cause of bacterial meningitis and sepsis worldwide. The complement system is a family of proteins that is critical for innate immune defenses against this pathogen. In order to successfully colonize humans and cause disease, the meningococcus must escape killing by the complement system. In this study we show that meningococci can use one of its surface proteins called Neisserial surface protein A (NspA) to bind to a host complement inhibitory protein called factor H (fH). NspA is a protein vaccine candidate against group B meningococcal disease. Binding of fH limits complement activation on the bacterial surface and enhances the ability of the meningococcus to resist complement-dependent killing. Capsular polysaccharide expression decreases fH binding to NspA, while truncation of the core glycan chain of lipooligosaccharide increases fH binding to meningococcal NspA. Loss of NspA results in enhanced complement activation on the bacterial surface and increased complement-dependent killing of meningococci. Our findings have disclosed a novel function for NspA and sheds further light on how this pathogen evades killing by the complement system.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Agarwal S, Ferreira VP, Cortes C, Pangburn MK, Rice PA, Ram S. An evaluation of the role of properdin in alternative pathway activation on Neisseria meningitidis and Neisseria gonorrhoeae. THE JOURNAL OF IMMUNOLOGY 2010; 185:507-16. [PMID: 20530262 DOI: 10.4049/jimmunol.0903598] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Properdin, a positive regulator of the alternative pathway (AP) of complement is important in innate immune defenses against invasive neisserial infections. Recently, commercially available unfractionated properdin was shown to bind to certain biological surfaces, including Neisseria gonorrhoeae, which facilitated C3 deposition. Unfractionated properdin contains aggregates or high-order oligomers, in addition to its physiological "native" (dimeric, trimeric, and tetrameric) forms. We examined the role of properdin in AP activation on diverse strains of Neisseria meningitidis and N. gonorrhoeae specifically using native versus unfractionated properdin. C3 deposition on Neisseria decreased markedly when properdin function was blocked using an anti-properdin mAb or when properdin was depleted from serum. Maximal AP-mediated C3 deposition on Neisseriae even at high (80%) serum concentrations required properdin. Consistent with prior observations, preincubation of bacteria with unfractionated properdin, followed by the addition of properdin-depleted serum resulted in higher C3 deposition than when bacteria were incubated with properdin-depleted serum alone. Unexpectedly, none of 10 Neisserial strains tested bound native properdin. Consistent with its inability to bind to Neisseriae, preincubating bacteria with native properdin followed by the addition of properdin-depleted serum did not cause detectable increases in C3 deposition. However, reconstituting properdin-depleted serum with native properdin a priori enhanced C3 deposition on all strains of Neisseria tested. In conclusion, the physiological forms of properdin do not bind directly to either N. meningitidis or N. gonorrhoeae but play a crucial role in augmenting AP-dependent C3 deposition on the bacteria through the "conventional" mechanism of stabilizing AP C3 convertases.
Collapse
Affiliation(s)
- Sarika Agarwal
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
18
|
Maruvada R, Prasadarao NV, Rubens CE. Acquisition of factor H by a novel surface protein on group B Streptococcus promotes complement degradation. FASEB J 2009; 23:3967-77. [PMID: 19608625 DOI: 10.1096/fj.09-138149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Binding of the host complement regulator, factor H (FH), by some pathogenic microbes constitutes an important virulence mechanism, whereby complement is broken down to help microbes survive in the host. Although it has been hypothesized for the past two decades that GBS type III binds FH via sialic acid present on its capsule, neither the binding of FH to GBS has been demonstrated nor the mechanism of interaction identified. We observed that FH bound to both wild-type and capsule or sialic acid-deficient GBS that were used as negative controls. Wild-type and acapsular GBS were incubated with serum or pure FH degraded almost 90% of C3b, suggesting that the GBS-bound FH maintained cofactor activity. In addition, dot-blot analysis showed approximately 5-10% of C5 and C9 formation, as compared to an Escherichia coli control, suggesting breakdown at the C3b level. Protease treatment of the bacteria completely abolished binding of FH. Using overlay assays and mass spectroscopic analysis, we identified the FH receptor as the streptococcal histidine triad (SHT) surface protein. The ability of binding FH to SHT was further confirmed by using recombinant SHT. This report describes the identification of the SHT as an FH-binding protein on the surface of GBS type III, revealing a novel mechanism by which the bacterium acquires FH to evade complement opsonization.
Collapse
Affiliation(s)
- Ravi Maruvada
- Division of Infectious Diseases, Johns Hopkins School of Medicine, 200 N. Wolfe St., Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
19
|
Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine. Infect Immun 2009; 77:3807-16. [PMID: 19564383 DOI: 10.1128/iai.00279-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.
Collapse
|
20
|
Almagro-Moreno S, Boyd EF. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 2009; 9:118. [PMID: 19470179 PMCID: PMC2693436 DOI: 10.1186/1471-2148-9-118] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 05/26/2009] [Indexed: 11/11/2022] Open
Abstract
Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA), epimerase (NanE), and kinase (NanK), necessary for the catabolism of sialic acid (the Nan cluster), are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body. The Nan region shows a mosaic evolution with NanA from Bacteroidetes, Vibrio and Yersinia branching closely together with NanA from eukaryotes.
Collapse
|
21
|
Shaughnessy J, Lewis LA, Jarva H, Ram S. Functional comparison of the binding of factor H short consensus repeat 6 (SCR 6) to factor H binding protein from Neisseria meningitidis and the binding of factor H SCR 18 to 20 to Neisseria gonorrhoeae porin. Infect Immun 2009; 77:2094-103. [PMID: 19273554 PMCID: PMC2681754 DOI: 10.1128/iai.01561-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/03/2009] [Accepted: 02/26/2009] [Indexed: 01/15/2023] Open
Abstract
Both Neisseria meningitidis and Neisseria gonorrhoeae recruit the alternative pathway complement inhibitory protein factor H (fH) to their surfaces to evade complement-dependent killing. Meningococci bind fH via fH binding protein (fHbp), a surface-exposed lipoprotein that is subdivided into three variant families based on one classification scheme. Chimeric proteins that comprise contiguous domains of fH fused to murine Fc were used to localize the binding site for all three fHbp variants on fH to short consensus repeat 6 (SCR 6). As expected, fH-like protein 1 (FHL-1), which contains fH SCR 6, also bound to fHbp-expressing meningococci. Using site-directed mutagenesis, we identified histidine 337 and histidine 371 in SCR 6 as important for binding to fHbp. These findings may provide the molecular basis for recent observations that demonstrated human-specific fH binding to meningococci. Differences in the interactions of fHbp variants with SCR 6 were evident. Gonococci bind fH via their porin (Por) molecules (PorB.1A or PorB.1B); sialylation of lipooligosaccharide enhances fH binding. Both sialylated PorB.1B- and (unsialylated) PorB.1A-bearing gonococci bind fH through SCR 18 to 20; PorB.1A can also bind SCR 6, but only weakly, as evidenced by a low level of binding of FHL-1 relative to that of fH. Using isogenic strains expressing either meningococcal fHbp or gonococcal PorB.1B, we discovered that strains expressing gonococcal PorB.1B in the presence of sialylated lipooligosaccharide bound more fH, more effectively limited C3 deposition, and were more serum resistant than their isogenic counterparts expressing fHbp. Differences in fH binding to these two related pathogens may be important for modulating their individual responses to host immune attack.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Lazare Research Building, Room 370I, Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
22
|
Defining targets for complement components C4b and C3b on the pathogenic neisseriae. Infect Immun 2007; 76:339-50. [PMID: 17984207 DOI: 10.1128/iai.00613-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement is a key arm of the innate immune defenses against the pathogenic neisseriae. We previously identified lipooligosaccharide on Neisseria meningitidis as an acceptor for complement C4b. Little is known about other neisserial targets for complement proteins C3 and C4, which covalently attach to bacterial surfaces and initiate opsonization and killing. In this study we demonstrate that Neisseria gonorrhoeae porin (Por) 1B selectively binds C4b via amide linkages and C3b via ester linkages. Using strains expressing hybrid Por1A/1B molecules, a region spanned by loops 4 and 5 of Por1B was identified as the preferred binding site for C4b. We also identified the opacity protein (Opa), a major adhesin of pathogenic neisseriae, as a target for C4b and C3b on both N. meningitidis and N. gonorrhoeae. Using N. gonorrhoeae variants that predominantly expressed individual Opa proteins, we found that all Opa proteins tested (A, B, C, D, E, F, and I) bound C4b and C3b via amide and ester linkages, respectively. Amide linkages with Por1B and Opa were confirmed using serum containing only the C4A isoform, which exclusively forms amide linkages with targets. While monomers and heterodimers of C4Ab were detected on bacterial targets, C4Bb appeared to preferentially participate in heterodimer (C5 convertase) formation. Our data provide another explanation for the enhanced serum sensitivity of Por1B-bearing gonococci. The binding of C3b and C4b to Opa provides a rationale for the recovery of predominantly "transparent" (Opa-negative) neisserial isolates from persons with invasive disease, where the bacteria encounter high levels of complement.
Collapse
|
23
|
Smith H, Tang CM, Exley RM. Effect of host lactate on gonococci and meningococci: new concepts on the role of metabolites in pathogenicity. Infect Immun 2007; 75:4190-8. [PMID: 17562766 PMCID: PMC1951187 DOI: 10.1128/iai.00117-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Harry Smith
- The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
24
|
Schneider MC, Exley RM, Ram S, Sim RB, Tang CM. Interactions between Neisseria meningitidis and the complement system. Trends Microbiol 2007; 15:233-40. [PMID: 17398100 DOI: 10.1016/j.tim.2007.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 03/02/2007] [Accepted: 03/22/2007] [Indexed: 01/15/2023]
Abstract
Meningococcal infection remains a worldwide health problem, and understanding the mechanisms by which Neisseria meningitidis evades host innate and acquired immunity is crucial. The complement system is vital for protecting individuals against N. meningitidis. However, this pathogen has evolved several mechanisms to avoid killing by human complement. Bacterial structures such as polysaccharide capsule and those which mimic or bind host molecules function to prevent complement-mediated lysis and phagocytosis. This review provides an update on the recent findings on the diverse mechanisms by which N. meningitidis avoids complement-mediated killing, and how polymorphisms in genes encoding human complement proteins affect susceptibility to this important human pathogen.
Collapse
Affiliation(s)
- Muriel C Schneider
- Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Flowers Building, Armstrong Road, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
25
|
Madico G, Ngampasutadol J, Gulati S, Vogel U, Rice PA, Ram S. Factor H Binding and Function in Sialylated Pathogenic Neisseriae is Influenced by Gonococcal, but Not Meningococcal, Porin. THE JOURNAL OF IMMUNOLOGY 2007; 178:4489-97. [PMID: 17372007 DOI: 10.4049/jimmunol.178.7.4489] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis both express the lacto-N-neotetraose (LNT) lipooligosaccharide (LOS) molecule that can be sialylated. Although gonococcal LNT LOS sialylation enhances binding of the alternative pathway complement inhibitor factor H and renders otherwise serum-sensitive bacteria resistant to complement-dependent killing, the role of LOS sialylation in meningococcal serum resistance is less clear. We show that only gonococcal, but not meningococcal, LNT LOS sialylation enhanced factor H binding. Replacing the porin (Por) B molecule of a meningococcal strain (LOS sialylated) that did not bind factor H with gonococcal Por1B augmented factor H binding. Capsule expression did not alter factor H binding to meningococci that express gonococcal Por. Conversely, replacing gonococcal Por1B with meningococcal PorB abrogated factor H binding despite LNT LOS sialylation. Gonococcal Por1B introduced in the background of an unsialylated meningococcus itself bound small amounts of factor H, suggesting a direct factor H-Por1B interaction. Factor H binding to unsialylated meningococci transfected with gonococcal Por1B was similar to the sialylated counterpart only in the presence of higher (20 microg/ml) concentrations of factor H and decreased in a dose-responsive manner by approximately 80% at 1.25 microg/ml. Factor H binding to the sialylated strain remained unchanged over this factor H concentration range however, suggesting that LOS sialylation facilitated optimal factor H-Por1B interactions. The functional counterpart of factor H binding showed that sialylated meningococcal mutants that possessed gonococcal Por1B were resistant to complement-mediated killing by normal human serum. Our data highlight the different mechanisms used by these two related species to evade complement.
Collapse
Affiliation(s)
- Guillermo Madico
- Evans Biomedical Research Center, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bugla-Płoskońska G, Cisowska A, Karpińska K, Jankowski S, Doroszkiewicz W. The mechanisms of activation of normal human serum complement byEscherichia coli strains with K1 surface antigen. Folia Microbiol (Praha) 2006; 51:627-32. [PMID: 17455802 DOI: 10.1007/bf02931630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ten E. coli K1 strains isolated from the urine of children with urinary tract infections were sensitive to the bactericidal action of normal human serum (NHS). The role of the particular mechanisms of complement activation was determined in the process of killing these strains, showing variable sensitivity to the bactericidal action of NHS; three mechanisms of activation of human complement were observed. Important role of alternative pathway activation in the bactericidal action of NHS against E. coli K1 strains independent of the classical and lectin pathways was not established.
Collapse
|
27
|
Madico G, Welsch JA, Lewis LA, McNaughton A, Perlman DH, Costello CE, Ngampasutadol J, Vogel U, Granoff DM, Ram S. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. THE JOURNAL OF IMMUNOLOGY 2006; 177:501-10. [PMID: 16785547 PMCID: PMC2248442 DOI: 10.4049/jimmunol.177.1.501] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis binds factor H (fH), a key regulator of the alternative complement pathway. A approximately 29 kD fH-binding protein expressed in the meningococcal outer membrane was identified by mass spectrometry as GNA1870, a lipoprotein currently under evaluation as a broad-spectrum meningococcal vaccine candidate. GNA1870 was confirmed as the fH ligand on intact bacteria by 1) abrogation of fH binding upon deleting GNA1870, and 2) blocking fH binding by anti-GNA1870 mAbs. fH bound to whole bacteria and purified rGNA1870 representing each of the three variant GNA1870 families. We showed that the amount of fH binding correlated with the level of bacterial GNA1870 expression. High levels of variant 1 GNA1870 expression (either by allelic replacement of gna1870 or by plasmid-driven high-level expression) in strains that otherwise were low-level GNA1870 expressers (and bound low amounts of fH by flow cytometry) restored high levels of fH binding. Diminished fH binding to the GNA1870 deletion mutants was accompanied by enhanced C3 binding and increased killing of the mutants. Conversely, high levels of GNA1870 expression and fH binding enhanced serum resistance. Our findings support the hypothesis that inhibiting the binding of a complement down-regulator protein to the neisserial surface by specific Ab may enhance intrinsic bactericidal activity of the Ab, resulting in two distinct mechanisms of Ab-mediated vaccine efficacy. These data provide further support for inclusion of this molecule in a meningococcal vaccine. To reflect the critical function of this molecule, we suggest calling it fH-binding protein.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adult
- Amino Acid Sequence
- Antibodies, Monoclonal/metabolism
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Adhesion/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- Binding, Competitive/immunology
- Blood Bactericidal Activity/genetics
- Blood Bactericidal Activity/immunology
- Complement Factor H/antagonists & inhibitors
- Complement Factor H/immunology
- Complement Factor H/metabolism
- Complement Pathway, Alternative/genetics
- Complement Pathway, Alternative/immunology
- Gene Deletion
- Genetic Variation
- Humans
- Ligands
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Meningococcal Vaccines/metabolism
- Molecular Sequence Data
- Neisseria meningitidis/genetics
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Porins/metabolism
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Guillermo Madico
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118
| | - Jo Anne Welsch
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Lisa A. Lewis
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118
| | - Anne McNaughton
- Department of Biochemistry, Trinity College, Dublin, Ireland
| | - David H. Perlman
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
| | | | - Jutamas Ngampasutadol
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ulrich Vogel
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | - Dan M. Granoff
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
- Address correspondence and reprint requests to Dr. Sanjay Ram, Division of Infectious Diseases and Immunology, Lazare Research Building, Room 322, 364 Plantation Street, Worcester, MA 01605. E-mail address:
| |
Collapse
|
28
|
Packiam M, Shell DM, Liu SV, Liu YB, McGee DJ, Srivastava R, Seal S, Rest RF. Differential expression and transcriptional analysis of the alpha-2,3-sialyltransferase gene in pathogenic Neisseria spp. Infect Immun 2006; 74:2637-50. [PMID: 16622200 PMCID: PMC1459705 DOI: 10.1128/iai.74.5.2637-2650.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alpha-2,3-sialyltransferase (Lst) is expressed on the outer membrane of Neisseria gonorrhoeae and Neisseria meningitidis and sialylates surface lipooligosaccharide (LOS), facilitating resistance to complement-mediated killing. The enzyme is constitutively expressed from a single gene (lst) and does not undergo antigenic or phase variation. We observed that Triton X-100 extracts of N. gonorrhoeae strain F62 contain about fivefold more sialyltransferase (Stase) activity than extracts of N. meningitidis strain MC58 [symbol: see text]3 a serogroup B acapsulate mutant. We confirmed and expanded upon this observation by showing that extracts of 16 random N. gonorrhoeae isolates contain various amounts of Stase activity, but, on average, 2.2-fold-more Stase activity than extracts of 16 N. meningitidis clinical isolates, representing several serogroups and nongroupable strains. Northern and real-time reverse transcription-PCR analysis of lst transcript levels in N. gonorrhoeae and N. meningitidis revealed that N. gonorrhoeae strains express more lst transcript than N. meningitidis strains. Although transcript levels correlate with average Stase activity observed in the two species, there was not a direct correlation between lst transcript levels and Stase activity among individual isolates of each species. Comparison of lst upstream (5'lst) regions of N. gonorrhoeae and N. meningitidis revealed striking sequence differences characteristic of the two pathogens. N. gonorrhoeae 5'lst regions possess 30-bp and 13-bp elements present as single elements or as tandem repeats that exist only as single elements in the 5'lst regions of N. meningitidis isolates. In addition, the 5'lst regions of N. meningitidis strains have 105-bp transposon-like Correia elements which are absent in N. gonorrhoeae. Chromosomal N. gonorrhoeae 5'lst::lacZ translational fusions expressed 4.75 +/- 0.09-fold (n = 4) higher beta-galactosidase (beta-gal) activity than N. meningitidis 5'lst::lacZ fusions in a host-independent manner, indicating differential expression is governed at least in part by sequence variations in the 5'lst regions. Reporter fusion assays and promoter-mapping analysis revealed that N. gonorrhoeae and N. meningitidis use different promoters with different strengths to transcribe lst. In N. gonorrhoeae, a strong sigma 70 promoter 80 bp upstream of the translational start site is used to transcribe lst, whereas this promoter is inactive in N. meningitidis. In N. meningitidis, a weak sigma 70 promoter at the 3' terminus of a 105-bp Correia repeat-enclosed element 99 bp upstream of the translational start site is used to transcribe lst. We conclude that differential Stase expression between N. gonorrhoeae and N. meningitidis is due at least in part to differential lst gene transcription.
Collapse
Affiliation(s)
- Mathanraj Packiam
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurzai O, Schmitt C, Claus H, Vogel U, Frosch M, Kolb-Mäurer A. Carbohydrate composition of meningococcal lipopolysaccharide modulates the interaction of Neisseria meningitidis with human dendritic cells. Cell Microbiol 2006; 7:1319-34. [PMID: 16098219 DOI: 10.1111/j.1462-5822.2005.00559.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meningococcal lipopolysaccharide (LPS) is of crucial importance for the pathogenesis of invasive infection. We show that sialylation and elongation of the alpha-chain effectively shields viable unencapsulated Neisseria meningitidis from recognition by human dendritic cells (DC). In contrast, beta- and gamma- chain of the LPS carbohydrate moiety play only a minor role in the interaction with DC. The protective function of the LPS for the bacteria can be counteracted in vivo by phase variation of the lgtA gene encoding LPS glycosyltransferase A. Capsule expression protects N. meningitidis efficiently from recognition and phagocytosis by DC independent of the LPS structure. Despite the significant impact of LPS composition on the adhesion and phagocytosis of N. meningitidis no differences were found in terms of cytokine levels secreted by DC for IL1-beta, IL-6, IL-8, TNF-alpha, IFN-gamma and GM-CSF. However, significantly lower levels of the regulatory mediator IL-10 were induced by encapsulated strains in comparison to isogenic unencapsulated derivatives. IL-10 secretion was shown to depend on phagocytosis because poly alpha-2,8 sialic acid did not influence IL-10 secretion. The use of truncated LPS isoforms in vaccine preparations can therefore not only result in attenuation but also in more efficient targeting of DC.
Collapse
Affiliation(s)
- Oliver Kurzai
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Kraiczy P, Würzner R. Complement escape of human pathogenic bacteria by acquisition of complement regulators. Mol Immunol 2006; 43:31-44. [PMID: 16011850 DOI: 10.1016/j.molimm.2005.06.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pathogenic micro-organisms employ a broad range of strategies to survive in and to persistently infect the human host. Far from being completely understood by which highly sophisticated means invading pathogens overcome the host's destructive immune defence, there is a growing body of evidence on particular mechanisms which play a pivotal role for immune evasion. This review focuses on evasion of medically and scientifically important bacteria by acquisition of host derived fluid-phase complement regulatory proteins, in particular factor H, FHL-1, and C4b binding protein. Expression of microbial surface molecules binding to human complement regulators and thus fixing them in a functionally active state allows pathogens to inhibit and finely regulate complement activation directly on their surface. Further studies on the utilization of host complement regulatory proteins will likely have a marked impact on a more efficient and specific clinical treatment.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology, University Hospital of Frankfurt, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany.
| | | |
Collapse
|
31
|
Gulati S, Cox A, Lewis LA, Michael FS, Li J, Boden R, Ram S, Rice PA. Enhanced factor H binding to sialylated Gonococci is restricted to the sialylated lacto-N-neotetraose lipooligosaccharide species: implications for serum resistance and evidence for a bifunctional lipooligosaccharide sialyltransferase in Gonococci. Infect Immun 2005; 73:7390-7. [PMID: 16239538 PMCID: PMC1273834 DOI: 10.1128/iai.73.11.7390-7397.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We isolated serologically identical (by serovar determination and porin variable region [VR] typing) strains of Neisseria gonorrhoeae from an infected male and two of his monogamous female sex partners. One strain (termed 398078) expressed the L1 (Galalpha1 --> 4 [corrected] Galbeta1 --> 4Glcbeta1 --> 4HepI) lipooligosaccharide (LOS) structure exclusively; the other (termed 398079) expressed the lacto-N-neotetraose (LNT; Galbeta1 --> 4GlcNAcbeta1 --> 3Galbeta1 --> 4Glcbeta1 --> 4HepI) LOS structure. The strain from the male index case expressed both glycoforms and exhibited both immunotypes. Nuclear magnetic resonance analysis revealed that sialic acid linked to the terminal Gal of L1 LOS via an alpha2 --> 6 linkage and, as expected, to the terminal Gal of LNT LOS via an alpha2--> 3 linkage. Insertional inactivation of the sialyltransferase gene (known to sialylate LNT LOS) abrogated both L1 LOS sialylation and LNT LOS sialylation, suggesting a bifunctional nature of this enzyme in gonococci. Akin to our previous observations, sialylation of the LNT LOS of strain 398079 enhanced the binding of the complement regulatory molecule, factor H. Rather surprisingly, factor H did not bind to sialylated strain 398078. LOS sialylation conferred the LNT LOS-bearing strain complete (100%) resistance to killing by even 50% nonimmune normal human serum (NHS), whereas sialylation of L1 LOS conferred resistance only to 10% NHS. The ability of gonococcal sialylated LNT to bind factor H confers high-level serum resistance, which is not seen with sialylated L1 LOS. Thus, serum resistance mediated by sialylation of gonococcal L1 and LNT LOS occurs by different mechanisms, and specificity of factor H binding to sialylated gonococci is restricted to the LNT LOS species.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Exley RM, Shaw J, Mowe E, Sun YH, West NP, Williamson M, Botto M, Smith H, Tang CM. Available carbon source influences the resistance of Neisseria meningitidis against complement. ACTA ACUST UNITED AC 2005; 201:1637-45. [PMID: 15897277 PMCID: PMC2212924 DOI: 10.1084/jem.20041548] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis is an important cause of septicaemia and meningitis. To cause disease, the bacterium must acquire essential nutrients for replication in the systemic circulation, while avoiding exclusion by host innate immunity. Here we show that the utilization of carbon sources by N. meningitidis determines its ability to withstand complement-mediated lysis, through the intimate relationship between metabolism and virulence in the bacterium. The gene encoding the lactate permease, lctP, was identified and disrupted. The lctP mutant had a reduced growth rate in cerebrospinal fluid compared with the wild type, and was attenuated during bloodstream infection through loss of resistance against complement-mediated killing. The link between lactate and complement was demonstrated by the restoration of virulence of the lctP mutant in complement (C3(-/-))-deficient animals. The underlying mechanism for attenuation is mediated through the sialic acid biosynthesis pathway, which is directly connected to central carbon metabolism. The findings highlight the intimate relationship between bacterial physiology and resistance to innate immune killing in the meningococcus.
Collapse
Affiliation(s)
- Rachel M Exley
- The Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jarva H, Ram S, Vogel U, Blom AM, Meri S. Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. THE JOURNAL OF IMMUNOLOGY 2005; 174:6299-307. [PMID: 15879129 DOI: 10.4049/jimmunol.174.10.6299] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neisseria meningitidis (meningococcus) is an important cause of meningitis and sepsis. Currently, there is no effective vaccine against serogroup B meningococcal infection. Host defense against neisseriae requires the complement system (C) as indicated by the fact that individuals deficient in properdin or late C components (C6-9) have an increased susceptibility to recurrent neisserial infections. Because the classical pathway (CP) is required to initiate efficient complement activation on neisseriae, meningococci should be able to evade it to cause disease. To test this hypothesis, we studied the interactions of meningococci with the major CP inhibitor C4b-binding protein (C4bp). We tested C4bp binding to wild-type group B meningococcus strain (H44/76) and to 11 isogenic mutants thereof that differed in capsule expression, lipo-oligosaccharide sialylation, and/or expression of either porin (Por) A or PorB3. All strains expressing PorA bound radiolabeled C4bp, whereas the strains lacking PorA bound significantly less C4bp. Increased binding was observed under hypotonic conditions. Deleting PorB3 did not influence C4bp binding, but the presence of polysialic acid capsule reduced C4bp binding by 50%. Bound C4bp remained functionally active in that it promoted the inactivation of C4b by factor I. PorA-expressing strains were also more resistant to C lysis than PorA-negative strains in a serum bactericidal assay. Binding of C4bp thus helps Neisseria meningitidis to escape CP complement activation.
Collapse
Affiliation(s)
- Hanna Jarva
- Haartman Institute, Department of Bacteriology and Immunology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
34
|
Vogel U, Claus H, von Müller L, Bunjes D, Elias J, Frosch M. Bacteremia in an immunocompromised patient caused by a commensal Neisseria meningitidis strain harboring the capsule null locus (cnl). J Clin Microbiol 2004; 42:2898-901. [PMID: 15243035 PMCID: PMC446252 DOI: 10.1128/jcm.42.7.2898-2901.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/18/2004] [Accepted: 04/15/2004] [Indexed: 01/15/2023] Open
Abstract
We recently described the capsule null locus (cnl) of constitutively unencapsulated Neisseria meningitidis clonal lineages. cnl meningococci were recovered from healthy carriers at high frequency. We here report on the first case of invasive disease caused by cnl meningococci in a severely immunosuppressed patient with chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplantation. The sequence type 845 strain was extensively typed and, furthermore, shown to be sensitive to serum bactericidal activity.
Collapse
Affiliation(s)
- Ulrich Vogel
- National Reference Laboratory for Meningococci, Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Ram S, Cox AD, Wright JC, Vogel U, Getzlaff S, Boden R, Li J, Plested JS, Meri S, Gulati S, Stein DC, Richards JC, Moxon ER, Rice PA. Neisserial lipooligosaccharide is a target for complement component C4b. Inner core phosphoethanolamine residues define C4b linkage specificity. J Biol Chem 2003; 278:50853-62. [PMID: 14525973 DOI: 10.1074/jbc.m308364200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified Neisseria meningitidis lipooligosaccharide (LOS) as an acceptor for complement component C4b (C4b). Phosphoethanolamine (PEA) residues on the second heptose (HepII) residue in the LOS core structure formed amide linkages with C4b. PEA at the 6-position of HepII (6-PEA) was more efficient than 3-PEA in binding C4b. Strains bearing 6-PEA bound more C4b than strains with 3-PEA and were more susceptible to complement-mediated killing in serum bactericidal assays. Deleting 3-PEA from a strain that expressed both 3- and 6-PEA simultaneously on HepII did not decrease C4b binding. Glycose chain extension of the first heptose residue (HepI) influenced the nature of the C4b-LOS linkage. Predominantly ester C4b-LOS bonds were seen when lacto-N-neotetraose formed the terminus of the glycose chain extension of HepI with 3-PEA on HepII in the LOS core. Related LOS species with more truncated chain extensions from HepI bound C4b via amide linkages to 3-PEA on HepII. However, 6-PEA in the LOS core bound C4b even when the glycose chain from HepI bore lacto-N-neotetraose at the terminus. The C4A isoform exclusively formed amide linkages, whereas C4B bound meningococci preferentially via ester linkages. These data may serve to explain the preponderance of 3-PEA-bearing meningococci among clinical isolates, because 6-PEA enhances C4b binding that may facilitate clearance of 6-PEA-bearing strains resulting from enhanced serum killing by the classical pathway of complement.
Collapse
Affiliation(s)
- Sanjay Ram
- Section of Infectious Diseases, Evans Biomedical Research Center, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Oyston PCF, Prior JL, Kiljunen S, Skurnik M, Hill J, Titball RW. Expression of heterologous O-antigen in Yersinia pestis KIM does not affect virulence by the intravenous route. J Med Microbiol 2003; 52:289-294. [PMID: 12676866 DOI: 10.1099/jmm.0.05044-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All strains of Yersinia pestis examined have been found to lack an O-antigen. In other members of the Enterobacteriaceae, the rough phenotype often results in attenuation. However, Y. pestis is the aetiological agent of bubonic plague. In evolving from the ancestral enteropathogenic Yersinia pseudotuberculosis, and with the development of an arthropod-vectored systemic pathogenesis, smooth LPS production is not necessary for Y. pestis virulence and the metabolic burden has been alleviated by inactivation of the O-antigen biosynthetic operon. To investigate this, Y. pestis strain KIM D27 was transformed with a plasmid carrying the operon encoding the O-antigen of Yersinia enterocolitica O : 3. Expression of the O-antigen could be detected in silver-stained gels. The receptor for bacteriophage phiYeO3-12 has been shown to be O-antigen, and infection by this bacteriophage results in lysis of Y. enterocolitica O : 3. Expression of the O-antigen in Y. pestis conferred sensitivity to lysis by phiYeO3-12. The O-antigen-expressing clone was shown to be as virulent in mice by the intravenous route of challenge as the rough wild-type. Assays showed no alteration in the ability of Y. pestis to resist lysis by cationic antimicrobial peptides, serum or polymyxin.
Collapse
Affiliation(s)
- P C F Oyston
- Microbiology, DSTL, CBS Porton Down, Salisbury, Wiltshire SP4 0JQ, UK 2Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - J L Prior
- Microbiology, DSTL, CBS Porton Down, Salisbury, Wiltshire SP4 0JQ, UK 2Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - S Kiljunen
- Microbiology, DSTL, CBS Porton Down, Salisbury, Wiltshire SP4 0JQ, UK 2Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - M Skurnik
- Microbiology, DSTL, CBS Porton Down, Salisbury, Wiltshire SP4 0JQ, UK 2Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - J Hill
- Microbiology, DSTL, CBS Porton Down, Salisbury, Wiltshire SP4 0JQ, UK 2Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - R W Titball
- Microbiology, DSTL, CBS Porton Down, Salisbury, Wiltshire SP4 0JQ, UK 2Department of Medical Biochemistry and Molecular Biology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
37
|
Geoffroy MC, Floquet S, Métais A, Nassif X, Pelicic V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res 2003; 13:391-8. [PMID: 12618369 PMCID: PMC430250 DOI: 10.1101/gr.664303] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 12/04/2002] [Indexed: 11/24/2022]
Abstract
The biologic role of a majority of the Neisseria meningitidis 2100 predicted coding regions is still to be assigned or experimentally confirmed. Determining the phenotypic effect of gene disruption being a fundamental approach to understanding gene function, we used high-density signature-tagged transposon mutagenesis, followed by a large-scale sequencing of the transposon insertion sites, to construct a genome-wide collection of mutants. The sequencing results for the first half of the 4548 mutants composing the library suggested that we have mutations in 80%-90% of N. meningitidis nonessential genes. This was confirmed by a whole-genome identification of the genes required for resistance to complement-mediated lysis, a key to meningococcal virulence. We show that all the genes we identified, including four previously uncharacterized, were important for the synthesis of the polysialic acid capsule or the lipooligosaccharide (LOS), suggesting that these are likely to be the only meningococcal attributes necessary for serum resistance. Our work provides a valuable and lasting resource that may lead to a global map of gene function in N. meningitidis.
Collapse
|
38
|
Shell DM, Chiles L, Judd RC, Seal S, Rest RF. The Neisseria lipooligosaccharide-specific alpha-2,3-sialyltransferase is a surface-exposed outer membrane protein. Infect Immun 2002; 70:3744-51. [PMID: 12065517 PMCID: PMC128106 DOI: 10.1128/iai.70.7.3744-3751.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Revised: 01/24/2002] [Accepted: 03/26/2002] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis express an approximately 43-kDa alpha-2,3-sialyltransferase (Lst) that sialylates the surface lipooligosaccharide (LOS) by using exogenous (in all N. gonorrhoeae strains and some N. meningitidis serogroups) or endogenous (in other N. meningitidis serogroups) sources of 5'-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA). Sialylation of LOS can protect N. gonorrhoeae and N. meningitidis from complement-mediated serum killing and from phagocytic killing by neutrophils. The precise subcellular location of Lst has not been determined. We confirm and extend previous studies by demonstrating that Lst is located in the outer membrane and is surface exposed in both N. gonorrhoeae and N. meningitidis. Western immunoblot analysis of subcellular fractions of N. gonorrhoeae strain F62 and N. meningitidis strain MC58 not subset 3 (an acapsulate serogroup B strain) performed with rabbit antiserum raised against recombinant Lst revealed an approximately 43-kDa protein exclusively in outer membrane preparations of both pathogens. Inner membrane, periplasmic, cytoplasmic, and culture supernatant fractions were devoid of Lst, as determined by Western blot analysis. Consistent with this finding, outer membrane fractions of N. gonorrhoeae were significantly enriched for sialyltransferase enzymatic activity. A trace of enzymatic activity was detected in inner membrane fractions, which may have represented Lst in transit to the outer membrane or may have represented inner membrane contamination of outer membrane preparations. Subcellular preparations of an isogenic lst insertion knockout mutant of N. gonorrhoeae F62 (strain ST01) expressed neither a 43-kDa immunoreactive protein nor sialyltransferase activity. Anti-Lst rabbit antiserum bound to whole cells of N. meningitidis MC58 not subset 3 and wild-type N. gonorrhoeae F62 but not to the Lst mutant ST01, indicating the surface exposure of the enzyme. Although the anti-Lst antiserum avidly bound enzymatically active, recombinant Lst, it inhibited Lst (sialyltransferase) activity by only about 50% at the highest concentration of antibody used. On the contrary, anti-Lst antiserum did not inhibit sialylation of whole N. gonorrhoeae cells in the presence of exogenous CMP-NANA, suggesting that the antibody did not bind to or could not access the enzyme active site on the surface of viable Neisseria cells. Taken together, these results indicate that Lst is an outer membrane, surface-exposed glycosyltransferase. To our knowledge, this is the first demonstration of the localization of a bacterial glycosyltransferase to the outer membrane of gram-negative bacteria.
Collapse
Affiliation(s)
- Dawn M Shell
- Department of Microbiology and Immunology, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|
39
|
Hitchen PG, Prior JL, Oyston PCF, Panico M, Wren BW, Titball RW, Morris HR, Dell A. Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system. Mol Microbiol 2002; 44:1637-50. [PMID: 12067350 DOI: 10.1046/j.1365-2958.2002.02990.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two-component regulatory system PhoPQ has been shown to regulate the expression of virulence factors in a number of bacterial species. For one such virulence factor, lipopolysaccharide (LPS), the PhoPQ system has been shown to regulate structural modifications in Salmonella enterica var Typhimurium. In Yersinia pestis, which expresses lipo-oligosaccharide (LOS), a PhoPQ regulatory system has been identified and an isogenic mutant constructed. To investigate potential modifications to LOS from Y. pestis, which to date has not been fully characterized, purified LOS from wild-type plague and the phoP defective mutant were analysed by mass spectrometry. Here we report the structural characterization of LOS from Y. pestis and the direct comparison of LOS from a phoP mutant. Structural modifications to lipid A, the host signalling portion of LOS, were not detected but analysis of the core revealed the expression of two distinct molecular species in wild-type LOS, differing in terminal galactose or heptose. The phoP mutant was restricted to the expression of a single molecular species, containing terminal heptose. The minimum inhibitory concentration of cationic antimicrobial peptides for the two strains was determined and compared with the wild-type: the phoP mutant was highly sensitive to polymyxin. Thus, LOS modification is under the control of the PhoPQ regulatory system and the ability to alter LOS structure may be required for survival of Y. pestis within the mammalian and/or flea host.
Collapse
Affiliation(s)
- Paul G Hitchen
- Department of Biological Sciences, Wolfson Building, Imperial College, London, SW7 2AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Munster AK, Weinhold B, Gotza B, Muhlenhoff M, Frosch M, Gerardy-Schahn R. Nuclear localization signal of murine CMP-Neu5Ac synthetase includes residues required for both nuclear targeting and enzymatic activity. J Biol Chem 2002; 277:19688-96. [PMID: 11893746 DOI: 10.1074/jbc.m201093200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-N-Acetylneuraminic acid (Neu5Ac) is the major sialic acid derivative found in animal cells. As a component of cell surface glycoconjugates, Neu5Ac is pivotal to numerous cellular recognition and communication processes including host-parasite interactions. A prerequisite for the synthesis of sialylated glycoconjugates is the activation of Neu5Ac to cytidine-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). The reaction is catalyzed by CMP-Neu5Ac-synthetase (syn), which, for unknown reasons, resides in the nucleus. Sequence analysis of the cloned murine CMP-Neu5Ac synthetase identified three clusters of basic amino acids (BC1-BC3) that might function as nuclear localization signals (NLS). In the present study chimeric protein and mutagenesis strategies were used to show that BC1 and BC2 are active NLS sequences when attached to the green fluorescent protein (enhanced GFP), but only BC2 is necessary and sufficient to mediate the nuclear import of CMP-Neu5Ac synthetase. Site-directed mutations identified the residues K(198)RXR to be essential for nuclear transport and Arg(202) to be necessary to complete the transport process. Cytoplasmic forms of CMP-Neu5Ac synthetase generated by single site mutations in BC2 demonstrated that (i) enzyme activity is independent of nuclear localization, and (ii) Arg(199) and Arg(202) are involved in both nuclear transport and synthetase activity. Comparison of all known and predicted CMP-sialic acid synthetases reveals Arg(202) and Gln(203) as highly conserved in evolution and critically important for optimal synthetase activity but not for nuclear localization. Combined, the data demonstrate that nuclear transport and enzyme activity are independent functions that share some common amino acid requirements in CMP-Neu5Ac synthetase.
Collapse
Affiliation(s)
- Anja-K Munster
- Institut für Physiologische Chemie/Proteinstruktur, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Unkmeir A, Kämmerer U, Stade A, Hübner C, Haller S, Kolb-Mäurer A, Frosch M, Dietrich G. Lipooligosaccharide and polysaccharide capsule: virulence factors of Neisseria meningitidis that determine meningococcal interaction with human dendritic cells. Infect Immun 2002; 70:2454-62. [PMID: 11953382 PMCID: PMC127941 DOI: 10.1128/iai.70.5.2454-2462.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this work we analyzed the roles of meningococcal lipooligosaccharide (LOS) and capsule expression in the interaction of Neisseria meningitidis with human dendritic cells (DC). Infection of DC with serogroup B wild-type meningococci induced a strong burst of the proinflammatory cytokines and chemokines tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-8. In contrast, a serogroup B mutant strain lacking LOS expression barely led to cytokine induction, demonstrating that meningococcal LOS is the main mediator of the proinflammatory response in human DC. Sialylation of meningococcal LOS did not influence cytokine secretion by DC. However, we found the phagocytosis of N. meningitidis by human DC to be inhibited by LOS sialylation. In addition, the expression of the meningococcal serogroup A, B, and C capsules dramatically reduced DC adherence of N. meningitidis and phagocytosis to some extent. Hence, LOS sialylation and capsule expression are independent mechanisms protecting N. meningitidis from the phagocytic activity of human DC.
Collapse
Affiliation(s)
- Alexandra Unkmeir
- Institut für Hygiene und Mikrobiologie, Universität Würzburg. Universitätsklinik für Frauenheilkunde. Dermatologische Universitätsklinik, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 2000. [PMID: 10627495 DOI: 10.1128/cmr.13.1.144-166.2000] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The only natural reservoir of Neisseria meningitidis is the human nasopharyngeal mucosa. Depending on age, climate, country, socioeconomic status, and other factors, approximately 10% of the human population harbors meningococci in the nose. However, invasive disease is relatively rare, as it occurs only when the following conditions are fulfilled: (i) contact with a virulent strain, (ii) colonization by that strain, (iii) penetration of the bacterium through the mucosa, and (iv) survival and eventually outgrowth of the meningococcus in the bloodstream. When the meningococcus has reached the bloodstream and specific antibodies are absent, as is the case for young children or after introduction of a new strain in a population, the ultimate outgrowth depends on the efficacy of the innate immune response. Massive outgrowth leads within 12 h to fulminant meningococcal sepsis (FMS), characterized by high intravascular concentrations of endotoxin that set free high concentrations of proinflammatory mediators. These mediators belonging to the complement system, the contact system, the fibrinolytic system, and the cytokine system induce shock and diffuse intravascular coagulation. FMS can be fatal within 24 h, often before signs of meningitis have developed. In spite of the increasing possibilities for treatment in intensive care units, the mortality rate of FMS is still 30%. When the outgrowth of meningococci in the bloodstream is impeded, seeding of bacteria in the subarachnoidal compartment may lead to overt meningitis within 24 to 36 h. With appropriate antibiotics and good clinical surveillance, the mortality rate of this form of invasive disease is 1 to 2%. The overall mortality rate of meningococcal disease can only be reduced when patients without meningitis, i.e., those who may develop FMS, are recognized early. This means that the fundamental nature of the disease as a meningococcus septicemia deserves more attention.
Collapse
|
43
|
van Deuren M, Brandtzaeg P, van der Meer JW. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev 2000; 13:144-66, table of contents. [PMID: 10627495 PMCID: PMC88937 DOI: 10.1128/cmr.13.1.144] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The only natural reservoir of Neisseria meningitidis is the human nasopharyngeal mucosa. Depending on age, climate, country, socioeconomic status, and other factors, approximately 10% of the human population harbors meningococci in the nose. However, invasive disease is relatively rare, as it occurs only when the following conditions are fulfilled: (i) contact with a virulent strain, (ii) colonization by that strain, (iii) penetration of the bacterium through the mucosa, and (iv) survival and eventually outgrowth of the meningococcus in the bloodstream. When the meningococcus has reached the bloodstream and specific antibodies are absent, as is the case for young children or after introduction of a new strain in a population, the ultimate outgrowth depends on the efficacy of the innate immune response. Massive outgrowth leads within 12 h to fulminant meningococcal sepsis (FMS), characterized by high intravascular concentrations of endotoxin that set free high concentrations of proinflammatory mediators. These mediators belonging to the complement system, the contact system, the fibrinolytic system, and the cytokine system induce shock and diffuse intravascular coagulation. FMS can be fatal within 24 h, often before signs of meningitis have developed. In spite of the increasing possibilities for treatment in intensive care units, the mortality rate of FMS is still 30%. When the outgrowth of meningococci in the bloodstream is impeded, seeding of bacteria in the subarachnoidal compartment may lead to overt meningitis within 24 to 36 h. With appropriate antibiotics and good clinical surveillance, the mortality rate of this form of invasive disease is 1 to 2%. The overall mortality rate of meningococcal disease can only be reduced when patients without meningitis, i.e., those who may develop FMS, are recognized early. This means that the fundamental nature of the disease as a meningococcus septicemia deserves more attention.
Collapse
Affiliation(s)
- M van Deuren
- Department of Internal Medicine, University Hospital Nijmegen, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
44
|
Dixon GL, Heyderman RS, Kotovicz K, Jack DL, Andersen SR, Vogel U, Frosch M, Klein N. Endothelial adhesion molecule expression and its inhibition by recombinant bactericidal/permeability-increasing protein are influenced by the capsulation and lipooligosaccharide structure of Neisseria meningitidis. Infect Immun 1999; 67:5626-33. [PMID: 10531209 PMCID: PMC96935 DOI: 10.1128/iai.67.11.5626-5633.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial injury is responsible for many of the clinical manifestations of severe meningococcal disease. Binding and migration of activated host inflammatory cells is a central process in vascular damage. The expression and function of adhesion molecules regulate interactions between leukocytes and endothelial cells. Little is known about how meningococci directly influence these receptors. In this study we have explored the effect of Neisseria meningitidis on endothelial adhesion molecule expression and found this organism to be a potent inducer of the adhesion molecules CD62E, ICAM-1, and VCAM-1. Exposure of endothelium to a serogroup B strain of Neisseria meningitidis, B1940, and a range of isogenic mutants revealed that lipooligosaccharide (LOS) structure and capsulation influence the expression of adhesion molecules. Following only a brief exposure (15 min) to the bacteria, there were large differences in the capacity of the different mutants to induce vascular cell adhesion molecules, with the unencapsulated and truncated LOS strains being most potent (P < 0.05). Furthermore, the pattern of cell adhesion molecule expression was different with purified endotoxin from that with intact bacteria. Meningococci were more potent stimuli of CD62E expression than was endotoxin, whereas endotoxin was at least as effective as meningococci in inducing ICAM-1 and VCAM-1. The effect of bactericidal/permeability increasing protein (rBPI(21)), an antibacterial molecule with antiendotoxin properties, was also dependent on LOS structure. The strains which possessed a truncated or nonsialylated LOS, whether capsulated or not, were more sensitive to the inhibitory effects of rBPI(21). These findings could have important implications for the use of antiendotoxin therapy in meningococcal disease.
Collapse
Affiliation(s)
- G L Dixon
- Immunobiology Unit, Institute of Child Health, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ram S, Mackinnon FG, Gulati S, McQuillen DP, Vogel U, Frosch M, Elkins C, Guttormsen HK, Wetzler LM, Oppermann M, Pangburn MK, Rice PA. The contrasting mechanisms of serum resistance of Neisseria gonorrhoeae and group B Neisseria meningitidis. Mol Immunol 1999; 36:915-28. [PMID: 10698346 DOI: 10.1016/s0161-5890(99)00114-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis have evolved intricate mechanisms to evade complement-mediated killing. Sialylation of gonococcal lipooligosaccharide (LOS) results in conversion of previously serum sensitive strains to unstable serum resistance, which is mediated by factor H binding. Porin (Por) is also instrumental in mediating stable serum resistance in gonococci. The 5th loop of certain gonococcal PorlAs binds factor H, which efficiently inactivates C3b to iC3b. Factor H glycan residues may be essential for factor H binding to certain Por1A strains. Por1A strains can also regulate the classical pathway by binding to C4b-binding protein (C4bp) probably via the 1st loop of the Por molecule. Certain serum resistant Por1 B strains can also regulate complement by binding C4bp through a loop other than loop 1. Purified C4b can inhibit binding of C4bp to Por 1B, but not Por1A, suggesting different binding sites on C4bp for the two Por types. Unlike serum resistant gonococci, resistant meningococci have abundant C3b on their surface, which is only partially processed to iC3b. The main mechanism of complement evasion by group B meningococci is inhibition of membrane attack complex (MAC) insertion by their polysaccharide capsule. LOS structure may act in concert with capsule to prevent MAC insertion. Meningococcal strains with Class 3 Por preferentially bind factor H, suggesting Class 3 Por acts as a receptor for factor H.
Collapse
Affiliation(s)
- S Ram
- The Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Pathogenic Neisseria use a variety of mechanisms to survive the bactericidal action of the complement system. Serum resistance is a crucial virulence factor for the development of severe meningococcal disease, meningococcal meningitis and disseminated gonococcal infection. Furthermore, local inflammation at the site of gonococcal infection exposes the bacteria to moderate concentrations of complement factors. We review current concepts of neisserial serum resistance with emphasis on porins and polysaccharides exposed on the neisserial surface and their interaction with components of normal human serum.
Collapse
Affiliation(s)
- U Vogel
- Institut für Hygiene und Mikrobiologie, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | |
Collapse
|